47,048 research outputs found

    Gaussian processes with linear operator inequality constraints

    Full text link
    This paper presents an approach for constrained Gaussian Process (GP) regression where we assume that a set of linear transformations of the process are bounded. It is motivated by machine learning applications for high-consequence engineering systems, where this kind of information is often made available from phenomenological knowledge. We consider a GP ff over functions on X⊂Rn\mathcal{X} \subset \mathbb{R}^{n} taking values in R\mathbb{R}, where the process Lf\mathcal{L}f is still Gaussian when L\mathcal{L} is a linear operator. Our goal is to model ff under the constraint that realizations of Lf\mathcal{L}f are confined to a convex set of functions. In particular, we require that a≤Lf≤ba \leq \mathcal{L}f \leq b, given two functions aa and bb where a<ba < b pointwise. This formulation provides a consistent way of encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness, monotonicity or convexity. We adopt the approach of using a sufficiently dense set of virtual observation locations where the constraint is required to hold, and derive the exact posterior for a conjugate likelihood. The results needed for stable numerical implementation are derived, together with an efficient sampling scheme for estimating the posterior process.Comment: Published in JMLR: http://jmlr.org/papers/volume20/19-065/19-065.pd

    Intrinsic Gaussian processes on complex constrained domains

    Get PDF
    We propose a class of intrinsic Gaussian processes (in-GPs) for interpolation, regression and classification on manifolds with a primary focus on complex constrained domains or irregular shaped spaces arising as subsets or submanifolds of R, R2, R3 and beyond. For example, in-GPs can accommodate spatial domains arising as complex subsets of Euclidean space. in-GPs respect the potentially complex boundary or interior conditions as well as the intrinsic geometry of the spaces. The key novelty of the proposed approach is to utilise the relationship between heat kernels and the transition density of Brownian motion on manifolds for constructing and approximating valid and computationally feasible covariance kernels. This enables in-GPs to be practically applied in great generality, while existing approaches for smoothing on constrained domains are limited to simple special cases. The broad utilities of the in-GP approach is illustrated through simulation studies and data examples
    • …
    corecore