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SUMMARY

Studies on the dynamics of biological systems and biotechnological pro-
cesses require biomolecular sensors that can reveal time-dependencies
of concentrations of specific biomolecules. Such sensors are important
for fundamental research on biological dynamics, for the development
of patient monitoring strategies, and for the development of closed loop
control strategies. However, the applicability of such sensors depends
on their analytical performance, e. g., sensitivity, molecular specificity,
and degree of parallelization. Single-molecule techniques proved to be
impactful for increasing the performance of bioanalytical methods, but
in the upcoming field of sensors for continuous biomolecular monitor-
ing the advantages are yet to be discovered. This thesis explores the
opportunities of sensors for continuous biomolecular monitoring with
a single-molecule resolution and quantifies potential enhancements
enabled by single-molecule techniques.

Firstly, in Chapter 1, an introduction is given to the field of sensors
for continuous biomolecular monitoring and state-of-the-art single-
molecule approaches. Here we specifically focus on how single-molecule
approaches can be used to enhance the performance of biomolecular
recognition strategies.

In Chapter 2 we demonstrate a new multiplexing method by means
of single-molecule kinetic identification of single particles. Here, multi-
plexing is enabled by an analyte-sensitive, single-molecular nanoswitch
with a particle as a reporter. We demonstrate by experiments and sim-
ulations, using biosensing by particle mobility (BPM) as an example
monitoring technique, multiplexed continuous monitoring of oligonu-
cleotides at picomolar concentrations.

In Chapter 3 we present a framework to study the influence of het-
erogeneities, focused on particle-based sensing applications. Using
single-molecule techniques (DNA-PAINT, qPAINT and BPM), the vari-
ability in particle reactivity is quantified by counting and spatially
mapping individual binder molecules on particles, and by measuring
the resulting reactivity of single particles. By combining experimental
results and simulations, the influence of various heterogeneities and
the collective effect of all heterogeneities on the reactivity of particles is
studied as a function of system parameters, such as particle interaction
area, targeting moiety density, particle size and number of particles.



In Chapter 4 we present a sensing methodology that enables rapid
monitoring of low-concentration biomolecules. We demonstrate using
simulations and experiments that this sensing methodology is suitable
for monitoring picomolar and sub-picomolar concentrations, for mea-
surement intervals of a few minutes, and in principle for sensing over
an endless time span.

In Chapter 5 we investigate continuous biomolecular analyte ex-
change between a dynamic system of interest and the measurement
chamber of a sensor. For this, we simulate mass transport and surface
reactions, where an oscillating concentration-time profile is used as
input. Subsequently, we quantify the time lag of the measured con-
centration and the sensitivity of the sensor as a function of system
parameters, such as measurement chamber geometry and flow rate.
This enables researchers to rationally design a biomolecular monitoring
system with a desired sensor performance for specific applications.

Lastly, Chapter 6 discusses the main findings in this thesis and
sketches the outlines of further research in the field of continuous mon-
itoring applications and the added value of single-molecule techniques
to enhance the performance of sensors for continuous biomolecular
monitoring.
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INTRODUCTION

The goal of this thesis is to investigate bioanalytical functionalities that
can be achieved with continuous affinity-based biomolecular sensors
using single-molecule resolution. This chapter describes a general intro-
duction into the field of biosensors, with particular focus on biosensors
for continuous monitoring. Subsequently, a short overview is given of
the development of bioanalytical single-molecule techniques and how
these techniques are used in the field of biosensing. Then, we focus on
the promises of continuous monitoring biosensors with single-molecule
resolution by comparing the theoretical limits for biosensor sensitivity
with an ensemble read out versus a single-molecule read out. Finally,
the main research question and the outline of the thesis are given.



INTRODUCTION

1.1 STATE-OF-THE-ART BIOSENSORS

Biosensors are compact devices that are used to quantify the concen-
tration of a chemical substance of interest, referred to as biomarker,
analyte, or target molecule. Figure 1.1 shows three components of
a generic biosensor design: (1) receptors, also referred to as binder
molecules, capture molecules, probes, or targeting moieties; (2) a trans-
duction method; and (3) signal processing and concentration display.'™
The very heart of a biosensor is formed by a bioanalytical assay to recog-
nize the biomarker molecules using the receptors that bind specifically
to these biomarker molecules, forming biomarker-receptor complexes.
A biosensor integrates this recognition reaction between the biomarker
molecule and the receptor via a transduction method to a signal that
relates to the biomarker concentration in the sample.

Biomarker Receptors Transduction Signal processing and
molecules P method concentration display
e
o Oo % Antibodies Optical =
o [y E— .
e © / / Aptamers Electrochemical 7] |
] 0@ —_ —_ S ) T
S @ Enzymes Colorimetric oncentration
° @ Cells Mechanochemical
9] o

FIGURE 1.1: SCHEMATIC OVERVIEW OF A GENERIC BIOSENSOR DESIGN. Biomarker molecules are
recognized using (biological) receptors. Subsequently, the formed biomarker-receptor complexes are
detected via a transduction method. The measured signal is converted via a predetermined calibration
curve into a biomarker concentration which reflects the biomarker concentration present in the
analyzed sample.

1.1.1 Rapid biosensors

Laboratory-based in vitro tests are the prevailing methods for biomarker
concentration quantification. These tests require transportation of sam-
ples to a laboratory and as a consequence the test results are not directly
available. For example in health care applications, due to the demand
for more effective and efficient patient care, faster and easy-to-use
diagnostic methods are being developed.®'> These rapid biosensors
for health care are known as point-of-care (POC) biosensors, which
are handheld devices that test at or near the site of the patient, to
facilitate immediate and well-considered decisions improving patient
outcomes. Currently developed POC biosensors are able to measure the
concentration of various biomarkers such as glucose, CRP, and cardiac
troponin.'o7'4



1.1.2  Continuous biomolecular monitoring

When a biosensor is able to measure a biomarker concentration contin-
uously, the applicability of biosensors expands even further. Especially
for rapidly fluctuating biomarker concentrations, small changes in
trends become useful parameters, when concentration information is
available on a continuous basis.’>™>° An example in health care of such
a biosensor is the continuous glucose biosensor, which can be worn
in or on the skin, or can be connected to a catheter.?’*> The sensor
records how the glucose concentration fluctuates over time in order to
provide optimal treatment for the patient. Commercial biosensors are
currently available for glucose and lactate> ™3 and research is ongoing
for the monitoring of for example antibiotics.?4 These biomarkers are
present in relatively high concentrations (millimolar and micromolar)
and therefore these studies mainly focus on electrochemical detection
methods. For biomarkers with lower concentrations, more sensitive
and more specific sensing methods have to be developed. In the search
for highly sensitive and highly specific transduction methods suitable
for continuous biomolecular monitoring, the field of single-molecule
biophysics forms a source of inspiration.

1.2 COMBINING SINGLE-MOLECULE TECHNIQUES AND BIOSENS-
ING

1.2.1  Single-molecule techniques

In the early 9o’s of the last century, in the research field of biophysics
the first single-molecule measurements were developed, based on
absorption?> and fluorescence.?* These methods enabled researchers
to reveal phenomena that were previously concealed in traditional
ensemble-based methods, as these record averages over many molecules.
Single-molecule fluorescence measurement techniques® =29 are nowa-
days part of the standard research arsenal in biochemical and biophysi-
cal laboratories. Other single-molecule measurement methods° are for
instance force-based techniques, such as tethered particle motion,3'~33
magnetic and optical tweezers,3#3° and single-molecule atomic force
microscopy,?” which are primarily applied for studies of enzyme activ-
ity, DNA interactions, and DNA properties.

1.2.2  Single-molecule detection in endpoint assays

Single-molecule biophysical techniques penetrated into the field of
biosensing for achieving high sensitivities. Here, sensitivity is defined
as the signal change for a given concentration change, where a high
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sensitivity refers to a biosensor in which a small concentration change
results in a large signal change. Biosensors with a high sensitivity are
therefore able to quantify low biomarker concentrations with a high pre-
cision. A high sensitivity is important for many applications,17'18 e.q.,
the measurement of inflammatory markers.3%-4° The majority of the
approaches described in literature to increase the sensitivity of a biosen-
sor assay are focused on reducing the background of the signal*'4*
or changing assay components and formats.*> Single-molecule detec-
tion poses the ability to count individual molecules and therefore get
digital read out signals. In principle, discrete counting of molecules
results in an infinitely high precision of the actual number of counted
molecules; the sensitivity of the biosensor itself is then only determined
by counting statistics.

Figure 1.2 shows two examples of endpoint assays with single-
molecule detection: single-molecule arrays (Simoa®, commercialized by
Quanterix)* and single-molecule counting (SMC™  commercialized
by Singulex).454® Figure 1.2a shows a general sandwich type assay us-
ing micrometer-sized particles. These particles are functionalized with
capture molecules, such as antibodies or aptamers, which are able to
specifically bind to the biomarker molecule of interest. Upon binding of
the biomarker molecule from the bulk solution to the capture molecule
on the particle, biomarker-capture molecule complexes are formed.
Subsequently, these complexes are detected using labeled detection
molecules, by forming sandwich complexes.

Figure 1.2b schematically shows a single-molecule biosensing tech-
nique using Simoa®, illustrated for a sandwich assay. The particle
concentration during incubation is chosen in such a way that the ma-
jority of the particles do not bind a biomarker molecule from solution,
and that only a few percent of the particles capture a single or more
biomarker molecules following a Poisson distribution. This method
provides the opportunity to achieve both a small, micrometer-sized
(~fL) detection space in which a single particle can be isolated and
subsequently observed, as well as a high degree of parallelization
(~50, 000 particles in a single concentration determination). Therefore,
the presence of a luminescence signal per well corresponds to a single
particle that captured a biomarker molecule. If the number of particles
with a single biomarker molecule is much larger than the number of
particles with two or more biomarker molecules, the number of parti-
cles that show a luminescence signal scales directly with the biomarker
concentration.

Figure 1.2¢c schematically shows a single-molecule biosensing tech-
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FIGURE 1.2: SINGLE-MOLECULE BIOSENSING METHODS FOR BIOMOLECULAR CONCENTRATION
QUANTIFICATION WITH A HIGH SENSITIVITY. (a) General sandwich type assay on micrometer-
sized particles which are functionalized with capture molecules. The particles are incubated with
the biomarker of interest, which results in biomarker-capture molecule complexes on the particles.
Since an excess of particles is used, the equilibrium is towards the biomarker-capture molecule
complexes. Subsequently, sandwich complexes are formed by adding labeled detection molecules
specific for the biomarker of interest. (b) Single-molecule array (Simoa®) technology used to read
out the luminescence signal of the detection molecules. The probability that a particle contains zero,
one, or more sandwich complexes, follows a Poisson distribution. The signal is proportional to the
biomarker concentration when the average number of sandwich complexes per particle is low. By
loading the particles into micrometer-sized (~fL) wells, the luminescence signal of a single particle
can be measured as a digital "on" and "off" signal. Due to the fact that a femtoliter detection space and
a high degree of parallelization (~50,000 particles) are possible, a concentration quantification with a
limit of detection down to ~1 fg mL™ for various markers could be reached.*” Panel adapted from
Rissin et al.** (c) Single-molecule counting (SMC™) technology used to read out a fluorescence signal
of the detection molecules. The formed sandwich complex on the particle is eluted after which the
eluate, containing the detection molecules and biomarker molecules, is separated from the particles.
Subsequently, the eluate is analyzed using a confocal laser beam with an excitation volume of roughly
5 um (~fL).#® To obtain high counting statistics, a static confocal laser beam and capillary flow, or a
scanning confocal laser beam is used. The fluorescence signal of a detection molecule passing through
the excitation volume measured using an avalanche photodiode (APD), results in a sharp peak in the
APD signal. Due to the small excitation volume and the fast sequential measurements, a concentration
quantification with a limit of detection down to ~10 fg mL™* for various markers could be reached.+”

nique using SMC™, again illustrated for a sandwich assay. After

eluting the detection molecules from the sandwich complexes formed
on the particle, single detection molecules are observed using a focused
laser beam in combination with an avalanche photodiode (APD) detec-
tor. The passing of detection molecules through the excitation volume
of the focused laser beam results in sharp peaks in the APD signal. To
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achieve subdiffusional times before a detection molecule is observed, a
capillary flow#>4° or a scanning confocal laser beam*® is used.

1.2.3 Continuous biomolecular monitoring with single-molecule resolution

A continuous biomolecular monitoring method with single-molecule
resolution, developed at Eindhoven University of Technology, is biosens-
ing by particle mobility (BPM).497>" In Figure 1.3, the sensing principle
is schematically visualized. In a BPM assay, the particles are tethered
to a surface by a flexible molecular tether, causing every particle to
move due to thermal motion within a confined space which is restricted
by the tether. The sensing capability of the particles is derived from
binder molecules on the particle (cf. Figure 1.2a, capture molecules)
and multiple binder molecules on the planar substrate (cf. Figure 1.2a,
detection molecules), see Figure 1.3a,4°° or a single binder molecule
on the molecular tether (not shown here).>" Biomarker molecules in
solution can bind to the particle binder molecules and subsequently
to the substrate binder molecules. When such a compact molecular

paniclej‘o
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binder a
nder —> o (835 ¢
£ N\
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biomarker——* %
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o o
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FIGURE 1.3: MOLECULAR DESIGN AND MEASUREMENT PRINCIPLE OF BIOSENSING BY PARTICLE
MOBILITY (BPM). (a) Micrometer-sized particles (gray) are tethered to a substrate using a flexible
molecular tether (black). The particle is functionalized with particle binder molecules (black lines)
and multiple substrate binder molecules (gray lines) on the planar surface. Both particle binder and
substrate binder molecules can reversibly bind to single biomarker molecules (orange) present in
solution. Biomarker molecules binding to the binder molecules on the particle and subsequently
binding and unbinding to the binder molecules on the substrate cause the particle to exhibit either of
two concentric Brownian motion patterns, corresponding to the unbound state (high mobility) and
bound state (low mobility). (b) Digital binding and unbinding events are identified by following the
mobility of the hundreds of particles over time and subsequently used for concentration determination.
For a high or low target concentration in solution, the microparticle shows a high or a low switching
frequency respectively.



sandwich complex is formed (cf. Figure 1.2a, sandwich complex), the
motion of the particle is strongly restricted. The molecular interac-
tions between the particle binder molecule, biomarker molecule, and
the substrate binder molecule are designed to be reversible, causing
unbound and bound particle states to be observed over time. In the
particular design visualized in Figure 1.3a, for a high biomarker con-
centration, the mean unbound state lifetime of a particle decreases
when the number of captured biomarker molecules on the particle
increases, see Figure 1.3b. Therefore, the average switching frequency
of particles between unbound and bound states increases with an in-
creasing biomarker concentration. For a low biomarker concentration,
the number of biomarker molecules bound to the particle is small,
resulting in a low switching frequency.

Figure 1.4 shows a matrix scheme that illustrates the developments
in the field of biosensing. The scheme highlights the development
toward single-molecule resolution on the x-axis (to achieve a higher
sensitivity) and developments toward continuous monitoring on the
y-axis (to obtain real time insight). The BPM technology is being de-
veloped to realize the monitoring functionality for biomolecules at low
concentrations (orange arrow).
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1.3 CHALLENGES IN CONCENTRATION DETERMINATION USING
SINGLE-MOLECULE QUANTITATION

Applying single-molecule techniques to biosensing, poses three main
challenges which have to be overcome to be able to quantify biomarker
concentrations accurately and precisely. These challenges are dictated
by (1) the biomarker concentration, (2) diffusion of the biomarker mol-
ecule, and (3) by the free-energy landscape of the biomarker molecule
with its corresponding receptor molecule.

