1,075 research outputs found

    Real-time analysis of particle motion for continuous biosensing with single-molecule resolution

    Get PDF

    Transmitter and Receiver Architectures for Molecular Communications: A Survey on Physical Design with Modulation, Coding, and Detection Techniques

    Get PDF
    Inspired by nature, molecular communications (MC), i.e., the use of molecules to encode, transmit, and receive information, stands as the most promising communication paradigm to realize the nanonetworks. Even though there has been extensive theoretical research toward nanoscale MC, there are no examples of implemented nanoscale MC networks. The main reason for this lies in the peculiarities of nanoscale physics, challenges in nanoscale fabrication, and highly stochastic nature of the biochemical domain of envisioned nanonetwork applications. This mandates developing novel device architectures and communication methods compatible with MC constraints. To that end, various transmitter and receiver designs for MC have been proposed in the literature together with numerable modulation, coding, and detection techniques. However, these works fall into domains of a very wide spectrum of disciplines, including, but not limited to, information and communication theory, quantum physics, materials science, nanofabrication, physiology, and synthetic biology. Therefore, we believe it is imperative for the progress of the field that an organized exposition of cumulative knowledge on the subject matter can be compiled. Thus, to fill this gap, in this comprehensive survey, we review the existing literature on transmitter and receiver architectures toward realizing MC among nanomaterial-based nanomachines and/or biological entities and provide a complete overview of modulation, coding, and detection techniques employed for MC. Moreover, we identify the most significant shortcomings and challenges in all these research areas and propose potential solutions to overcome some of them.This work was supported in part by the European Research Council (ERC) Projects MINERVA under Grant ERC-2013-CoG #616922 and MINERGRACE under Grant ERC-2017-PoC #780645

    in vitro Characterisation of the Complement Cascade for Predicting Patient Outcome Post-operatively

    Get PDF
    The identification of surgical patients at higher risk of infection enables targeted allocation of critical care resources to improve patient mortality. The Complement cascade of the innate immune system is known to increase risk of infection if compromised and can be tested in vitro as a potential method for stratification of high-risk patients. Existing assays of Complement function are laboratory bound and require trained personnel to operate and interpret. This thesis describes the development of novel immunoassays for C3, C5a, TCC and TNFα, based on a multiplex biosensor platform with a duty cycle of 0.05) from the serum data of 22 volunteers. The model and cohort data provide an initial estimate of effect size for future clinical studies investigating the ability of these Complement activation phenotypes to identify high-risk surgical patients or identify the onset of infection
    • …
    corecore