7 research outputs found

    Snow Water Equivalent Retrieval Over Idaho – Part 2: Using L-Band UAVSAR Repeat-Pass Interferometry

    Get PDF
    This study evaluates using interferometry on low-frequency synthetic aperture radar (SAR) images to monitor snow water equivalent (SWE) over seasonal and synoptic scales. We retrieved SWE changes from nine pairs of SAR images, mean 8 d temporal baseline, captured by an L-band aerial platform, NASA\u27s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), over central Idaho as part of the NASA SnowEx 2020 and 2021 campaigns. The retrieved SWE changes were compared against coincident in situ measurements (SNOTEL and snow pits from the SnowEx field campaign) and to 100 m gridded SnowModel modeled SWE changes. The comparison of in situ to retrieved measurements shows a strong Pearson correlation (R = 0.80) and low RMSE (0.1 m, n = 64) for snow depth change and similar results for SWE change (RMSE = 0.04 m, R = 0.52, n = 57). The comparison between retrieved SWE changes to SnowModel SWE change also showed good correlation (R = 0.60, RMSD = 0.023 m, n = 3.2 × 106) and especially high correlation for a subset of pixels with no modeled melt and low tree coverage (R = 0.72, RMSD = 0.013 m, n = 6.5 × 104). Finally, we bin the retrievals for a variety of factors and show decreasing correlation between the modeled and retrieved values for lower elevations, higher incidence angles, higher tree percentages and heights, and greater cumulative melt. This study builds on previous interferometry work by using a full winter season time series of L-band SAR images over a large spatial extent to evaluate the accuracy of SWE change retrievals against both in situ and modeled results and the controlling factors of the retrieval accuracy

    Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry

    Get PDF
    This study evaluates using interferometry on low-frequency synthetic aperture radar (SAR) images to monitor snow water equivalent (SWE) over seasonal and synoptic scales. We retrieved SWE changes from nine pairs of SAR images, mean 8 d temporal baseline, captured by an L-band aerial platform, NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), over central Idaho as part of the NASA SnowEx 2020 and 2021 campaigns. The retrieved SWE changes were compared against coincident in situ measurements (SNOTEL and snow pits from the SnowEx field campaign) and to 100 m gridded SnowModel modeled SWE changes. The comparison of in situ to retrieved measurements shows a strong Pearson correlation (R=0.80) and low RMSE (0.1 m, n=64) for snow depth change and similar results for SWE change (RMSE = 0.04 m, R=0.52, n=57). The comparison between retrieved SWE changes to SnowModel SWE change also showed good correlation (R=0.60, RMSD = 0.023 m, n=3.2×106) and especially high correlation for a subset of pixels with no modeled melt and low tree coverage (R=0.72, RMSD = 0.013 m, n=6.5×104). Finally, we bin the retrievals for a variety of factors and show decreasing correlation between the modeled and retrieved values for lower elevations, higher incidence angles, higher tree percentages and heights, and greater cumulative melt. This study builds on previous interferometry work by using a full winter season time series of L-band SAR images over a large spatial extent to evaluate the accuracy of SWE change retrievals against both in situ and modeled results and the controlling factors of the retrieval accuracy.</p

    A taxonomy of earth observation data for sustainable finance

    Get PDF
    Corporate Environmental, Social and Governance (ESG) reporting has been subject to heightened attention and demand within the financial sector, with the objective of efficiently directing capital towards firms engaging in sustainable practices. Effective ESG monitoring is challenging, given the prevalence of self-disclosed internal data and managerial signalling incentives, presenting a need for comprehensive and diverse external data sources to augment existing ESG-related disclosure. Earth Observation (EO) technologies – particularly satellite data – play a crucial role in collecting spatial data on land, water, and atmosphere, making them highly useful for facilitating transition in the sector. This paper aims to outline the various ways in which EO data can be applied for the purposes of (i) future academic research in the subject area of sustainable finance and (ii) detailed ESG reporting and monitoring by practitioners. Using the ESG Key Performance Indicator (KPI) framework established by the European Commission and EFFAS, we present a framework listing all applicable KPIs against the types of satellite imagery that can be utilised in each case. Additionally, for ESG KPIs that EO data cannot directly address, we compile an ancillary list to explore potential indirect applications. To underscore the wealth of available EO data sources that can be used for sustainable finance research, we present a comprehensive catalogue of all open-access and relevant private satellite missions. Listed missions are categorised based on their spatial resolution, temporal resolution, and mission duration, facilitating research with specific requirements for these parameters