First, the detection volume needs to be small enough so that single
molecules can be detected reliably. This is achieved by reducing the
detection space (cf. Figure 1.2), e. g., by using small detection volumes
(compartmentalization)#~4° or surfaces (surface immobilization).5%53

Second, molecules need to travel into the detection volume, which
takes time. At low concentrations, the intermolecular distance is so
large that the typical diffusion time from one molecule to the other is
long. This diffusion time results in prolonged times before molecules of
interest diffuse into the detection volume where detection is possible.
Example calculations to quantify this challenge using a typical diffusion
time>>>% are given in Figure 1.5, assuming a protein molecule with a
molecular weight of 50 kDa and a corresponding diffusion coefficient
D = 10710 m2 g1, detected in a detection volume of 1 fL, i.e., 1 pm3
(note that a molecular binding process is not included in these calcula-
tions). With these conditions, concentrations of a femtomolar and lower
result in a typical diffusion time of several minutes before a single
molecule enters the detection volume, and thus resulting in a long
assay time. Besides this long assay time, the occurrence of stochastic
events itself form an intrinsic problem for single-molecule quantitation:
first, the number of sampled molecules in the detection volume should
reflect the concentration in the bulk, and second, the precision of the
concentration determination needs to be high. To achieve both, enough
molecules have to be detected in order to accurately and precisely
determine the bulk concentration. Solutions to detect many molecules
within a short period of time are a high degree of parallelization (cf.
Figure 1.2b and Figure 1.3)#4975" or decreasing the time for a molecule
to enter the detection volume and therefore enabling fast sequential
measurements (cf. Figure 1.2¢).45:4048

Third, the binding of biomarkers to specific receptors requires time,
determined by kinetic and thermodynamic properties of the molecules.
Here, reaction mechanisms of association and dissociation of molecules
determine the response time of the signals. Binder molecules, such as
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antibodies, can have equilibrium dissociation constants down to a few
picomolar resulting in slow reaction kinetics at low concentrations.>55°
Here, the kinetic properties and concentrations of biomarkers and
binder molecules need to be taken into account in order to determine
the time-dependence of the observed signals.

1.4 BIOSENSOR SENSITIVITY: ENSEMBLE 0€rsuS SINGLE-MOLE-
CULE READ OUT

In this section, we want to address the question how the sensitivity
of a biomolecular assay is improved using a single-molecule read out
compared to an ensemble read out. Assume a particle-based assay
where each particle has roughly 10° binder molecules that are specific
for the biomarker of interest, hereafter referred to as analyte, and where
10* particles generate the observed signal. In case of first-order affinity
binding under equilibrium conditions and infinite supply of analyte
molecules, the fraction f; of binder molecules that captured an analyte
molecule can be calculated by:

Cap0
a a, 1.1
fb Cu,O + Kd ( )
with C, o being the analyte concentration and K; the equilibrium disso-
ciation constant. We assume that the observed signal S scales directly
with f (i.e., we can directly observe the analyte-binder complexes),
which yields the dose-response curve described by:

Ca,O

7(:‘1,0 K (1.2)

S = Spg + (1~ Spy)
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with Sy, being the background signal. Figure 1.6 shows how the shape
of the dose-response curve, described by Equation 1.2, and the error
of the measured signal influence the precision of the concentration
determination. In Figure 1.6a, two dose-response curves are given
for an assay without any background (orange solid line) and with
10% background signal (orange dashed line). The background signal
changes the slope of the dose-response curve in particular at low
concentrations (see inset). The error of the observed signal os can be
calculated by including a stochastic error oy, due to the discrete
nature of binder and analyte molecules, a background error ¢}, and an
eITOT Uoyper that is caused by other sources of variability than stochastics
and the background signal:

2 _ 2 2 2
05 = Ustoch T Thg + Oother (1.3)

The background error 0}, can be measured directly and is used in
the definition of the limit of detection (LoD, gray dashed line) which is
the concentration at which the signal is equal to Sy + 30}¢. The error
Oother Can be estimated based on heterogeneities in the measurement
system, such as heterogeneity in particle size, i.e., Oother = S - CVother
where CVer is the coefficient of variation of the heterogeneity present
in the assay, e. g., heterogeneity in particle size. The stochastic error
Ostoch can be calculated using the number of binder molecules that have
captured an analyte molecule:

1 _ 1
\/ fLASTy, \/ i N, Nl];)article

Ostoch = (1.4)

with A; being the sensor area over which the signal is collected, I'; is
the total binder density, Nj, the number of observed particles, NE article
the number of binder molecules per particle. To determine how pre-
cise a concentration determination is, the concentration error o¢c needs
to be calculated by projecting the signal error g that results from
Equation 1.3 on the dose-response curve, using the slope of the dose-
response curve (see Figure 1.6b). In the absence of background, this
slope is approximately linear at low concentrations, while this slope
becomes sublinear at high concentrations, resulting in increased con-
centration errors.

In Figure 1.7 the influence of the error contributors, as defined
in Equations 1.3 and 1.4, on the coefficient of variation CV¢ of the
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FIGURE 1.6: PROPAGATION OF AN ERROR OF THE SIGNAL TO A PRECISION OF THE CONCENTRA-
TION DETERMINATION. (a) Dose-response curves with the normalized signal S as a function of
analyte concentration Cgp, in case of equilibrium conditions and infinite supply of analyte molecules,
in absence of any background (solid orange line) or with a 10% background signal Sy, (dashed
orange line). The inset shows the same data on a logarithmic-logarithmic scale. A background signal
Spg (dashed black line) changes the slope of the dose-response curve at low analyte concentrations
while the background error ¢, induces an imprecision in the slope of the dose-response curve. The
limit of detection (LoD, dashed gray line) is defined as Sy, + 30%. (b) Estimating the concentration
error oc using the signal error os and the slope of the dose-response curve. At low concentrations,
the slope of the dose-response curve is approximately linear (in absence of background signal). At
high concentrations, the slope of the dose-response curve is sublinear which results in an increased
concentration error oc.

concentration, as a measure of precision, defined as CV¢c = 0¢/C,p, is
shown. The CV¢ is given as a function of the analyte concentration C,
for a background signal Sy, (left), a corresponding background error
0pg (middle) and error oo (right). Here the limit of quantification
(LoQ, black dashed line) is given, which is the concentration where the
concentration determination has a precision of 10%.

Under the assumption that we can determine any background signal
infinitely precise, the presence of this background signal induces an
increased concentration error o¢ (see left graph) by a change of the
shape of the dose-response curve (cf. Figure 1.6a). This results in a
decreased precision of the concentration determination in particular at
low concentrations (i. e., an increased CV(), since here the signal has to
be distinguished from a relatively high background signal. In contrast,
at high concentrations, the majority of the observed signal is generated
by the analyte-binder complexes and thus the precision is not limited
by the background signal.

Let us now assume that the background signal has an error 0}, of
1% (i.e., 0pg = Spg/100). Since the shape of the dose-response curve
is based on the measured background signal, the precision of this

11
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background measurement has a large influence on the precision over
the full concentration range (see middle graph). The background error
has a slightly larger influence on the precision at low concentrations
since here the influence of the background itself is larger (cf. left graph).

Lastly, other sources of variabilities present in the system result
in additional variations in the concentration determination. Here, we
assume an error Uother Of 1% (i.€., Uother = Spg/100). This total error
Oother caused by these sources of variability, mostly influences the
higher concentration determinations, since the signal is high and the
contributions of the stochastic and background errors are relatively
small, i.e., Oother > Ustoch, Oig (See right graph).

102 e .
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FIGURE 1.7: INFLUENCE OF ERROR CONTRIBUTORS ON THE PRECISION OF A CONCENTRATION
DETERMINATION. Left: influence of background signal on the precision of a concentration determi-
nation in the absence of background (orange solid line) and with 10% background signal (orange
dashed line). Middle: influence of background error on the precision of a concentration determination
for no error (orange solid line) and 1% error (orange dashed line). Right: influence of the error caused
by other sources of variability for no error (orange solid line) and 1% error (orange dashed line).

Now we can address the question how the precision of a concentra-
tion determination depends on the level of read out of a particle-based
affinity assay. In Figure 1.8, three read out modes are sketched. First,
an ensemble read out mode where the observed signal is generated by
a large number of particles. Second, a single-particle read out mode
where the observed signal is distinguished per particle. Third, a single-
molecule read out mode, where the observed signal is distinguished
per molecule resulting in digital quantitation. For the ensemble read
out mode, the corresponding dose-response curve is equal to the curve
given in Figure 1.6a and Equation 1.1. At low concentrations, the pre-
cision is mainly determined by the background signal, while at high
concentrations the precision is mainly determined by saturation of the
binders. For a single-particle read out where the observed signal is
distinguished per particle, the detection sensitivity needs to be higher



compared to the ensemble read out mode. The concentration precision
at high concentrations is determined by either saturation of the binders,
or signal saturation of the reader and/or transduction method. Here,
an ECsy, i. e., the concentration at which the signal is 50%, was assumed
to be 1% of the K, effectively shifting the dose-response curve to lower
concentrations. For a single-molecule read out, we assumed that the
observed signal is the fraction of particles that show a signal (e.g., a
luminescence or fluorescence signal, cf. Figure 1.2). At low concentra-
tions the precision of the concentration determination is determined
by the number of observed molecules (i. e., the precision is limited by
stochastics), while at high concentrations the precision is determined
by saturation since no distinction between one, two, three molecules
can be made. The shift of the dose-response curve in the direction of
the negative x-axis depends on the number of particles and the number
of binder molecules per particle.

ensemble single-particle single-molecule

3 1004 ! : : : .
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FIGURE 1.8: THREE READ OUT MODES OF A BIOMOLECULAR PARTICLE-BASED AFFINITY ASSAY
WITH THEIR CORRESPONDING DOSE-RESPONSE CURVE. Left: ensemble read out mode yields a
dose-response curve which is located around the K; value. Middle: single-particle read out mode
results in an ECsp which can be several orders of magnitude lower than the K, value of the binders on
the particle. Right: single-molecule read out yields a high precision at the lowest concentration since
the signal generated by single-molecules can be distinguished, resulting in digital quantitation. The
ECsp with respect to the K; value depends on the number of observed particles and the number of
binder molecules per particle. Here the number of particles N, = 10* and number of binder molecules
per particle N, = 10°.

Figures 1.6-1.8 show quantitatively with simple calculations the po-
tential increase in sensitivity by designing an assay with a single-
particle or single-molecule read out mode instead of an ensemble read

13
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out mode. The precision of the assay can be increased, where an ECs of
more than five orders of magnitude below the K; value can be achieved.
Besides, assays with multiple read out modes, such as Simoa®,** have
the potential of using these multiple read out modes to increase the
dynamic concentration range over which concentration determinations
with a high precision can be performed. For both advantages, the key
challenge in assay development is to design an assay which yields a
highly precise signal generated by only a limited number of analyte-
binder complexes, using specific chemistries and efficient receptor
molecules and transduction methods.

1.5 OUTLINE OF THE THESIS

The goal of this thesis is to study analytical functionalities that can
be achieved in continuous biomolecular sensing with single-molecule
resolution. The thesis focuses on two main topics. First, Chapters 2 and
3 describe new applications of single-molecule information within the
field of biosensing. It has been shown that a single-molecule resolution
can be used to enable multiplexing functionalities and to quantify het-
erogeneities and their consequences. Second, Chapters 4 and 5 focus
on the speed, sensitivity and precision functionalities of continuous
biomolecular monitoring sensors in the limit of single-molecule resolu-
tion.

In Chapter 2 we demonstrate a new application of single-molecule
detection in continuous monitoring, namely multiplexing by means of
single-molecule kinetic identification of single particles. Here, multi-
plexing is enabled by an analyte-sensitive, single-molecular nanoswitch
with a particle as a reporter. We demonstrate by experiments and simu-
lations, using BPM as an example, multiplexed continuous monitoring
of oligonucleotides at picomolar concentrations.

In Chapter 3 we present a framework to study the influence of het-
erogeneities, focused on particle-based biosensing applications. Using
single-molecule techniques (DNA-PAINT, qPAINT and BPM), the un-
derlying distributions in particle reactivity are quantified by counting
and spatially mapping individual binder molecules on particles, and
by measuring the resulting reactivity of single particles. By combining
experimental results and simulations, the influence of various hetero-
geneities and the collective effect of all heterogeneities on the reactivity
of particles is studied as a function of biosensor system parameters,
such as particle interaction area, binder molecule density, particle size
and number of particles.



In Chapter 4 we present a sensing methodology that enables rapid
monitoring of low-concentration biomolecules. We demonstrate using
simulations and experiments that this sensing methodology is suitable
for monitoring picomolar and sub-picomolar concentrations, with mea-
surement intervals of a few minutes, and in principle for sensing over
an endless time span, where continuous monitoring biosensors with
a single-molecule resolution are advantageous for obtaining a high
sensitivity.

In Chapter 5 we investigate continuous biomolecular analyte ex-
change between a dynamic system of interest and the measurement
chamber of a biosensor. For this, we simulate mass transport and sur-
face reactions, where an oscillating concentration-time profile is used
as input. Subsequently we quantify the time lag of the measured con-
centration and the precision of the biosensor as a function of system
parameters, such as measurement chamber geometries and flow rates.
This enables researchers to rationally design a biomolecular monitoring
system with a desired biosensor performance for specific applications
such as monitoring low-concentration biomarkers.

Lastly, Chapter 6 summarizes the main findings in this thesis and
sketches the outlines of further research in the field of continuous mon-
itoring applications and the added value of single-molecule techniques
to enhance sensing performance.
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MULTIPLEXED CONTINUOUS BIOSENSING BY
SINGLE-MOLECULE ENCODED NANOSWITCHES

ABSTRACT: Single-molecule techniques have become impactful in the
bioanalytical sciences, though the advantages for continuous biosens-
ing are yet to be discovered. In this chapter, we present a multiplexed,
continuous biosensing method, enabled by an analyte-sensitive, single-
molecular nanoswitch with a particle as a reporter. The nanoswitch
opens and closes under the influence of single target molecules. This
reversible switching yields binary transitions between two highly repro-
ducible states, enabling reliable quantification of the single-molecule
kinetics. The multiplexing functionality is encoded per particle via the
dissociation characteristics of the nanoswitch, while the target concen-
tration is revealed by the association characteristics. We demonstrate by
experiments and simulations the multiplexed, continuous monitoring
of oligonucleotide targets, at picomolar concentrations in buffer and in
filtered human blood plasma.

Parts of this chapter have been published as: Lubken, R. M. et al. Multiplexed Continuous Biosensing
by Single-Molecule Encoded Nanoswitches. Nano Letters 4, 2296—2302 (2020).
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2.1 INTRODUCTION

Single-molecule techniques have become impactful in the bioanalytical
sciences because of their high detection sensitivity and digital quan-
titation.' However, in the upcoming field of sensors for continuous
biomolecular monitoring,*™ the advantages of single-molecule method-
ologies are yet to be discovered. Multiplexing refers in the bioanalysis
to the ability to measure multiple specific molecules in parallel. This
is used to obtain comprehensive knowledge about biological systems
and optimal diagnostic power in medical applications. Well-known
methods for multiplexing are, for example, bead arrays,®'° real time
PCR,"" and DNA microarrays.'* Here, samples are processed with mix-
tures of reagents and thereafter analyte-specific signals are measured
in separate spectral channels or distinct positions. Such reagent-based
multiplexing assays involve taking distinct samples and passing these
through sequential processing steps. However, an ideal multiplexing
methodology for real time monitoring does not require reagents nor
complicated sample processing. Such a methodology would allow the
generation of a continuous and uninterrupted stream of measurement
data, over a prolonged period of time, in a simple and cost-effective
manner.

In this chapter, we describe a novel methodology to achieve reagent-
less, multiplexed, continuous biomolecular sensing by single-molecule
encoded binary nanoswitches. The molecular design and measurement
principle are sketched in Figure 2.1, exemplified with a DNA model sys-
tem. Figure 2.1a shows a micrometer-sized particle bound to a substrate
by a single nanoswitch. The nanoswitch comprises three components:
(1) a single double-stranded DNA (dsDNA) stem tethering the particle
to the substrate; (2) a single probe attached to the dsDNA stem; and
(3) multiple probes attached to the particle surface. The probe on the
stem binds reversibly to target molecules that are captured from so-
lution by the probes on the particle. The probe on the stem encodes
the nanoswitch, because the interaction between this stem probe and
the target molecules is designed to have a characteristic dissociation
rate, which is the basis of the multiplexing functionality. In previous
work, we studied sensor designs with less controlled numbers and
orientations of probes on the substrate,’> giving variable responses
within and between particles. In the nanoswitch design of Figure 2.1,
every particle has only a single probe, in a well-defined orientation
on the central stem. Combined with the smooth spherical particle,
unambiguous concentric Brownian motion patterns are obtained (see
Figure 2.1b).
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FIGURE 2.1: SENSOR CONCEPT WITH A SINGLE-MOLECULE ENCODED BINARY NANOSWITCH. (a)
Micrometer-sized particles (yellow) are tethered to a substrate using a 56 nm dsDNA stem (black).
The particle is functionalized with particle probes of type i (dark green) and a single stem probe of
type i (green). Both probes bind reversibly to a single target molecule of type i (light green) present
in solution. The inset shows schematically the DNA-based nanoswitch conjugated to the particle by a
NeutrAvidin-biotin interaction and to the substrate by an antibody—antigen (digoxigenin) interaction.
A detailed overview of the DNA sequences is given in Supplementary note 2.5.1. (b) Target molecule
binding to the nanoswitch causes the particle to exhibit either of two concentric motion patterns
corresponding to the unbound (high mobility) and bound state (low mobility).

The Brownian motion patterns translate into time traces with bi-
nary transitions, from which unbound and bound state lifetimes, and
therefore association and dissociation kinetic rates, are extracted at
the single-particle level. The dissociation kinetics of each particle are
a unique signature that identifies to which kinetic subpopulation the
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particle belongs (index i or j, see Figure 2.2a). Hundreds of particles
are measured simultaneously, each kinetically identified, and assigned
to their specific subpopulation. In each subpopulation, the association
rates are continuously measured. The effective association rate depends
on the amount of target molecules captured on the particle. Thus, by
using a differently kinetic encoded nanoswitch per particle subpopu-
lation, the concentration of multiple specific analyte molecules can be
recorded over time simultaneously (see Figure 2.2b).
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FIGURE 2.2: KINETIC IDENTIFICATION FOR MULTIPLEXED CONTINUOUS BIOMOLECULAR MONI-
TORING. (a) Radial position of a particle over time shows binary transitions caused by single-molecule
binding and unbinding events. The distribution of observed bound state lifetimes per particle can
be used to distinguish between, e. g., low-affinity (particles i, blue) and high-affinity (particles j, red)
target-specific particle subpopulations, referred to as kinetic identification. Examples of raw data
traces are shown in Supplementary note 2.5.2. (b) Hundreds of particles, each functionalized with
an encoded binary nanoswitch, are observed simultaneously. By kinetic identification based on the
dissociation kinetics, each particle can be assigned to a target-specific particle subpopulation. For
each particle subpopulation, the respective target concentration can be determined over time using
the measured association kinetics.

2.2 RESULTS AND DISCUSSION

Figure 2.3 illustrates the analytical performance and tunability of the
stem probe sensor of Figure 2.1a. Figures 2.3a,b show the association



and dissociation rates measured in both buffer (a) and filtered blood
plasma (b) for a single-stranded DNA target with a mid affinity to
the particle probe. The mean bound state lifetime 73 (red), determined
by fitting all observed bound state lifetimes by a single-exponential
distribution (see Supplementary note 2.5.3), is independent of the target
concentration and of the matrix, which is the basis for the kinetic en-
coding strategy. In contrast, the mean unbound state lifetime 1y shows
a clear concentration dependency (blue); an increasing target concen-
tration in solution results in a shorter 7y as more target molecules are
bound to the particle and therefore accessible for hybridization to the
stem probe. In contrast to the dissociation kinetics, the association kinet-
ics per particle show a broad distribution, indicating particle-to-particle
variability. The mean unbound state lifetime 1y could be determined by
fitting all observed unbound state lifetimes by a lognormal multiexpo-
nential distribution (see Supplementary note 2.5.4). This method gives
large errors at low statistics, which is particularly visible at low con-
centrations (see inset of Figure 2.3b). Figure 2.3¢c shows dose-response
curves for DNA targets with different affinities. The signal plotted on
the y-axis is the switching activity, the average number of binding and
unbinding events per particle per time interval.’3 The dose-response
curves exhibit an S-shape on a linear-logarithmic scale, which is charac-
teristic for first-order affinity binding. The curves are fitted by the Hill
equation:'#

€]

A=A, +A;, —————
b uEC50+[C]

(2.1)

with A being the activity, A, the background signal, A, the activity am-
plitude (difference between the maximum signal and the background
signal), ECsg the half maximal effective concentration, and [C] the tar-
get concentration in solution. The curves shift to lower concentrations
for an increasing affinity between target and particle probes, show-
ing the tunability of the system. Figure 2.3d shows a dose-response
curve measured for the mid-affinity target in blood plasma filtered
with a 50 kDa molecular weight cutoff. Here, a similar ECsy was found,
but a higher background activity and larger uncertainty were found,
compared to its counterpart in buffer. The higher background activity
and larger uncertainty are caused by more nonspecific interactions and
lower statistics, respectively.

The response to dynamic changes in target concentration is quantified
in Figure 2.4 for the low- and mid-affinity targets in buffer (a, b) and
the mid-affinity target in blood plasma (c). The response to a sudden
drop in target concentration can be described with a single-exponential
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FIGURE 2.3: PERFORMANCE OF THE SENSOR CONCEPT WITH A SINGLE-MOLECULE ENCODED
NANOSWITCH IN BUFFER AND BLOOD PLASMA. (a-b) Mid-affinity target concentration depen-
dencies of the bound state lifetime 73 (red) and the unbound state lifetime 1;; (blue). We observed
that 75 = 152+ 0.3 s and 13 = 125+ 0.5 s, and 7y scales approximately as 7 o« [T]708+01 and
[T] 064099 for buffer and blood plasma conditions respectively. (c) Dose-response curves of ssDNA
targets in buffer, with a high-, mid- and low-affinity to the particle probe. Hill equation fits according
to Equation 2.1 (solid lines) yield ECs5q values of 14 4= 6 pM, 0.17 & 0.05 nM and 1.7 4= 0.3 nM respec-
tively. (d) Dose-response curve in blood plasma of the mid-affinity ssDNA target. Hill equation fit
(solid line) yields ECsq of 0.4 &= 0.1 nM. The inset shows the data on a double linear scale. Reported
errors are the standard errors of the fit. The error bars in the activity graphs are the stochastic errors
and mostly smaller than the symbol size. The shading in the figures indicates the 95% confidence
interval of the Hill equation fit according to Equation 2.1. The number of particles per data point was
between 15 and 100, measured in two microscopic fields-of-view.



relaxation of the observed activity, with characteristic relaxation times
of approximately 10 min for the low-affinity target and 40 min for the
mid-affinity target. For the mid-affinity target, the single-exponential
relaxation profiles in buffer and in blood plasma show comparable
time scales within their uncertainty interval (see Figures 2.4b,c).
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FIGURE 2.4: CONCENTRATION RESPONSE OF THE SENSOR CONCEPT WITH A SINGLE-MOLECULE
ENCODED NANOSWITCH IN BUFFER AND BLOOD PLASMA. Concentration response traces for low-
and mid-affinity ssDNA target in buffer (a, b), and mid-affinity ssDNA target in blood plasma (c) with
TR = 10+ 1 min, T = 41 4 6 min, and g = 37 & 8 min respectively. Reported errors are the standard
errors of the fit. The error bars in the activity graphs are the stochastic errors and mostly smaller than
the symbol size. The number of particles per data point was between 15 and 100, measured in two
microscopic fields-of-view.

The multiplexing functionality is shown in Figure 2.5, using two
particle populations having different particle probes and equal stem
probes, and two targets with comparable affinities to the particle probes
and different affinities to the stem probes (see Supplementary note
2.5.1). For this, separate flow cells were used to determine the mul-
tiplexing specificity and sensitivity. Figure 2.5a shows the measured
average bound state lifetimes for the two cases, that are clearly different
and that are independent of target concentration, confirming that par-
ticle populations can be identified on the basis of kinetic dissociation
rates. Each particle can in fact be considered as a single sensing entity.
The distribution of the bound state lifetimes of all individual particles
shows clearly two populations, as depicted in Figure 2.5b. The two
populations can be separated by a combination of thresholding (indi-
cated by the black line) and discarding the overlap of the distributions
(indicated by the shaded area). The bound state lifetime distributions
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correspond to the distribution found using simulations (see inset Fig-
ure 2.5b and Material and methods 2.4). Due to the finite duration of
the measurement, long bound state lifetimes are underestimated, caus-
ing the mean of the distribution of the longer lifetimes to be smaller
than the ensemble bound state lifetime (cf. Figure 2.5a). Increasing the
measurement time from 10 to 30 min reduces this underestimation.
Longer measurement times result in narrower distributions, which
increases the ability to discriminate between the two populations. Fig-
ure 2.5¢ quantifies the performance of the kinetic identification by its
sensitivity and specificity for the low-affinity target. The sensitivity
is defined as the fraction of true positives of the total number of par-
ticles below the threshold, and the specificity as the fraction of true
negatives of the total number of particles above the threshold. Both the
sensitivity and specificity can be increased by discarding overlapping
data. This is shown in the inset for the values at the position of the red
dot in the graph. In Figure 2.5d, the cross-talk between two particle
populations is shown. In this experiment, the low- and high-affinity
DNA targets were added to both flow cells sequentially, as indicated in
the target concentration profiles. For the mismatched target condition,
only a small fraction of switching particles was observed, indicating
a negligible cross-talk. For both particle populations, the number of
switching particles and the activity per particle increased when the
fluid-cell-specific DNA targets were added, confirming the selectivity
and sensitivity of the system.

In Figure 2.6a, the kinetic identification is demonstrated using two
mixed particle populations in a single flow cell. The combined bound
state lifetimes exhibit a double-exponential distribution, caused by the
superposition of two single-exponential distributions of low-affinity
and high-affinity dissociation reactions. Using the threshold and win-
dow determined in Figures 2.5b,c, the two particle populations can be
separated, resulting in two single-exponential distributions (see inset
Figure 2.6a).

The simulations of Figure 2.6b support the multiplexing potential.
Simulated data were generated from measurements of particles with
different dissociation rate constants, corresponding to different inter-
action strengths between target and stem probe. The association rate
constants of all six data sets were equal. The graph shows the resulting
bound state lifetime distributions per particle, for a 30 min measure-
ment duration. The width of the distributions is mainly determined by
the stochastic binding and unbinding processes; increasing the length
of the measurement decreases the width of the distribution. Therefore,
longer measurements increase the multiplexing capabilities. To sepa-
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FIGURE 2.5: MULTIPLEXING PERFORMANCE BY KINETIC IDENTIFICATION OF NANOSWITCHES IN
SEPARATE FLOW CELLS. (a) Concentration dependencies of the bound state lifetime 7 for low- and
high-affinity target (blue and red respectively). We observed that 7 = 154 +£0.1sand 73 =86 £2s
for low- and high-affinity targets respectively. (b) Bound state lifetime distribution per particle for
low- and high-affinity target. The threshold and overlap window used for kinetic identification are
indicated by the black line and shaded area respectively. The dashed black lines show lognormal
distributions. The inset shows simulated bound state lifetime distributions for both affinities, for a 10
minutes (solid lines) and 30 minutes (dashed lines) measurement. (c) Receiver operating curve that
quantifies the performance of the kinetic identification. An optimum of a kinetic sensitivity of 97%
and a kinetic specificity of 88% was found at a zero window width. The inset shows the approximate
trend of the kinetic sensitivity and specificity as a function of the window width. (d) Cross-talk
between particle populations in the sensor. Flow cell A contains particles specific for low-affinity
target molecules and flow cell B for high-affinity target molecules. The concentration-time profiles
show how the targets are applied to each individual flow cell. Both sensors only respond to their
specific target.

rate bound state lifetime distributions on a single-particle level, a high
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accuracy to determine the mean bound state lifetime per particle is not
required when the distributions are distinguishable; i.e., the kinetic
sensitivity and specificity should be high. Therefore, kinetic encoding
potentially results in six levels of multiplexing within a measurement
time of 30 min. The time window suitable for multiplexing can be
extended by another decade into shorter time scales, by increasing the
particle diffusivity (see the Supplementary note 2.5.5).
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FIGURE 2.6: MULTIPLEXING PERFORMANCE BY KINETIC IDENTIFICATION OF NANOSWITCHES
IN A SINGLE FLOW CELL. (a) Cumulative distribution function (CDF) of the bound state lifetimes
with 7§ = 13.7+0.1 s and 73 = 113 £2 s resulting from a double-exponential fit (yellow). The
inset shows the CDFs of the two separate particle populations. The single-exponential fits (yellow)
give 73 = 144 £ 0.1 s and 13 = 113 £ 2 s for the low- and high-affinity interaction respectively. (b)
Simulated bound state lifetime distributions for a 30 minutes measurement show the multiplexing
potential with the current experimental limits. The blue and red distributions have mean bound state
lifetimes that are matched with the lifetimes found in panel a. Reported errors are the standard errors
of the fit. The number of particles per data point was between 15 and 100.

2.3 CONCLUSION

In this chapter, we presented a sensor design with an encoded binary
nanoswitch, enabling continuous sensing of target molecules at pico-
molar concentrations in human blood plasma, across a broad dynamic
range. The ability to create and identify particle subpopulations with
distinct dissociation properties allows multiplexed biosensing with
high sensitivity and specificity. Multiplexing by single-molecule kinetic
encoding does not require any reagents and is therefore suited for
continuous sensing and real time biomolecular monitoring, in con-
trast to multiplexing methods such as bead arrays,”'° real time PCR,""
and DNA microarrays.'* Kinetic encoding can be supplemented with



orthogonal identification approaches, such as using particles with dif-
ferent colors (optical identification) and patterning of the sensor surface
(identification by surface area imaging). Combining three identification
approaches, each with six levels of multiplexing, would potentially give
in total 63 = 216 levels. In practice, a tradeoff exists between the degree
of multiplexing and the analytical performance of the biosensor. To
maintain the precision of the concentration determination of multiple
target molecules, the number of particles should scale linearly with
the degree of multiplexing. Furthermore, while the functionality of
kinetically encoded nanoswitches is demonstrated in this chapter using
DNA as a model system, other markers may be addressed using affinity
binders such as aptamers and antibodies."3

In conclusion, single-molecule encoded nanoswitches open the per-
spective to gain accurate real time insights into live biological systems
by continuous monitoring of biomolecules with a high level of mul-
tiplexing, high sensitivity, and high specificity using single-molecule
information.

2.4 MATERIAL AND METHODS

BINARY NANOSWITCH ASSEMBLY: All ssDNA oligonucleotides
(IDT, standard desalting and HPLC purification for chemically modi-
fied DNA, stem probe: 5" - ~TGC GAG AAC TCA GCA TAC ATC TA
- 3’) were diluted in TE buffer (10 mM Tris—HCI, 1 mM EDTA at pH
8.0) to a final concentration of 50 pM. The DNA strands were added
together in equivalent amounts to a final concentration of 5 pM per
strand in TE buffer with 50 mM NaCl. Using a thermal cycler (Bio-Rad,
T100 Thermal Cycler), the mixture was heated to 95°C and cooled down
to 4°C with a temperature decrease of 1°C every 35 s. Analysis of DNA
tethers was performed in a non-denaturing TBE gel (Thermo Fisher
Scientific, Novex TBE Gels, 4-20%). The TBE gel was assembled accord-
ing to the supplier’s instructions, loaded with sample DNA mixtures
in Nucleic Acid Sample Loading Buffer (Bio-Rad Laboratories) and an
O’GeneRuler Ultra Low Range DNA Ladder (Thermo Fisher Scientific),
and ran in TBE buffer (89 mM Tris—HCI, 89 mM boric acid, 2 mM
EDTA at pH 8.3). Subsequently, the gel was stained with SYBR Gold
Nucleic Acid Gel Stain (Thermo Fisher Scientific, 10,000x concentrate
in DMSO) in TBE buffer for 30 min. Finally, the TBE gel was visualized
using an ImageQuant camera setup (GE Healthcare Life Sciences).