    Uncertainty quantification of a radiative transfer model and a machine learning technique for use as observation operators in the assimilation of microwave observations into a land surface model to improve soil moisture and terrestrial snow

    Get PDF
    Soil moisture and terrestrial snow mass are two important hydrological states needed to accurately quantify terrestrial water storage and streamflow. Soil moisture and terrestrial snow mass can be measured using ground-based instrument networks, estimated using advanced land surface models, and retrieved via satellite imagery. However, each method has its own inherent sources of error and uncertainty. This leads to the application of data assimilation to obtain optimal estimates of soil moisture and snow mass. Before conducting data assimilation (DA) experiments, this dissertation explored the use of two different observation operators within a DA framework: a L-band radiative transfer model (RTM) for soil moisture and support vector machine (SVM) regression for soil terrestrial snow mass. First, L-band brightness temperature (Tb) estimated from the RTM after being calibrated against multi-angular SMOS Tb's showed good performance in both ascending and descending overpasses across North America except in regions with sub-grid scale lakes and dense forest. Detailed analysis of RTM-derived L-band Tb in terms of soil hydraulic parameters and vegetation types suggests the need for further improvement of RTM-derived Tb in regions with relatively large porosity, large wilting point, or grassland type vegetation. Secondly, a SVM regression technique was developed with explicit consideration of the first-order physics of photon scattering as a function of different training target sets, training window lengths, and delineation of snow wetness over snow-covered terrain. The overall results revealed that prediction accuracy of the SVM was strongly linked with the first-order physics of electromagnetic responses of different snow conditions. After careful evaluation of the observation operators, C-band backscatter observations over Western Colorado collected by Sentinel-1 were merged into an advanced land surface model using a SVM and a one-dimensional ensemble Kalman filter. In general, updated snow mass estimates using the Sentinel-1 DA framework showed modest improvements in comparison to ground-based measurements of snow water equivalent (SWE) and snow depth. These results motivate further application of the outlined assimilation schemes over larger regions in order to improve the characterization of the terrestrial hydrological cycle

    Estimating Snow Depth and Snow Water Equivalence Using Repeat-Pass Interferometric SAR in the Northern Piedmont Region of the Tianshan Mountains

    No full text
    Snow depth and Snow Water Equivalence (SWE) are important parameters for hydrological applications. In this application, a theoretical method of snow depth estimation with repeat-pass InSAR measurements was proposed, and a preliminary sensitivity analysis of snow phase changes versus the incident angle and snow density was developed. Moreover, the snow density and incident angle parameters were analyzed and calibrated, and the local incident angle was used as a substitute for the satellite incident angle to improve the snow depth estimation. From the results, the coherence images showed that a high degree of coherence can be found for dry snow, and, apart from the effect of snow, land use/cover change due to a long temporal baseline and geometric distortion due to the rugged terrain were the main constraints for InSAR technique to measure snow depth and SWE in this area. The result of snow depth estimation between July 2008 and February 2009 demonstrated that the average snow depth was about 20 cm, which was consistent with the field survey results. The areal coverage of snow distribution estimated from the snow depth and SWE results was consistent with snow cover obtained from HJ-1A CCD optical data at the same time

    Développement d’un système d’assimilation de mesures satellites micro-ondes passives dans un modèle de neige pour la prévision hydrologique au Québec