SILICA PARTICLE FUNCTIONALIZATION: Carboxyl-functionalized
silica particles (Bangs Laboratories, 1 ym mean diameter) at a con-
centration of 10 mg mL™ were activated with EDC (Sigma-Aldrich,
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final concentration of 4.3 mM) and NHS (Merck, for synthesis, fi-
nal concentration of 10 mM) in MES buffer (0.1 M MES at pH 5.0)
for 30 min at room temperature. After activation, the particles were
centrifugally washed at 6,000x g for 5 min using a tabletop spinner
(Eppendorf MiniSpin) and resuspended in MES buffer. NeutrAvidin
(Thermo Fisher Scientific) was dissolved in Milli-Q (Thermo Fisher
Scientific, Pacific AFT 20) at a concentration of 10 mg mL™ and added
to the activated particles at a final concentration of 500 ug mL™. The
protein functionalization was performed overnight at room tempera-
ture. The NeutrAvidin-functionalized silica particles were twice washed
in TBS-Tween-20 buffer (25 mM Tris—HCI, 0.15 mM NaCl, 0.05 vol-%
Tween-20) and twice in 0.1 wt-% BSA in PBS-Tween-20 buffer (130 mM
NaCl, 7 mM NazHPO4, 3 mM NaH2P04, 0.05 vol-% Tween-20, at pH
7.4). The binding capacity was determined using a fluorescence super-
natant assay with Atto655-biotin and was approximately 800 pmol per
mg of particles. The NeutrAvidin-functionalized silica particles were
stored at 10 mg mL™ in PBS-Tween-20 at 5°C for up to 2 months until
use.

FLOW CELL EXPERIMENTS: Glass slides (25 x 75 mm, #5, Menzel-
Gléaser) were cleaned by 15 min of sonication in methanol (VWR, ab-
solute), isopropanol (VWR, absolute), and methanol (VWR, absolute)
baths. After each sonication step, the glass coverslips were dried under
nitrogen flow. A custom-made fluid cell sticker (Grace Biolabs) with
an approximate volume of 24 uL was attached to the glass slide. A
flow cell was made by inserting tubing (Freudenberg Medical, monolu-
men) into the fluid cell sticker and connecting the tubing to a syringe
pump (Harvard Apparatus, Pump 11 Elite). First, the flow cell was
prewetted with PBS (130 mM NaCl, 7 mM Na,HPO,, 3 mM NaH,PO,
at pH 7.4) at a flow speed of 500 pL min™ for 2 min. Functionaliza-
tion of the glass substrate was performed by physisorption of 83 ng
mL™ anti-digoxigenin antibodies (Thermo Fisher Scientific) in PBS for
60 min. Finally, the glass substrate was blocked by incubation with
1.0 wt-% casein (Sigma-Aldrich, casein sodium salt from bovine milk)
in PBS for 60 min. After each incubation step, the fluid cells were
flushed with PBS (250 uL min™ for 1 min). NeutrAvidin-functionalized
silica particles were incubated in bulk with a 10 nM nanoswitch for
10 min. Subsequently, the particles were coated with ssDNA by an
incubation with 40 uM biotin-labeled single-stranded oligonucleotide
(IDT, standard desalting, 5" - TAG TCA GGT TGG ATG TCT AC - 3’
- biotin). The particles were thrice centrifugally washed in 1.0 wt-%
BSA (Sigma-Aldrich, lyophilized powder, essentially globulin free, low
endotoxin, > 98%) and 0.05 vol-% Tween-20 (Sigma-Aldrich) in PBS
at 6,000x g for 5 min using a tabletop spinner (Eppendorf MiniSpin).



Finally, the particles were resuspended in PBS/BSA /Tween-20 to a
final concentration of 0.17 mg mL™ (0.26 pM) and sonicated using
an ultrasonic probe (Hielscher). The particles were added to the flow
cell at a flow speed of 50 pL min™ for 5 min and incubated for 30
min. After incubation, the fluid cell was reversed and subsequently
flushed with PBS/BSA /Tween-20 at a flow speed of 50 pL min™ for
5 min to remove unbound particles. A ssDNA target (IDT, standard
desalting, low-affinity: 5" - AAC CTG ACT AAA AAT AGA TGT ATG -
3/, mid-affinity: 5" - CAA CCT GAC TAA AAA TAG ATG TATG - 3/,
high-affinity: 5" - CCA ACC TGA CTA AAA ATA GAT GTA TG - 3')
at the required concentration in PBS/BSA /Tween-20 was added at a
flow speed of 50 pL min™ for 5 min and incubated for 20 min to reach
equilibrium.

FLOW CELL EXPERIMENTS WITH BLOOD PLASMA: Single-donor
human blood plasma (Sanquin, the Netherlands, citrate stabilized,
healthy volunteer) was filtered through a 50 kDa molecular weight
cutoff centrifugal filter (Merck Millipore, Amicon). The plasma filtrate
was collected and spiked with ssDNA at the required concentration.
The measurements were then performed as described in the previous
section.

PARTICLE IMAGING AND TRACKING: Samples were observed under
a white light source using a microscope (Leica DM6oooM) using a dark
field illumination setup at a total magnification of 20x (Leica objective,
N PLAN EPI BD, 20x, NA 0.4). A field-of-view of approximately 400 x
400 pm* was imaged using a CMOS camera (Grasshopper 2.3 MP Mono
USB3 Vision, Sony Pregius IMX174 CMOS sensor) with an integration
time of 10 ms and a sampling frequency of 30 Hz. The silica particles
were tracked with a 3 nm accuracy using the center-of-intensity of the
bright particles on the dark background. Trajectory parameters were
calculated which describe the motion pattern and were used to select
single-tethered particles.™

STATE LIFETIME ANALYSIS: Particles that showed strong irregulari-
ties in their motion pattern (e. g., strongly confined or asymmetrical)
or no switching behavior were excluded from further analysis.’> The
measurements were performed in a flow cell setup in which the target
concentration was increased sequentially by means of buffer exchange.
After 20 min incubation, the measurement was performed. Trajectory
analysis was performed only on particles showing a bimodal distri-
bution in the averaged radial position. In order to detect binding and
unbinding events, a dual thresholding method was implemented in
which the threshold was set on the (local) minimum between the two
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peaks of the bimodal distribution. A dual threshold with a 12.5% offset
was found to yield accurate event detection with 91% sensitivity and
96% specificity (data not shown here). Based on the detected events,
the bound (low mobility) and unbound states (high mobility) could be
identified. The lifetimes of the two states were plotted in a cumulative
distribution function for different target concentrations to extract the
association and dissociation rate constants (see the Supplementary
notes 2.5.3 and 2.5.4). This was done for single binding and unbinding
events per particle or as an ensemble using the information on single
binding and unbinding events of all particles together or of a subset
(specific population) of particles after kinetic identification.

SIMULATIONS: Data were simulated using experimental positional
data of bound and unbound particles. For each simulation, two single-
exponential distributions were generated: one with a given mean bound
state lifetime and one with a given mean unbound state lifetime. The
particle traces were reconstructed block-by-block with each block length
according to the two predefined single-exponential distributions. Non-
specific interactions and inter- and intraparticle heterogeneity were
neglected. Subsequent time-dependent analysis was performed as if
experimental data were analyzed.

2.5 SUPPLEMENTARY NOTES
2.5.1 DNA sequences

The DNA sequences for the stem probe, particle probes and target
molecules used in this chapter are given in Figure 2.7. In Figure 2.7a the
DNA sequences are given that were used to demonstrate the sensitivity
for multiple concentration regimes (see Figure 2.3) and the continuous
monitoring concept (see Figure 2.4). In order to ensure an activity per
particle that depends on the fractional occupancy of the particle probes
by target molecules, the molecular system has been designed to have a
(relatively) high-affinity particle probe and a low-affinity stem probe.
Therefore, the particle probe functions as a capture molecule and the
stem probe as a detection molecule. For all three target molecules the
interaction with the stem probe has a free energy of AG = —10.2 kcal
mol™. The interaction with the particle probe are AG = —12.3 kcal
mol™®, —14.4 kcal mol™ and —17.0 kcal mol™ for the low-, mid- and
high-affinity targets respectively based on their sequence.'> Therefore,
all target molecules have a higher affinity for the particle probes than
for the stem probe.

The difference in the found ECsy for the three target molecules



can be explained by the exponential relation between the equilibrium
dissociation equilibrium constant K; and the free energy of the affinity
reaction AG described by:

_ kot _ _46 ]
K; = kon exp( ka> c (2.2)

with kg being the dissociation rate constant, kon the association rate
constant, k;, the Boltzmann’s constant, T the temperature and c® the
standard reference concentration. Under the assumption that there is
no target depletion from solution and the number of particle probes
occupied by a target molecule scales linearly with the observed sig-
nal, we can assume that the ECs is an accurate representation of the
dissociation equilibrium constant K; of the particle probe and target

a

Stem probe Particle probe
[ 1 [ 1
~TGC GAG AAC TCAGCATAC ATC TA-3' 5'- ATG TCTAC - 3' - Biotin
ERERRRRERE RRRRRREE
3'- GTATG TAG ATAAAA -5

L |
Low-affinity target

3'- GTATG TAG ATAAAA -5
| |
Mid-affinity target

3'- GTATG TAG ATAAAA -5
L |
High-affinity target

b

Stem probe Particle probe (multiplex)
[ 1 [ 1
~TGC GAG AAC TCA GCATAC ATC TA-3' 5'- TCT GCT CAC - 3' - Biotin
[EETTTETTY NRRRRRNERN
5'-CGTATG TAG AAAAA -3

| |
High-affinity target (multiplex)

FIGURE 2.7: OVERVIEW OF THE DNA SEQUENCES USED IN THE EXPERIMENTS. (a) DNA sequences
of the stem probe, particle probe and three target molecules, used to demonstrate the sensing concept
with single stem probe, see Figures 2.3 and 2.4. The complementary DNA sequence for target detection
(to the stem probe) is given in red. For all three targets this sequence is equal, resulting in equal
dissociation kinetics. The complementary DNA sequence for target capturing (to the particle probe)
is given in yellow. The affinity between the target molecule and particle probe is tuned by the number
of complementary base pairs; increasing the number of complementary base pairs yields a higher
affinity target molecule. (b) DNA sequences of the stem probe, particle probe and target molecule
used to demonstrate multiplexing, see Figures 2.5 and 2.6. The complementary DNA sequence for
target detection is given in red. The complementary DNA sequences for target capturing is given in
yellow.
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interaction. The K; values at 298 K for the three observed interactions,
calculated using Equation 2.2, are 0.96 nM, 28 pM, and 0.35 pM for the
low-, mid- and high-affinity targets respectively.

In Figure 2.7b the DNA sequences are given that were used to
demonstrate multiplexing by kinetic encoding, see Figures 2.5 and 2.6.
The same stem probe is used, but the DNA sequence complementary
to the target molecule is shifted by a single base in order to introduce
a higher affinity. The free energy of the interaction between the high-
affinity target and the stem probe is AG = —11.7 kcal mol™ indicating
a higher affinity compared to the target molecules in Figure 2.7a. The
free energy of the interaction between this target and the particle
probe with AG = —13.2 kcal mol™ is in the range of the three target
molecules in Figure 2.7a. Furthermore, the particle probe used for the
multiplexing experiment has a different sequence in order to obtain
two separate sensing entities with limited cross-talk. The second target
for the multiplexing experiments is the mid-affinity target given in
Figure 2.7a. All free energies were calculated for the condition of
[Na*] = 1 M and pH 7.0."5 The systems presented in Figures 2.7a,b
share the same DNA sequence of the stem probe; this implies that
there is a possibility of having cross-talk between the two particle
populations. However, since the lifetimes of a bond between the target
and the stem probe is relatively short (~15 s and ~100 s) compared
to the measurement time (10 minutes), the effect of cross-talk was
assumed to be limited and cross-talk was indeed not observed in the
measurements.

2.5.2  Time traces per particle

In Figure 2.8 three examples are given of accumulated motion patterns
and their corresponding radial position as a function of time.

2.5.3 Quantifying single-molecule affinity kinetics

Equations to quantitatively interpret single-molecule information have
been described in literature.'® Here, a brief derivation is given of the
equations used in this chapter, focusing on the affinity kinetics.

We assume that the system is observed for a total time t in which
there are N time intervals of equal length At. During a given time
interval, the probability P that an event (binding or unbinding) occurs
is determined by the reaction rate k and can be described by P = kAt.
The assumption is that the events are caused by a single molecular
process with equal (local) conditions per particle. Since the chance
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FIGURE 2.8: EXAMPLES OF ACCUMULATED MOTION PATTERNS, AND RADIAL POSITION TIME
TRACES FOR THREE PARTICLES. (a) Accumulated motion pattern for three particles. The in-plane x-
and y-coordinates of the position of all particles were optically recorded from which the accumulated
motion pattern per particle was reconstructed. (b) Radial position over time for three particles. Using
the x- and y-coordinates, the radial position per particle was calculated. The radial position over
time shows binary transitions caused by single-molecule binding and unbinding events. The length
of the primary tether (i.e., the dsSDNA stem) determines the radius of the unbound state motion
pattern (~250-300 nm). The length of the secondary tether (i. e., stem probe, target, and particle probe)
determines the radius of the bound state motion pattern (~150-175 nm). The accumulated motion
patterns with their corresponding radial position time trace were measured at a bulk concentration of
63 pM high-affinity target (see Figure 2.3c).

per time interval is independent of the preceding time interval, for
each interval the probability that an event occurs equals kAt while the
probability that no event occurs equals 1 — kAt. When considering all
time intervals within the total observation time, the number of time
intervals in which an event has occurred is x while the number of time
intervals in which no events could be observed is equal to N — x. The
probability of a specific sequence of x events during measurement time
t can then be described by:

P(x|N) = (kAH)*(1 — kAN, withx =0,1,...,n (2:3)

with 7 being the number of observed events where n < N. However,
since this relates to a specific sequence, all combinations of x events
in all N time intervals should be considered. This can be done by
implementing a binomial coefficient as given in the following equation:
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withx =0,1,...,n

P(x|N) =

If we assume that the number of time intervals is very large (i.e.,
N — o0) and the time interval length very short compared to the

reaction rate (At < 1/k, i.e., At — 0), Equation 2.4 can be simplified
t0:16_18
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P(x) =~ exp (1)

(2.5)

with A = N(kAt). Since the total measurement time t is described by
NAt, and the cumulative distribution function (CDF) of the observed
state lifetimes can be described by the probability that no event has
occurred, i.e., x = 0, the equation simplifies to:

P(x =0) = exp (—kt) (2.6)

Since the time that no events have occurred equals the lifetime of
the state (either bound or unbound) of the system, Equation 2.6 can be
expressed as follows:

F(t) = nt) = exp (—kt) = exp (;t) (2.7)

1o

with 1y being the total number of observed lifetimes, n(t) the number
of observed lifetimes with a length larger than ¢, and 7 the mean
bound or unbound state lifetime. Using Equation 2.7, the reaction rate
constant k has the meaning of a probability per unit time that a binding
or unbinding event happens. Therefore, it describes the CDF of the
observed state lifetime in a molecular system and can be interpreted
as the apparent association rate constant « (for unbound states) and
dissociation rate constant kg (for bound states).

2.5.4 Heterogeneity in association kinetics

STATE LIFETIME HETEROGENEITY: In Figure 2.9 the CDFs of both
the bound and the unbound states are shown, experimentally deter-
mined using the system described in Figures 2.1 and 2.2. The straight



line of Figure 2.9a is in agreement with the assumption of a well-
defined, single-molecular process with similar (local) conditions which
holds for the bound state lifetimes, since the observed bound state
lifetimes are single-exponentially distributed. This indicates that the
bound state lifetime distribution can be used to kinetically identify the
molecular interaction. In contrast, the observed unbound state lifetimes
show a curved line and indicate a multiexponential distribution. We
attribute the multiexponential behavior to particle-to-particle variability.
This hypothesis is supported by plotting the unbound state lifetimes
per particle (Figure 2.9b). The per-particle curves appear approximately
as straight lines (with noise due to lower event statistics), which indi-
cates that the association kinetics of every particle are determined by a
bimolecular interaction with a single association rate and that differ-
ent particles exhibit different rates. The particle-to-particle variability
causes the curved line in Figure 2.9a, where the data is accumulated
for all particles. A large contribution to the heterogeneity is caused by
the nonuniformity of the NeutrAvidin coating on the particles, which
we visualized using quantitative points accumulation for imaging in
nanoscale topography (qQPAINT). Hypotheses for the presence of such
a multiexponential distribution are variability in (1) NeutrAvidin func-
tionalization on the particle surface; (2) particle probe conjugation to
the NeutrAvidin complexes; or (3) target hybridization to the parti-
cle probes, such as slow equilibrium of the fractional occupancy of
the particle probes whereby the affinity reaction did not reach (local)
equilibrium. Besides, only a small fraction of the particle surface area
is probed, namely the area close to the stem. This might lead to a
small number of accessible particle probes and therefore increase the
susceptibility to variability between particles.

In Figure 2.10 the distributions of the mean state lifetime per particle
are given. For the dissociation kinetics, the experimentally found width
of the distribution is similar to the width that was found using simu-
lated data (see Material and methods 2.4). However, for the association
kinetics, a large distribution was observed compared to simulations.
Both observations correspond to the findings in Figure 2.9. It was found
that the mean unbound state lifetime 775 is approximately lognormal
distributed, as shown in Figure 2.10 (right). Therefore the distribution
of 1y per particle can be described by:

1 (11’1 Ty — "l/t-[u )2
Tu; ,00,) = ———————€ex _ 2.8
f( u HTU Tu) Tuo-ru /7277: p ( 20’%[] ( )

with i, being the mean and o, the standard deviation of the natural
logarithm of the unbound state lifetime 1;; per particle, respectively.
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FIGURE 2.9: STATE LIFETIME ANALYSIS OF THE OBSERVED STATE LIFETIMES. (a) Cumulative
distribution function (CDF) of observed bound (top) and unbound (bottom) state lifetimes of all
particles. Top: the red dashed line shows a single-exponential fit. For longer bound state lifetimes
(> 40 seconds, < 3% of the total number of observed bound states) a minor deviation from the fit is
observed, caused by merged bound states (missed unbound state lifetime in particular at high target
concentrations). Bottom: the red dashed line shows a multiexponential fit according to Equation 2.8.
For longer unbound state lifetimes (> 350 seconds, < 4% of the total number of observed unbound
states), a deviation of the fit is observed due to a finite measurement time. (b) CDFs of the observed
unbound state lifetimes of three individual particles (classified as slow, moderate, fast switching) at
equal target concentration. The red dashed lines show a single-exponential distribution fit per particle.

All accumulated CDFs are reconstructed using all observed state lifetimes of all particles (N = 58) at
a fixed target concentration for a single measurement (10 minutes).
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In order to interpret the unbound state lifetime distribution, we first
assume that all unbound state lifetimes 7i; can be found during a
single measurement. The fraction of observed unbound state lifetimes



F;, defined in Equation 2.7, can be described by the integral over all
positive values of 1;;. By combining Equations 2.7 and 2.8, particles
with short unbound state lifetimes have a larger contribution in the
CDFE. In order to correct for this, a weight factor should be implemented.
The CDF of the observed unbound state lifetimes can then be described

by:

Fult) = [~ i) () exp (-~ ) @9

u

with w(ty) = TUTTMTB' with T, being the measurement time and 3
the mean bound state lifetime. By fitting the CDF with this multiex-
ponential distribution, with a lognormal distributed contribution of
each exponential component, the concentration dependency can be con-
densed in a single parameter that describes the lognormal distribution:
this single parameter is the median of the lognormal distribution and
referred to as the ensemble mean unbound state lifetime Tens. In order
to accurately determine Teps, the distribution of 7; per particle should
comprise a considerable number of particles and events. It appears that
Tens suffers from missed long state lifetimes due to a finite measurement
time and low statistics at low target concentrations, and therefore the
mean unbound state lifetime is underestimated and large uncertainty
intervals are obtained. In the limit of low target concentrations, the
assumption that all unbound state lifetime 1y; can be observed during
a single measurement therefore does not hold. Note that the calculated
mean unbound state lifetime Tens is reported as 77 in this chapter, see
Figures 2.3a,b.

VARIABILITY IN NEUTRAVIDIN FUNCTIONALIZATION: To inves-
tigate the origin of the broad distribution of association lifetime (see
Figures 2.9 and 2.10), we quantified the particle-to-particle variabil-
ity in NeutrAvidin functionalization using qPAINT.*® The number of
NeutrAvidin-bound, biotinylated ssDNA strands (docking strands) per
particle was determined using total internal reflection (TIR) excitation
of transiently binding dye-labeled ssDNA strands (imager strands)
with a complementary sequence. Here, it was assumed that the number
of docking strands represents the number of NeutrAvidin complexes.
In order to quantify the particle-to-particle variability, the coefficient
of variation (CV) of the distribution of number of docking strands per
particle was calculated.

In qPAINT the number of docking strands is calculated using the
association kinetics of the transient binding of imager strands to the
docking strands, according to the following equation:
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(2.10)

with Npg being the number of docking strands, kon the association
rate constant (assumed to be 2.3 - 10° M s7),92° ¢; the imager strand
concentration and 7; the mean dark time, i.e., the time in which no
imager strand is bound to a docking strand. Since this method is prone
to underestimating the number of docking strands when multiple
binding events occur simultaneously, t; should be much larger than
the mean bright time 713, i. e., the time in which a single imager strand
is bound to a docking strand. Furthermore, to ensure comparable
statistics for sparsely and densely functionalized particles, the 7;/ T,
ratio is tuned by decreasing c; for increasing number of docking strands
per particle.

Figure 2.11 shows the results of the qPAINT measurements. For these
measurements, the incubated ssDNA concentration consists of 3% dock-
ing strands and 97% ssDNA strands with a random sequence and equal
length. Using an imager strand complementary to the docking strand,
only the docking strands are imaged. Subsequently, the total number of
ssDNA strands can be calculated with the known ratio between dock-
ing strand and ssDNA strands with a random sequence. The number of
ssDNA strands is therefore the sum of the number of docking strands
and ssDNA strands with a random sequence. Figure 2.11a shows a
concentration series of ssDNA strands incubated with NeutrAvidin-
functionalized particles. For the measured concentration range, a linear
relationship with the observed number of ssDNA strands was found.
The saturation point of 5.5 pM (~350, 000 binding sites per particle) was
found using a supernatant assay with Atto655-biotin (data not shown
here) from which a number of ssDNA strands per particle as a function
of ssDNA concentration could be calculated (gray dashed line). Here
it was assumed that there exists a linear relationship between number
of ssDNA strands per particle and ssDNA strand concentration, that
the binding capacity of Atto655-biotin is equal to the binding capacity
of biotinylated ssDNA strands, and that approximately 50% of the
docking strands could be observed due to TIR excitation. Therefore, the
maximum possible number of observable docking strands per particle
is approximately 175, 000.

Figure 2.11b shows an example of the found distribution of the
number of ssDNA strands per particle for particles incubated with a
ssDNA concentration of 667 nM. The distribution is fitted with a normal
distribution, from which the CV can be calculated. Figure 2.11c shows



the dependency of the observed and expected CV on the incubated
ssDNA strand concentration. The expected CV is calculated using
the mean observed number of ssDNA strands per particle and the
mean number of observed binding events under the assumption of
a Poisson distributed ssDNA strand functionalization and probing
processes. It appears that for both the observed and expected CV's the
CV scales with the incubated ssDNA concentration (dashed blue and
red lines) with CV N52'5 which is expected based on the previously
mentioned assumptions. The difference between the observed CV and
the expected CV is approximately 10%; this can only partially explain
the broad distribution observed in Figure 2.10, caused by particle-to-
particle heterogeneity in NeutrAvidin functionalization. Note that the
experimental results presented in this figure were obtained using a
preliminary event detection algorithm which suffers from background
signals with many false positive events, effectively inflating the CV
at low DNA concentrations. In Chapter 3, in particular Figure 3.2,
the same data have been analyzed with an improved event detection
algorithm. Nevertheless, the data in Figure 2.11 show a clear difference
between the observed and expected variability, indicating variability
between particles.
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FIGURE 2.11: QUANTIFICATION OF INTERPARTICLE SURFACE FUNCTIONALIZATION VARIABILITY.
(a) Experimentally found (blue) number of ssDNA strands as a function of the incubated ssDNA strand
concentration. The calculated number of ssDNA strands (gray dashed line) are based on supernatant
assay from which the total binding capacity was calculated. The inset shows the specificity of the
imager strands for the docking strands; a fully matched docking strand (FM) yields a high number of
localizations per particle while a negative control with a fully mismatched docking strand yields a low
number of localizations. The box plots show the median, 5%, 25%, 75% and 95% confidence intervals.
The error bars in the graphs represent the calculated standard deviation with N > 150 accumulated
over two fields-of-view. (b) Calculated number of binding sites per particle at an incubated docking
strand concentration of 25 nM; an approximate normal distribution was found from which the
coefficient of variation (CV) was calculated. (c) The experimentally observed (blue) and expected
(red) CV as a function of incubated ssDNA strand concentration show a significant difference at each
ssDNA strand concentration. The dashed lines show the approximately trend of CV « N;3. The
error bars in the graphs represent the calculated standard deviation of the fit of the distributions.
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QrAINT: All ssDNA oligonucleotides (IDT, HPLC purification) were
diluted in Milli-Q water (Thermo Fisher Scientific, Pacific AFT 20) to
a final concentration of 20 pM for the docking strand, 10 uM for the
ssDNA strand with a random sequence, and 200 nM for the imager
strand. Glass slides (25 x 75 mm, #1, Menzel-Gldser) were cleaned
by 15 minutes sonication in methanol (VWR, absolute) and thereafter
dried under nitrogen flow. A custom-made fluid cell sticker (Grace
Biolabs) with an approximate volume of 24 pL. was attached to the
glass slide. NeutrAvidin-functionalized silica particles were incubated
in bulk overnight with docking strands at the required concentration.
The particles were thrice centrifugally washed in PBS (130 mM NaCl, 7
mM Na,HPO,, 3 mM NaH,PO, at pH 7.4) at 6,000 g for 5 minutes
using a tabletop spinner (Eppendorf MiniSpin). Finally, the particles
were resuspended in PBS to a final concentration of 0.17 mg mL™ (0.26
pM) and sonicated using an ultrasonic probe (Hielscher). The particles
were added to the fluid cell and nonspecifically absorbed to the glass
surface for 30 minutes. After incubation, the fluid cell was washed with
200 pL buffer B+ (5 mM Tris-HCI, 10 mM MgCl,, 1 mM EDTA, 0.05
vol.-% Tween-20 at pH 8.0) to remove unbound particles and change
the buffer in the fluid cell. Finally, 200 pL imager strand of the required
concentration in buffer B+ was added and the fluid cell was closed
using sticky tape. Imaging at a 60x magnification (Nanoimager S, ONI)
was performed under TIR conditions using a 647 nm laser at 50 mW at
a frame rate of 13.3 Hz for 30 minutes. The integrated pixel intensity
of the region of interest around each particle was used to determine
binding and unbinding events of imager strands. The mean dark time
was extracted by fitting all observed dark times to a single-exponential
distribution.

2.5.5 Potential of multiplexing by kinetic encoding and temporal resolution

The potential of multiplexing by single-molecule kinetic encoding is
determined by the temporal resolution of the measurement of the
dissociation rate, which is governed by the diffusion coefficient of the
tethered particle. The tethered particle moves within a confined volume
defined by the molecular tether. At the boundaries of the confinement,
the molecular tether is fully stretched and the entropic spring effect
forces the particle to move toward the center of the confined space. This
confinement effect can be described by the mean squared displacement
(MSD) of the position of the particle in a two-dimensional space:*"

<r2(t)> = Rf (1—exp(—t/7)) (2.11)



with R. being the radial confinement and 7. a time constant which
describes the diffusion time scale on which the particle experiences the
confinement of its motion. On small time scales of { < T, the diffusion
resembles free diffusion. Therefore, by taking the limit of the derivative
of Equation 2.11 at t = 0, R, and 74 can be related to the bulk diffusion
coefficient D of the particle:

d(r2(t)) _R2. exp (—t/7)

dt T,
t/ R2 (2.12)
> lim (R% 2P (1) TC)) _R_yp
t—0 Tc Tc

In Figure 2.12 normalized MSD curves of four particles are given
as an example and the calculated diffusion coefficient D for all parti-
cles. In Figure 2.12a, the MSD was fitted with Equation 2.11 for the
first 10 data points (~300 ms) since all particles follow the diffusive
behavior of a confined particle. From the MSD fits it was found that
for NeutrAvidin-functionalized silica particles the observed diffusion
coefficient D = 1.54+0.2- 10713 m™ s (see Figure 2.12b). To account
for the hydrodynamic coupling between the particle and the substrate,
a correction can be applied according to Faxén’s Law.?* The corrected
diffusion coefficient was found to be D = 3.4 +0.4- 10713 m2 57" which
is close to the theoretical bulk diffusion coefficient calculated using the

Stokes-Einstein equation, i.e., DSE =42.107 B m2gT:

67T a

(2.13)

with kp being the Boltzmann constant, T the temperature, 7 the viscos-
ity of the fluid, and a the particle radius.

The temporal resolution of kinetic encoding is limited by the par-
ticle diffusivity in two ways. First, a slow diffusing particle increases
the probability of target rebinding, causing longer bound state life-
times than would be expected based on the affinity of the molecular
interaction alone. Second, the time scale in which the particle exhibits
confined diffusion should be smaller than the observed bound and
unbound state lifetimes in order to separate the unbound from the
bound states, i.e., 7. < Ty, Tp. We assume that this requirement is met
when 1, 75 = 5 - 7. which corresponds to the time step at which (r?)
equals approximately 99% of the plateau value R.. Using these values,
for the current experimental design the achieved temporal resolution
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FIGURE 2.12: CHARACTERIZATION OF THE CONFINED DIFFUSION BEHAVIOR OF TETHERED
SILICA PARTICLES. (a) Mean squared displacement (MSD), normalized to R., as a function of data
lag time, normalized to 7. with a diffusion time 7. = 68 & 16 ms. (b) Calculated bulk diffusion
coefficient calculated per particle using Equation 2.12. The mean of the fitted normal distribution is
D=15+£02-10"12 m?s*

is 340 = 80 ms. Since the state lifetimes are exponentially distributed,
the mean state lifetime should be longer than this temporal resolution;
when > 90% of all state lifetimes are observed the found mean state
lifetime is overestimated by less than or equal to 10%. To meet this
requirement, it was found that the mean state lifetime 7 should be
larger than 50 - 7. which corresponds to approximately > 4 seconds.