    Get PDF
    Dans le contexte québécois (Est du Canada), une bonne gestion de la ressource en eau est devenue un enjeu économique majeur et permet également d’éviter d’importantes catastrophes naturelles lors des crues printanières. La plus grande incertitude des modèles de prévision hydrologique résulte de la méconnaissance de la quantité de neige au sol accumulée durant l’hiver. Pour optimiser la gestion de ses barrages hydroélectriques, l'entreprise Hydro-Québec veut pouvoir mieux quantifier et anticiper l'apport en eau que représentera la fonte des neiges au printemps. Cet apport est estimé à partir de l’équivalent en eau de la neige (‘ÉEN’, ou Snow Water Equivalent, ‘SWE’) extrapolé sur l’ensemble d’un territoire. Cette étude se concentre sur la zone subarctique et boréale du Québec (58° - 45°N) incluant les bassins hydrographiques du complexe de la Baie James et du sud du Québec. Ces territoires représentent des régions immenses et hétérogènes difficiles d’accès. Le faible nombre de stations météorologiques permanentes et de relevés nivométriques entrainent de fortes incertitudes dans l’extrapolation de l’équivalent en eau de la neige, que ce soit à partir de mesures au sol ou de modèles de neige pilotés par des forçages météorologiques. La couverture quasi - quotidienne et globale des observations satellitaires est donc une source d’information au potentiel certain, mais encore peu utilisée pour ajuster les estimations de l’ÉEN dans les modèles hydrologiques. Utilisant les observations satellitaires micro-ondes passives (MOP) et des mesures de hauteurs de neige au sol pour ajuster les cartes de neige interpolées, le produit ÉEN GlobSnow2 est actuellement considéré comme un des plus performants à l’échelle globale. En comparant ce produit à une série temporelle de 30 ans de données au sol sur l’Est du Canada (1980 – 2009, avec un total de 38 990 mesures d’ÉEN), nous avons montré que sa précision n'était pas adaptée pour les besoins d'Hydro-Québec, avec une erreur quadratique moyenne (RMSE) relative de l'ordre de 36%. Une partie des incertitudes provient de la non représentativité des mesures de hauteur de neige au sol. Ce travail de thèse s'est donc concentré sur l'amélioration de la prédiction du couvert nival au Québec par l’assimilation des observations satellitaires MOP sans utilisation de relevés au sol. Les observations, décrites comme des températures de brillance (TB), sont fournies par les radiomètres AMSR-2 (Advanced Microwave Scanning Radiometer – 2) embarqués sur le satellite Jaxa (10 x 10 km2). L’approche développée propose de coupler un modèle de neige (Crocus de Météo-France) avec un modèle de transfert radiatif (DMRT-ML du LGGE, Grenoble) pour simuler l’émission du manteau neigeux modélisé. Des modèles de transfert radiatifs de végétation, de sol et d’atmosphère sont ajoutés et calibrés pour représenter le signal MOP au niveau des capteurs satellitaires. Les observations MOP d’AMSR-2 sont alors assimilées en réajustant directement les forçages atmosphériques pilotant le modèle de neige. Ces forçages sont dérivés du modèle de prévision atmosphérique canadien GEM à 10 km de résolution spatiale. Le système d’assimilation implémenté est un filtre particulaire par rééchantillonnage d’importance. La chaîne de modèles a été calibrée et validée avec des mesures au sol de radiométrie micro-onde et des relevés continus d’ÉEN et de hauteurs de neige. L’assimilation des TB montre d'excellents résultats avec des observations synthétiques simulées, améliorant la RMSE sur l’ÉEN de 82% comparé aux simulations d’ÉEN sans assimilation. Les experiences préliminaires de l’assimilation des observations satellitaires d’AMSR-2 en 11, 19 et 37 GHz (verticale polarization) montrent une amélioration significative des biais sur les ÉEN simulés sur un important jeu de données ponctuelles (12 stations de mesures d’ÉEN continues sur 4 années). La moyenne des biais inversés des valeurs d’ÉEN moyens et maximums sont réduits respectivement de 71 % et 32 % par rapport aux simulations d’ÉEN sans assimilation. Avec l’assimilation des observations d’AMSR-2 et pour les sites avec moins de 75 % de couverts forestiers, le pourcentage d'erreur relative sur l’ÉEN par rapport aux observations est de 15 % (contre 20 % sans assimilation), soit une précision significativement améliorée pour des applications hydrologiques. Ce travail ouvre de nouvelles perspectives très prometteuses pour la cartographie d’ÉEN à des fins hydrologiques sur une base journalière
    corecore