When faster kinetics have to be observed, the particle has to diffuse
faster in order to meet the stated requirements. By decreasing the
radius of the particle, the diffusivity is increased. However, the radial
confinement of the tethered particle is decreased as well. According
to Equation 2.12 the diffusion time 7. depends on both the diffusion
coefficient of the particle and the radial confinement. The diffusion
coefficient scales with the inverse of the radius according to the Stokes-
Einstein equation, and the radial confinement with the square root of
the radius:

Rc=14/R2 ,+2R,-a (2.14)

with R._. being the end-to-end distance of the tether. Therefore the
diffusion time 7, scales with the radius squared. Decreasing the current
particle radius by a factor 3, decreases the diffusion time to approxi-



mately 7 ms. Therefore, decreasing the particle size opens an additional
decade of time space (0.35—4 s as a mean bound state lifetime) available
for kinetic encoding.
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HOW REACTIVITY VARIABILITY OF
BIOFUNCTIONALIZED PARTICLES IS DETERMINED
BY SUPERPOSITIONAL HETEROGENEITIES

ABSTRACT: The biofunctionalization of particles with specific target-
ing moieties forms the foundation for molecular recognition in biomed-
ical applications such as targeted nanomedicine and particle-based
biosensing. To achieve a high precision of targeting for nanomedicine
and high precision of sensing for biosensing, it is important to un-
derstand the consequences of heterogeneities of particle properties.
In this chapter, we present a comprehensive methodology to study
with experiments and simulations the collective consequences of par-
ticle heterogeneities on multiple length scales, called superpositional
heterogeneities, in generating reactivity variability per particle. Single-
molecule techniques are used to quantify stochastic, interparticle, and
intraparticle variabilities, in order to show how these variabilities col-
lectively contribute to reactivity variability per particle, and how the
influence of each contributor changes as a function of the system pa-
rameters such as the particle interaction area, the particle size, the
targeting moiety density, and the number of particles. The results give
insights into the consequences of superpositional heterogeneities for
the reactivity variability in biomedical applications and give guidelines
on how the precision can be optimized in the presence of multiple
independent sources of variability.

Parts of this chapter have been published as: Lubken, R. M. et al. How Reactivity Variability of
Biofunctionalized Particles Is Determined by Superpositional Heterogeneities. ACS Nano 15, 1331—
1341 (2021).
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3.1 INTRODUCTION

The biofunctionalization of micro- and nanoparticles with specific tar-
geting moieties forms the basis of biomedical applications such as
particle-based biomolecular assays and targeted nanomedicine.’ The
specific targeting moieties are coupled to particles that can have various
chemical compositions, e. g., metallic particles, polymer-based particles,
and oxide-based particles. To achieve targeting and sensing with high
precision, good control is needed of the particles and their biofunction-
alization. Therefore, it is important to know the heterogeneities present
in the system and understand how these lead to variabilities in the
targeting functionality of the particles.”® For example, heterogeneities
in the particle surface (e. ., nonuniform chemical composition, surface
roughness), heterogeneities in the targeting moieties (e. g., number and
location of conjugation sites), and heterogeneities in the coupling pro-
cesses (e. ., nonuniform reaction conditions) cause variabilities, such
as variable densities of targeting moieties, variable orientations of the
moieties, and variable functional activities. In that way, the underlying
heterogeneities affect the number of molecular interactions that the
particles can effectuate.

In this work we ask the question, how do multiple independent het-
erogeneities collectively determine the reactivity variability of particles?
Here, reactivity is defined as the number of particle-coupled targeting
moieties that are available for interaction toward a countersurface. The
independent particle heterogeneities are referred to as superpositional
heterogeneities, as the heterogeneities are superposed onto each other
to generate the total observed reactivity variability. We address this
question using three experimental techniques with single-molecule
resolution and using simulations. Single-molecule techniques are able
to count molecules and molecular events, revealing detailed hetero-
geneities and stochastic properties of biomolecular systems.o*° Here,
we use two fluorescence-based single-molecule techniques (QPAINT
and DNA-PAINT) to identify individual targeting moieties on particles
and gain insight in their number and spatial distribution.”'® The re-
activity variability is studied using a biosensing technique with both
single-particle and single-molecule resolution, called biosensing by
particle mobility (BPM)."77*9 These techniques jointly cover all relevant
length scales of the interactions of the particles. The data quantify the
reactivity variability and how this reactivity variability scales as a func-
tion of the system parameters, namely, particle interaction area, particle
size, targeting moiety density, and number of particles. The results
provide insights into the origins of variability and give guidelines how



particle-based biomedical applications can be engineered in such a way
that a high precision can be obtained.

3.2 SUPERPOSITIONAL HETEROGENEITY

The concept of superpositional heterogeneity is explained in Figure 3.1,
showing the various contributors to reactivity variability and the dis-
tributions of reactivity caused by each individual contributor. Fig-
ure 3.1a sketches two important applications of biofunctionalized
particles, namely, targeted nanomedicine and biosensing. In targeted
nanomedicine applications, biofunctionalized particles interact with a
biological countersurface such as a vessel wall, a cell membrane, or a
tissue. In particle-based biosensing, particles interact with a biosensor
substrate. In both cases, biofunctionalized particles form biomolecular
bonds with a countersurface. In this chapter, we study how multiple
heterogeneities of the particles cause reactivity variability, i.e., vari-
ability in the number of particle-coupled targeting moieties that are
available for interaction toward a uniformly reactive countersurface.
The reactivity variability is analyzed as a function of system param-
eters, such as particle size and density of targeting moieties on the
particles. The reactivity variability can have stochastic and nonstochas-
tic origins. Stochastic heterogeneity relates to the discrete nature of the
targeting moieties, causing random placements of targeting moieties
on the particle surface and distributions according to Poisson statistics.
Nonstochastic heterogeneity refers to physical and chemical differences,
such as particle size, surface roughness, and chemical surface hetero-
geneities. We subdivide the nonstochastic heterogeneity into two parts:
heterogeneity between particles, which is called interparticle hetero-
geneity, and heterogeneity within particles, which is called intraparticle
heterogeneity.

Figure 3.1b shows the stochastic heterogeneity of targeting moieties
on the particle surface for three different reaction levels: ensemble level,
single-particle level, and subparticle level. At ensemble level (left), the
interaction is effectuated by a large ensemble of particles, where the
total surface area of all particles contributes to this interaction. The
total area is large, so many targeting moieties generate molecular inter-
actions, resulting in a small reactivity variability between individual
measurements. For a single-particle level (middle), where each particle
is an individual effectuator, the total number of targeting moieties
is much lower and therefore the distribution of reactivity per single-
particle measurement is broader. The distribution is broadened even
further when the interaction area is reduced to a fraction of the surface
of a single particle (right).
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The contributions of interparticle and intraparticle heterogeneity to
the superpositional heterogeneity are visualized in Figure 3.1c. When
these heterogeneities are present, the reactivity variability is larger
than would be expected based on the stochastic contribution alone
(gray dashed lines). The collective effect of stochastic, interparticle, and
intraparticle heterogeneity results in the observed reactivity variability.
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FIGURE 3.1: SUPERPOSITIONAL HETEROGENEITY AND HOW IT INDUCES REACTIVITY VARIABILITY.
(a) Sketch of two applications of biofunctionalized particles: targeted drug delivery in nanomedicine
(left) and sandwich assay biosensor with a particle as detection label (right). The reactivity variability is
determined by the collective sum of stochastic and non-stochastic heterogeneities resulting in varying
numbers of targeting moieties on the particle surface. (b) Stochastic heterogeneity, where the width of
the reactivity distribution is determined by Poisson statistics. Left: in case the targeting or sensing is
effectuated by targeting moieties on the surfaces of many particles, then the total number of involved
targeting moieties is large (indicative: 10°-10° targeting moieties) and therefore the width of the
reactivity distribution is narrow. Middle: when the targeting or sensing is caused by a single-particle
measurement, a lower number of targeting moieties is involved (indicative: 103-10° targeting moieties),
resulting in a larger variability of reactivity. Right: if only a subparticle area is available for interaction
to a countersurface, the number of targeting moieties is low (indicative: 10°-10° targeting moieties),
resulting in the broadest reactivity distribution. (c) Nonstochastic heterogeneities. Interparticle
heterogeneity refers to targeting moiety variability between particles, e. g., due to size dispersion.
Intraparticle heterogeneity refers to targeting moiety variability between different subparticle areas,
e.g., due to nonuniform targeting moiety density. The observed reactivity distribution is determined
by the superposition of stochastic, interparticle and intraparticle heterogeneities, i. e., superpositional
heterogeneity.

In the next section we will study how the reactivity variability is
influenced by stochastic, interparticle, and intraparticle heterogeneities.
The interparticle variability is quantified by measuring the number of



active targeting moieties per particle, and the intraparticle variability is
determined by mapping the locations of active targeting moieties on the
particle surface. Subsequently, the reactivity variability is studied using
BPM. Finally, using simulations the reactivity variability is studied as
a function of the system parameters, namely, particle interaction area,
targeting moiety density, particle size, and number of particles.

3.3 RESULTS AND DISCUSSION
3.3.1 Interparticle targeting moiety variability

The particles used in this work are commercially available silica parti-
cles with a diameter of 1 nm, functionalized with single-stranded DNA
(ssDNA) molecules as targeting moieties (see Material and methods
3.5). These particles are used in this study because they have a low size
dispersion (CV4ie = 5%) and a smooth surface (see Supplementary
note 3.6.4). For each particle, the number of ssDNA molecules was
quantified using a fluorescent imaging method with single-molecule
resolution, namely, quantitative points accumulation in nanoscale to-
pography (qPAINT).'*'21® qPAINT makes use of the distribution of
observed unbound times (i. e., dark times) of imager strands to targeting
moieties in a region of interest (ROI), which depends on the number of
targeting moieties present in this ROI (see Supplementary note 3.6.1).
In Figure 3.2 the interparticle targeting moiety variability is quantified
on the silica particles, which were functionalized with NeutrAvidin
and subsequently incubated with a dilution series of biotinylated ss-
DNA molecules. Figure 3.2a shows the dependency of the number
of active targeting moieties per particle, quantified using qPAINT, as
a function of the ssDNA to particle ratio present in solution during
incubation (blue). For an increasing ratio, a linearly increasing number
of targeting moieties per particle was observed (gray dashed line). This
linear dependency is expected when the solution with biotinylated
ssDNA molecules is depleted by the particles and the particles are not
saturated. The found number of targeting moieties per particle is ap-
proximately a factor 2 lower than the ssDNA to particle ratio; this is in
agreement with the fact that only half of the particle surface is observed
due to illumination by total internal reflection (see Supplementary note
3.6.2).

Figure 3.2b shows the experimentally found and simulated coefficient
of variation (CV) of the number of targeting moieties per particle as a
function of the incubated ssDNA concentration. Two CV's are indicated:
the observed total CV (blue) and the CV induced by the qPAINT
measurement (red). In the simulations it was assumed that the particle
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size has a normal distribution (C Vg, = 5%; see Supplementary note
3.6.4) and that the solution with biotinylated ssDNA molecules is
depleted by the particles. The variability in the number of targeting
moieties induced by the gPAINT measurement ogpanT can be described

by:
2 _ 52 2
UqPAINT = Usampling * Ogtochastic (3-1)

with Ogampling being the variability in the number of targeting moieties
introduced by the finite sampling time, and Ogyochastic the variability in
the number of targeting moieties introduced by the stochastic place-
ment of ssDNA molecules on the NeutrAvidin-functionalized particles.
These two individual variabilities can be further defined as:

T -05
Usampling = ‘Vmoiety m

Ustochastic = 4/ Nmoiety

with Npoiety being the average number of targeting moieties per parti-
cle, Tjs the measurement time, 7, and 7; the mean bright and dark times
respectively. At low ssDNA concentrations, and thus a low number of
targeting moieties per particle, cgpaiNnT is dominated by the stochastic

contribution, where Usampling & Nmoiety and Ogtochastic & vV Nmoiety-

(3-2)

When comparing the experimental data to the simulated data, it
appears that the variability in particle size and the qPAINT measure-
ment variability together (light blue) are not sufficient to explain the
CVmoiety Observed in the experiment. This implies that an additional
variability contribution must be present which is not included in the
simulation. A possible additional contributor is variability in targeting
moiety density per particle; including a targeting moiety density vari-
ability per particle in the simulations (with CVyensity = 15%, dark blue)
matches the simulated results to the experimental results. A variability
in targeting moiety density may originate from variations in surface
chemistry (e. g., causing variable NeutrAvidin densities and thus vari-
able targeting moiety densities) or other differences between particles
on subparticle length scales. Such variability on a smaller length scales,
i.e., intraparticle variability, will be discussed in the next section.
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FIGURE 3.2: INTERPARTICLE TARGETING MOIETY VARIABILITY QUANTIFIED USING QPAINT
EXPERIMENTS. (a) Number of targeting moieties (blue) as a function of the ssDNA to particle ratio
in solution. The saturation point of (2.0 +0.2) - 10° targeting moieties per particle is determined
by a supernatant assay (gray solid line, see Supplementary note 3.6.3). The values on the y-axis
are the number of targeting moieties per particle (i.e., corrected for the fractional occupation of
the NeutrAvidin by the complementary ssDNA molecules in the qPAINT experiment, see Material
and methods 3.5). The gray dashed line indicates a linear relation (slope = 1) between the number
ssDNA molecules per particle present in solution and the number of observed targeting moieties
in the qPAINT experiment. The top x-axis indicates the total incubated ssDNA concentration (both
complementary and non-complementary ssDNA). The reported errors are standard deviations. The
inset shows the specificity of the qPAINT experiment by means of the number of localizations per
particle for full match (FM) ssDNA and control (C) ssDNA with a random sequence. The boxes
show the median, 25" and 75™ percentile, and the whiskers show the 51 and 95™ percentile. (b)
Variability in the number of active targeting moieties per particle. The panels indicate the experimental
results (left) and the simulated results (right). Experiment: the observed CV is indicated in blue, the
CV caused by the qPAINT measurement only is indicated in red. The CV caused by the qPAINT
measurement shows a weak concentration dependency due to stochastics. Simulation: light blue
includes only size variability (CVsize = 5%); dark blue includes size as well as targeting moieties
density variability (CVyensity = 15%). The experimental data was measured in two fields-of-view with
approximately 10? particles each. The errors are the fitting errors for the experiment, and the standard
error for the simulation using 10 simulations with 10? particles per simulation.

3.3.2 Intraparticle targeting moiety variability

The intraparticle targeting moiety variability was investigated by DNA-
PAINT experiments.? The imaging data were used to confirm or reject
whether the positions of these moieties on the particle surface were
spatially randomly distributed. Figure 3.3a shows the positions of (a
subset of) targeting moieties obtained in a DNA-PAINT measurement
on a single particle (see Supplementary note 3.6.2). Since the targeting
moieties are located on the surface of a spherical particle, the 2D local-
ization data need to be projected on a hemisphere (see Supplementary
note 3.6.2) to calculate the true distance (great-circle distance) between
the localizations. The dashed circle visualizes the projection of the
particle on the xy-plane based on the DNA-PAINT localization cloud
(see Supplementary note 3.6.4).

Figure 3.3b quantifies the degree of targeting moiety clustering and

57



58

REACTIVITY VARIABILITY OF BIOFUNCTIONALIZED PARTICLES

the influence of the DNA-PAINT measurement on the observed degree
of clustering using clustering parameter z,,, the standardized mean
nearest-neighbor (NN) distance, which is a measure for the degree of
clustering (negative z;,) or dispersion (positive z;,) (see Supplementary
note 3.6.5).>° Examples are shown of simulated (true) targeting moiety
positions (blue) on a particle hemisphere and corresponding simulated
DNA-PAINT localizations (red), both projected on the xy-plane. The
simulated data are shown for three cases: absence of clustering, su-
perposition of clustered (25% of the localizations) and nonclustered
localizations (75% of the localizations), and full clustering (100% of the
localizations). For all simulated particles, the z;, values are shown for
the true positions (blue) and corresponding DNA-PAINT localizations
(red). The data show that the z,, distributions measured with DNA-
PAINT data are wider and that the mean is less negative compared to
the true positions. In Figure 3.3¢c, experimental z,, values calculated
from DNA-PAINT results (green line) are shown for all particles in
a field-of-view as a function of particle coverage by ssDNA. The re-
mainder of the ssDNA consists of noncomplementary ssDNA equal in
length. As a reference, DNA-PAINT simulations (red line) are shown
for particles without targeting moiety clustering. Both curves show a
slight decrease of z,, with decreasing coverage. The lower z,, values at
low particle coverage represent a clustering artifact due to repeated lo-
calizations of the same targeting moiety in a DNA-PAINT experiment.
This artifact is not present at the higher targeting moiety densities.
The experimental results systematically show more negative z;, val-
ues compared to the simulation over the full particle coverage range,
which indicates the presence of clustered true positions of the target-
ing moieties. The histogram (bottom panel) shows the experimentally
found z,, per particle at a NeutrAvidin coverage by complementary
ssDNA of 2.9%. The distribution is comparable to the simulated distri-
bution for 25% clustering in both mean and width (z,;, = —1.24+0.6 and
zZm = —1.4 £ 0.6 for the experiment and simulation respectively, see Fig-
ure 3.3b), indicating that a degree of nonrandomness is indeed present
in the spatial distribution of targeting moieties on the particle surface.
A nonrandomness of targeting moiety positions gives an intraparticle
contribution to the reactivity variability that scales with the interaction
area of the particle (see Supplementary note 3.6.6). Furthermore, it was
found that a comparable distribution of z,, values could be observed
for the full range of number of targeting moieties per particle (see
Supplementary note 3.6.7), indicating that the typical length scale of
intraparticle variability is much smaller than the particle size. The inter-
and intraparticle targeting moiety variabilities cause a variability of
reactivities of the biofunctionalized particles. This reactivity variability
depends in particular on the interaction area of the particle, size of the



particle, targeting moiety density, and number of particles. This topic
is explored in the next section, using BPM, a particle-based biosensing
method with single-particle and single-molecule resolution.
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FIGURE 3.3: INTRAPARTICLE TARGETING MOIETY VARIABILITY STUDIED USING DNA-PAINT
EXPERIMENTS. (a) Example of an experimentally measured 2D and calculated 3D localization image
of DNA-PAINT localizations with the contours of the particle (black dashed line). Using the x- and y-
coordinates of the localizations and the calculated diameter of the localization cloud, a 3D localization
image on the lower particle hemisphere can be reconstructed. (b) Examples of simulated true positions
of targeting moieties (blue) and simulated DNA-PAINT localizations (red) with corresponding z,, per
particle for three cases: randomly distributed targeting moieties, 25% clustering and 75% random,
and 100% clustering of targeting moieties. For an increasing degree of clustering, more negative z,,
values were found. For this example, a cluster size of 25 nm and an average 10 ssDNA molecules
per cluster were used as an example. (c) Experimentally calculated z,, (green) and simulated z,,
(red) values as a function of the particle coverage by the complementary ssDNA. Here the particles
are incubated with a dilution series of ssDNA comprising 2.9% of complementary ssDNA and the
remainder non-complementary ssDNA equal in length. For all data points, a systematic difference
could be observed which indicates the presence of clustered targeting moieties. The experimental data
were measured in two fields-of-view with approximately 10> particles each. The distribution shows
z,, per particle for a ssDNA coverage of 2.9%, with z,, = —1.2 4 0.6 (mean =+ standard deviation). The
arrow indicates that a negative z,, corresponds to clustered targeting moieties. The errors indicated in
the figure are the standard deviations.

3.3.3 Reactivity variability

The reactivity variability was studied using BPM." A detailed descrip-
tion of the BPM technique is given in Supplementary note 3.6.8. Briefly,
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particles are tethered to a surface by a flexible double-stranded DNA
(dsDNA) stem, causing every particle to move due to thermal motion
within a confined space. The sensing capability of the particles results
from targeting moieties on the particle and a single targeting moiety
on the dsDNA stem. Target molecules in solution can bind to targeting
moieties on the particle as well as to the targeting moiety on the stem;
when this happens simultaneously, a compact molecular sandwich
arrangement is formed, which strongly reduces the motion of the parti-
cle. The molecular interactions are designed to be reversible, causing
bound and unbound particle states to be observed over time. The mean
unbound state lifetime of a particle decreases when the number of
captured target molecules increases. Therefore, the average switching
frequency of particles between unbound and bound states increases
with the target concentration in solution.

The BPM sensor is designed in such a way that the affinity between
target molecule and targeting moieties on the particle is much higher
than the affinity between target molecule and the single moiety on the
stem. Therefore, the sensing mechanism can be described as a two-step
process: target molecules bind first to the targeting moieties on the
particle and thereafter to the moiety on the stem. This effectively results
in target molecules bound to targeting moieties on the particles to
function as the reactive component toward the moiety on the stem (see
Supplementary note 3.6.8).

Figure 3.4a shows the response of the sensor as a function of the
ssDNA target concentration in solution. The left graph shows the
measured particle switching frequency, defined as the mean frequency
with which a single particle switches between bound and unbound
states. The right graph shows the measured mean state lifetimes. The
switching frequency as a function of target concentration follows an
S-shaped dose-response curve on a linear-logarithmic scale,'® which is
characteristic for a first-order affinity binding process. The mean state
lifetime as a function of target concentration shows different behaviors
for the mean bound state lifetime g (red) and mean unbound state
lifetime 77 (blue). 1p is independent of target concentration, because
it is determined by the dissociation lifetime of the single-molecular
interaction between a ssDNA target molecule and the ssDNA molecule
on the stem. In contrast, 7; shows a clear concentration dependency,
which is in agreement with the fact that the occupation of targeting
moieties by target molecules depends on the target concentration in
solution.

The reactivity variability per particle becomes apparent when ana-



lyzing the distributions of measured lifetimes. Figure 3.4b shows the
bound and unbound state lifetimes of all observed particles plotted
as cumulative distribution functions (CDFs), for a high target concen-
tration (blue) and a low target concentration (green). The CDFs of
the bound state lifetimes show straight lines on a linear-logarithmic
scale, equal for both target concentrations. This demonstrates a single-
exponential lifetime distribution, which is in agreement with a well-
defined single-molecular unbinding process. In contrast, the CDFs of
the unbound state lifetimes do not show single-exponential distribu-
tions. The data cannot be fitted with straight lines but can be fitted
with lognormal distributed mean unbound state lifetime per particle.”
The fact that the association kinetics do not show a single-exponential
distribution suggests the presence of reactivity variability per particle.

Figure 3.4¢ plots the CDFs of the unbound state lifetimes for two
individual particles as an example; these CDFs of individual particles
show single-exponential distributions (red dashed lines) in contrast
to the ensemble CDFs in Figure 3.4b. The CDFs of the two individual
particles show a different 1y;, indicating that the molecular binding pro-
cess occurs under different local conditions per particle. Experiments
show that the observed difference in 1y; per particle is of static nature,
i.e., does not change during a measurement. Therefore, we attribute
the observed differences between particles to time-independent het-
erogeneities, such as differences in the number of accessible targeting
moieties. For example, if more targeting moieties are present in the
interaction area, then more target molecules are captured at a given
target concentration, resulting in a shorter 1i; (see the two sketches in
Figure 3.4¢).

In Figure 3.4d the experimental (blue) and simulated (red) distri-
butions of both 13 and Ty per particle are visualized. The simulated
distributions were determined using mock data with a measurement
duration equal to the experiment; the distribution width reported by
the simulations is therefore only caused by the finite measurement
time. The observed bound and unbound state lifetimes for all parti-
cles were sampled from a single-exponential distribution, with mean
bound and mean unbound state lifetimes equal to the peak values
of the experimental distributions (blue dashed line). The experimen-
tal and simulated distributions for 7p (panel d, left) per particle show
CVexp = 24 £ 3%, and CVsjy, = 14 £ 1%, respectively. The slightly larger
CVexp compared to CVsjn, is caused by a relatively long 7i; for the ma-
jority of the particles (panel d, right), resulting in lower bound state
lifetime statistics per particle compared to the simulation. However, the
results for the unbound state lifetime show large differences between
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experiment and simulation. The experimental distribution for 7; per
particle shows a much larger variability than would be expected from
the simulated results, namely, CVexp = 80 &+ 10% in the experiment
versus CVgim = 14 £ 2% in the simulation. The data in Figure 3.4 show
strong differences in the reactivity between individual particles. In the
next section, the contribution of each source of variability (stochas-
tic, nonstochastic interparticle, and nonstochastic intraparticle) will
be studied. Subsequently, using simulations the reactivity variability
will be determined as a function of interaction area, targeting moiety
density, particle size, and the number of particles.

3.3.4 Influence of system parameters on reactivity variability

In this section we study by simulations the scaling behavior of different
contributors to the reactivity variability for different system parameters,
namely, particle size, targeting moiety density, interaction area, and
number of particles. In the simulations we generate initial distributions
(e. g., of particle size and targeting moiety density) with an experimen-
tally found or estimated mean and width, and subsequently perform
calculations on these distributions to determine the number of target-
ing moieties per interaction area, which determines the reactivity per
particle. Finally, we determine the mean and width of the distributions
for the given number of particles in the system. The results are shown
in Figure 3.5a for particle-based biosensing by BPM and are generalized
in Figures 3.5b and 3.6 for other particle-based biosensing and targeted
nanomedicine applications.

Figure 3.5a shows the reactivity variability in BPM as a function of
the particle interaction area, highlighting the contributions of stochas-
tic, interparticle, and intraparticle variability. In the BPM design with
a single ssDNA molecule on the stem, the reactivity variability per
particle is caused by variability in the number of target molecules cap-
tured on the particles that can interact with the ssDNA molecule on
the stem. Due to the limited length of the tether between particle and
substrate, the stem can reach only a limited area on the particle. Only
target molecules captured within this interaction area are able to reach
the ssDNA molecule on the stem. It was found that the interparticle
variability Cinterparticle depends on particle size dispersion and targeting
moiety density fluctuations (see Figure 3.2). The intraparticle variability
Cintraparticle Originates from nonuniform functionalization of targeting
moieties (see Figure 3.3) and was found to scale with the inverse square
root of a; (see Supplementary note 3.6.6). The stochastic contribution

of the targeting moieties is defined as Ogiochastic = 1/ .f - Nmoiety, with f
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FIGURE 3.4: REACTIVITY VARIABILITY PER PARTICLE QUANTIFIED USING BIOSENSING BY PARTI-
CLE MOBILITY (BPM). (a) Sensing response as a function of ssDNA target concentration. Left: the
switching frequency as a function of target concentration. A Hill equation fit** (blue dashed line)
yields an ECsg value of 170 + 50 pM. Right: the bound and unbound state lifetimes as a function of
target concentration, derived from distributions as shown in panel b."” The red dashed line represents
a constant time; the blue dashed line represents a fitted line with slope 1/[T]. The errors indicated in
this panel are the standard errors for the switching frequency, and fitting errors for the state lifetimes.
(b) State lifetime analysis by means of cumulative distribution functions (CDFs) for ssDNA target con-
centrations of 125 pM (blue) and 16 pM (green). The bound state lifetime shows a single-exponential
distribution while the unbound state lifetime shows a multiexponential distribution (red dashed lines).
(c) CDFs for two individual particles which show an approximate single-exponential distribution. (d)
Distributions of the observed state lifetime per particle for both the bound and unbound states for a

target concentration of 125 pM. The width of the experimentally found distribution (blue) is rather

close to the simulated distribution (red) for the bound state lifetime per particle (CVeyp = 24 & 3%,
and CViim = 14 & 1%). However, for the unbound state lifetime per particle, the experimental and

simulated distributions are very different (CVexp = 80 £10% and CVgjm = 14 4= 2%). The errors

indicated in the caption are the fitting errors.

being the fraction of targeting moieties occupied by a target molecule
and Npoiety the average number of targeting moieties in the interac-
tion area. The fractional occupancy is typically less than 1% in the
low-concentration regime of a BPM sensor and depends on the tar-
get concentration in solution. For Figure 3.4d, f was estimated to be
approximately 0.3%. The parameters Ginterparticle and Creactivity Were
determined experimentally in the previous sections using qPAINT (Fig-
ure 3.2b) and BPM data (Figure 3.4d), respectively. On the basis of these
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parameters, Cinraparticle COUld be estimated and therefore the reactivity
variability could be calculated as a function of 4;.

The results in Figure 3.5a show that for a small 4;, where the number
of targeting moieties Nmoiety is small, the CVieactivity is dominated
by stochastic and intraparticle variability. For large a;, where Nioiety
is large, the contribution of interparticle variability dominates. The
stochastic contribution scales as CV o ul._l/ 2, corresponding to Poisson
statistics. The intraparticle contribution scales with CV o ai_l/ 2 as
well (see Supplementary note 3.6.6), while the superposition of all

contributions scales roughly with CV « 111._2/ 3,

The three histograms on the right side of Figure 3.5a show reactivity
distributions for different a;, i. e., distributions of the number of target
molecules captured onto a particle interaction area of a given size. This
is indicated as Npojetyef, because these target molecules are the moi-
eties effective for generating a signal. The top histogram applies to the
BPM sensor with a single ssDNA molecule on the stem (see Figure 3.4),
which has a particle interaction area a; of about 6 - 103 nm?. In this con-
dition, the simulations show that the reactivity variability is dominated
by stochastic and intraparticle variabilities of targeting moieties that
captured a target molecule on the small interaction area of the particle.
The simulations predict a CV of 82%, which is similar to the experimen-
tal value for the unbound state lifetime reported in Figure 3.4d. The
middle histogram applies to a BPM sensor with the whole substrate
coated with ssDNA molecules, as reported in previous work.'7*8 This
sensor design has a larger particle interaction area of about 6 - 10* nm?
(see Supplementary note 3.6.8). With this larger interaction area, the
simulations show that the contributions of stochastic and inter- and
intraparticle heterogeneity are approximately equal, giving a CV of
21%. This value is in agreement with the experimentally measured
CV for the BPM sensor with the whole substrate coated with ssDNA
molecules.’® The third histogram applies to a sensor that would probe
the full area of a particle (i.e., a; = 47‘[R%, with R, being the particle
radius). Here, the CV is dominated by interparticle heterogeneity and
the CV is about 19%. This result is in agreement with the experimental
value found in the qPAINT experiments when the qPAINT induced
contribution is neglected (see Figure 3.2b). Overall, the results show
that the stochastic contribution to the reactivity variability in BPM is
small with respect to the other sources of variability if the interaction
area is at least 5% of the particle surface.

The reactivity variability calculated by simulations in Figure 3.5a
and the corresponding experimental values are in good agreement



for different BPM sensor designs, where the particles interact with a
biofunctionalized sensing surface. To extrapolate these results toward
targeted nanomedicine and particle-based biosensing in general, the
calculated reactivity variability is shown in Figures 3.5b and 3.6 for dif-
ferent sizes of interaction area, particle radii, targeting moiety densities,
and number of particles.

Figure 3.5b shows the reactivity variability as a function of interac-
tion area for two particle radii R, (50 and 500 nm) and two targeting
moiety densities Pmoiety- A lower pmopiety = 1,600 pm™ corresponds to
an average intermolecular distance of 25 nm and resembles a typical
density of a particle surface functionalized with antibodies. A higher
Pmoiety = 130,000 pm™ corresponds to an average intermolecular dis-
tance of 3 nm and resembles a typical density of a particle surface
functionalized with oligonucleotides. The reactivity variability is ex-
pressed as a function of the relative interaction area, i. e., the percentage
of the total particle surface. Due to stochastics, the reactivity variability
is largest for small particles and for a low targeting moiety density.
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FIGURE 3.5: LIMITING EFFECT OF SUPERPOSITIONAL HETEROGENEITY ON THE REACTIVITY
VARIABILITY OF BIOFUNCTIONALIZED PARTICLES FOR VARIOUS INTERACTION AREAS. (a)
Reactivity variability as a function of the interaction area a; for BPM. Shown are the stochastic
(black), interparticle (yellow), and intraparticle (blue) contributions to the variability as well as the
superposed result (red), for a particle with a radius of 500 nm and an effective targeting moiety
density Pmoietyeft Of 3 - 10> pm™. The errors indicated in the figure are standard errors using 5
simulations with 10° particles per simulation; most error bars are smaller than the symbol size. On
the right, examples of three distributions of the number of target molecules per interaction area
a; are visualized. Particles are schematically shown with their corresponding 4; indicated in dark
orange. The found CVieactivity are 82 = 1%, 21.3 4= 0.3%, and 18.9 & 0.5% (mean = standard error) for
intraparticle heterogeneity dominated, mixed, and interparticle heterogeneity dominated examples
respectively. (b) The variability of reactivity per particle as a function of the interaction area for two
particle radii R, (50 and 500 nm) and a low targeting moiety density (top, Pmoiety = 1.6 - 10° pm)
and high targeting moiety density (bottom, pmoiety = 1.3 - 10° pm2). The arrows in the panel indicate
three values for the interaction area a; that are used in Figure 3.6.
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For large interaction areas, the reactivity variability converges to about
20%; here the stochastic contribution is small and the variability is
dominated by interparticle heterogeneity (see also Figure 3.5a).

Figure 3.6a shows how the reactivity variability depends on particle
radius R, for two targeting moiety densities, and for three interaction
areas (indicated by the arrows in Figure 3.5b). For all conditions, the
reactivity variability decreases as a function of particle radius, due to
the decreasing contribution of stochastic and intraparticle variability.
The particle radius where the stochastic and intraparticle contributions
become insignificant depends on the interaction area and the targeting
moiety density: a smaller interaction area results in a larger reactivity

variability while a higher density of targeting moiety results in a smaller
reactivity variability.

Figure 3.6b visualizes the ensemble reactivity variability as a function
of the number of particles, shown for two targeting moiety densities,
two different particle sizes (solid and dashed lines), and three inter-
action area percentages (indicated by the three colors). The ensemble
reactivity variability is lower (lower CV, better precision) when more
particles are used, scaling with the inverse square root of the number of
particles. The number of particles required to get a desired CV depends
on the particle size, interaction area, and targeting moiety density. The
stochastic and intraparticle heterogeneity are large in the case of small
particles, low targeting moiety density, and small interaction area. The
results show that systems with small particles (< 100 nm), low target-
ing moiety density (for example particles coated with proteins), and a
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FIGURE 3.6: LIMITING EFFECT OF SUPERPOSITIONAL HETEROGENEITY ON THE REACTIVITY VARI-
ABILITY OF BIOFUNCTIONALIZED PARTICLES. (a) Reactivity variability per particle as a function of
particle radius for three interaction areas and for a low and high density of targeting moieties. The
experimental limit (black dashed line) indicates the limit with only stochastic heterogeneity and an
interaction area that equals the full particle surface. The error indicated by the shading is the standard
error using 5 simulations with 10° particles per simulation. (b) Ensemble reactivity variability as a
function of the number of particles, for particle sizes of 500 nm (solid lines) and 50 nm (dashed lines).
Left: the green solid line is behind the yellow solid line. Right: the yellow and green dashed and solid
lines are very close to each other.



limited interaction area between particle and countersurface, can have
very large reactivity variability. When the targeting at the biological
site of interest is effectuated by a limited number of particles (< 1000
particles), then the number of molecular interactions realized by the
particles can vary by tens of percent.

3.4 CONCLUSION

The reactivity variability of biofunctionalized particles used in targeted
nanomedicine and particle-based biosensing applications depends on
heterogeneities of various kinds. We have studied three factors that
contribute to a variability in the number of targeting moieties on the
particles, namely, stochastic heterogeneity, interparticle heterogeneity,
and intraparticle heterogeneity, jointly referred to as superpositional
heterogeneity.

In this chapter, we have presented a comprehensive methodology to
quantify particle heterogeneities and their consequences. We have ex-
perimentally quantified targeting moiety variabilities using microscopy
methods with single-molecule resolution, namely, gPAINT and DNA-
PAINT, using ssDNA-functionalized silica particles as a model system.
The data show that the interparticle heterogeneity originates from par-
ticle size dispersion and targeting moiety density fluctuations, and
intraparticle heterogeneity is caused by nonuniform functionalization.

The three types of heterogeneities cause biofunctionalized particles to
have variable reactivities, where reactivity is defined as the number of
particle-coupled targeting moieties that are available for interaction to-
ward a countersurface. The variability was quantified by the coefficient
of variation, which depends on the interaction area of the particles, the
particle size, the targeting moiety density, and the number of particles.
The reactivity variability was studied by experiments and simulations
for BPM, a particle-based biosensing technique with single-particle
and single-molecule resolution. The results show that the reactivity
variability strongly depends on the size of the interaction area. When
the contributions of stochastic and inter- and intraparticle heterogeneity
are approximately equal, then the reactivity variability stabilizes and
is approximately equal to the reactivity variability for a full-particle
interaction.

The results were extrapolated toward the fields of targeted nanome-
dicine and particle-based biosensing in general, where the precision in
the available number of particle-coupled targeting moieties depends
on the particle size, targeting moiety density, interaction area, and
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number of particles. The stochastic and intraparticle heterogeneity are
large in the case of small particles, low targeting moiety density, and
small interaction area. The results show that large fluctuations (tens of
percent) can be expected when targeting effects at a biological site of
interest or at a sensor surface are determined by interactions from a
limited number of particles.

The methodologies and understanding described in this chapter war-
rant further studies on variabilities of biofunctionalized particles on
multiple length scales. Studies can include various biofunctionalization
strategies, different particle materials, sizes, and geometries of parti-
cles, different targeting moiety types, and the influence of complex
biological matrices (e. g., protein corona). Measured distributions and
heterogeneity simulations can be related to the precision of particle-
based targeting effects. The developed insights will enable researchers
to engineer particles for biomedical applications with high precision,
guided by a thorough understanding of heterogeneities and their col-
lective consequences.

3.5 MATERIAL AND METHODS

QrAINT: All ssDNA oligonucleotides (IDT, HPLC purification) were
diluted in Milli-Q water (Thermo Fisher Scientific, Pacific AFT 20) to
a final concentration of 20 pM for the complementary ssDNA, 10 pM
for the ssDNA with a random sequence, and 200 nM for the imager
strand. Glass slides (25 x 75 mm, #1, Menzel-Gléser) were cleaned by
15 min sonication in methanol (VWR, absolute) and thereafter dried
under nitrogen flow. A custom-made fluid cell sticker (Grace Biolabs)
with an approximate volume of 24 uL was attached to the glass slide.
NeutrAvidin-functionalized silica particles'® were incubated in bulk
overnight with biotinylated ssDNA at the required concentration. The
particles were thrice centrifugally washed in PBS (130 mM NaCl, 7
mM Na,HPO,, 3 mM NaH,PO, at pH 7.4) at 6000x g for 5 min using
a tabletop spinner (Eppendorf MiniSpin). Finally, the particles were
resuspended in PBS to a final concentration of 0.17 mg mL™ (0.26
pM) and sonicated using an ultrasonic probe (Hielscher). Thereafter,
the silica particles were added to the fluid cell and nonspecifically
absorbed to the glass surface for 30 min (approximately 100 particles
per field-of-view). After incubation, the fluid cell was washed with
200 pL of buffer B+ (5 mM Tris-HCI, 10 mM MgCl,, 1 mM EDTA, 0.05
vol-% Tween-20 at pH 8.0) to remove unbound particles and change the
buffer in the fluid cell. Finally, 200 pL of imager strand of the required
concentration in buffer B+ was added and the fluid cell was closed
using sticky tape. Imaging at a 60x magnification (Nanoimager S, ONI)



was performed under TIR conditions using a 647 nm laser at 50 mW
at a frame rate of 13.3 Hz for 30 min. Thresholding the integrated
pixel intensity of the ROI around each particle was used to determine
binding and unbinding events of imager strands. The mean dark time
was extracted by fitting all observed dark times to a single-exponential
distribution.

DNA-PAINT: Experimental conditions as described under qPAINT.
Drift correction was performed by cross-correlation. After drift correc-
tion, the positions of the targeting moieties were determined by cluster-
ing the DNA-PAINT localizations both in space and time; DNA-PAINT
localizations were clustered into a single targeting moiety position if
the distance between DNA-PAINT localizations was less than 100 nm in
space and less than 15 frames in time. The diameter of the localization
cloud was determined using the area of the convex hull; this diameter
represents the diameter of the particle (see Supplementary note 3.6.4).
Second, the localization cloud was centered by averaging all targeting
moiety positions after discarding top and bottom 5% outliers. The cen-
tered positions are projected on a sphere with the calculated diameter.
The NN-distance is determined for each position by calculating the
great-circle distance to the closest position.

BPM ASsAY: Glass slides (25 x 75 mm, #5, Menzel-Gldser) were
cleaned by 15 min of sonication in methanol (VWR, absolute), iso-
propanol (VWR, absolute), and methanol (VWR, absolute) baths. After
each sonication step, the glass coverslips were dried under nitrogen
flow. A custom-made fluid cell sticker (Grace Biolabs) with an approx-
imate volume of 60 uL was attached to the glass slide. A fluid cell
was made by inserting tubing (Freudenberg Medical, monolumen) into
the fluid cell sticker and connecting this tubing to a syringe pump
(Harvard Apparatus, Pump 11 Elite). First the fluid cell was prewetted
with PBS (130 mM NaCl, 7 mM Na,HPO,, 3 mM NaH,PO, at pH
7.4) at a flow speed of 500 pL min™ for 2 min. Functionalization of
the glass substrate was performed by physisorption of 83 ng mL™
anti-digoxigenin antibodies (Thermo Fisher Scientific) in PBS for 60
min. Finally, the glass substrate was blocked by incubation with 1.0
wt.-% casein (Sigma-Aldrich, casein sodium salt from bovine milk) in
PBS for 60 min. After each incubation step, the fluid cells were flushed
with PBS (250 pL min™ for 1 min). NeutrAvidin-functionalized silica
particles were incubated in bulk with 10 nM nanoswitch for 10 min."
Subsequently, the particles were coated with ssDNA by an incubation
with 40 uM biotin-labeled single-stranded oligonucleotide. The parti-
cles were thrice centrifugally washed in 1.0 wt.-% BSA (Sigma-Aldrich,
lyophilized powder, essentially globulin free, low endotoxin, > 98%)
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and 0.05 vol-% Tween-20 (Sigma-Aldrich) in PBS at 6000x g for 5 min us-
ing a tabletop spinner (Eppendorf MiniSpin). Finally, the particles were
resuspended in PBS/BSA /Tween-20 to a final concentration of 0.17 mg
mL™ (0.26 pM) and sonicated using an ultrasonic probe (Hielscher).
The particles were added to the fluid cell at a flow speed of 50 pL min™
for 5 min and incubated for 30 min. After incubation, the fluid cell
was turned over and subsequently flushed with PBS/BSA /Tween-20
at a flow speed of 50 pL min™ for 5 min to remove unbound particles.
ssDNA target (IDT, standard desalting) at the required concentration
in PBS/BSA/Tween-20 was added at a flow speed of 50 pL min™ for 5
min and incubated for 20 min. Samples were observed under a white
light source using a microscope (Leica DM6oooM) using a darkfield illu-
mination setup at a total magnification of 20x (Leica objective, N PLAN
EPI BD, 20x, NA 0.4). A field-of-view of approximately 400 x 400 pm?
was imaged using a CMOS camera (Grasshopper 2.3 MP Mono USB3
Vision, Sony Pregius IMX174 CMOS sensor) with an integration time
of 10 ms and a sampling frequency of 30 Hz. The silica particles were
tracked using the center-of-intensity of the bright particles on the dark
background. Trajectory parameters were calculated which describe the
motion pattern and were used to select single-tethered particles.”” The
state lifetimes were extracted using a previously described method.™

SIMULATIONS OF BPM ASSAY: Data were simulated using exper-
imental positional data of bound and unbound particles. For each
simulation, two single-exponential distributions were generated: one
with a given mean bound state lifetime and one with a given mean
unbound state lifetime. The particle traces were reconstructed block-by-
block with each block length according to the two predefined single-
exponential distributions. Nonspecific interactions and inter- and in-
traparticle heterogeneity were neglected. Subsequent time-dependent
analysis was performed as if experimental data were analyzed.

SIMULATIONS ON REACTIVITY VARIABILITY: Two independent
(normal) distributions were generated for the particle diameter (C Vi e =
5%) and targeting moiety density (CVgensity = 15%); both a particle size
and a targeting moiety density were assigned randomly to a particle.
The spherical cap area (i.e., the interaction area) was calculated for
each particle. Using the assigned particle size and targeting moiety
density, the (mean) number of targeting moieties on the spherical cap
area was calculated. In the absence of intraparticle heterogeneity, the
number of targeting moieties per spherical cap and the number of
target molecules per spherical cap are Poisson distributed. To include
intraparticle heterogeneity, a lognormal distributed number of target-
ing moieties per spherical cap was used as well. The variance of the



lognormal distribution of the number of targeting moieties on the in-
teraction area (Tizntraparﬁde was matched to the experimental value of
the reactivity variability found in Figure 3.4d and Supplementary note
3.6.6. Subsequently, the number of targeting moieties per spherical cap
was fitted by a lognormal distribution, from which the CVieactivity was

calculated.

3.6 SUPPLEMENTARY NOTES
3.6.1  Quantitative points accumulation in nanoscale topography

qPAINT measurement

Quantitative points accumulation in nanoscale topography (qPAINT) is
a fluorescence-based measurement technique by which quantitative in-
formation on the number of molecules on complexes or surfaces can be
obtained.'® The method exploits the well-defined and controllable bind-
ing behavior of dye-labeled ssDNA imager strands to ssDNA docking
strands (see Figure 3.7), which are referred to in this chapter as target-
ing moieties. The number of targeting moieties can be determined via
imager strands that transiently bind to the complex- or surface-bound
ssDNA docking strands, causing observable binding and unbinding
events (see Figure 3.7a). The distribution of the observed unbound
times (i. e., dark times) of imager strands to ssDNA docking strands in
a ROI, depends on the number of ssDNA docking strands in this ROI
for a given imager strand concentration (see Figure 3.7b). Under the
assumption that no simultaneous binding events occur in a single ROI
at each given time point, the number of targeting moieties per ROI can
be calculated using:

1
Nimoiety = m (3-3)

with Niiety being the number of targeting moieties in the ROI (in
this chapter a single particle), kon the association rate constant of the
interaction between the imager strand and the docking strand, c; the
imager strand concentration, and 7; the mean observed dark time. Since
kon is a molecularly determined constant,">'* and ¢; an experimental
condition, the observable 7; reveals the number of targeting moieties
per particle. The precision with which Nigiety can be determined ex-
perimentally depends on the number of observed dark states following
Poisson statistics (see Equation 3.2).
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FIGURE 3.7 MEASUREMENT PRINCIPLE OF QUANTITATIVE POINTS ACCUMULATION IN
NANOSCALE TOPOGRAPHY (QPAINT) TO QUANTIFY THE NUMBER OF TARGETING MOIETIES ON
A SINGLE PARTICLE. (a) Binding and unbinding behavior of dye-labeled ssDNA imager strands (red)
to ssDNA docking strands (green) yields observable bright states (state 1) with length 7; and dark
states (state 0) with length 7;. Only the associated ssDNA imager strands close to the glass substrate
yield a fluorescent signal due to total internal reflection excitation, causing an evanescent field (red
gradient). (b) For particles with a low number of targeting moieties Nmoiety, the observed dark times
are on average longer than for particles with a high number of targeting moieties; using the mean
observed dark time 7,4, the number of targeting moieties can be determined using Equation 3.3.

Analysis of qPAINT data

In Figure 3.8 the data analysis procedure of experimental gPAINT data
is shown. Figure 3.8a visualizes an example of the integrated pixel
intensity (blue) of a single ROI (i.e., a single particle) as a function
of time. The red dashed line indicates a threshold of y; + 50, with
Up and o3 the mean and the standard deviation of the background
signal respectively. Using this threshold, the bright and dark times
can be extracted from the integrated pixel intensity trace. In order to
correct for intensity fluctuations in the bright time and blinking, which
might lead to falsely detected binding and unbinding events, two filters
were used. The first filter removes single frames below the intensity
threshold with neighboring frames above the intensity threshold; these
events are regarded as false unbinding events and set to a bound state,
under the condition that the integrated pixel intensity in this particular
frame is above y;, + 03,. The second filter removes single frames above
the intensity threshold with neighboring frames below the intensity
threshold; these are regarded as false binding events and set to an
unbound state, under the conditions that the integrated pixel intensity
in this particular frame is below p, + 903,. The red solid line (see inset)
visualizes the state trace that results from thresholding the integrated
pixel intensity profile; a high level indicates a bound state from which
the bright time was extracted, and a low level indicates an unbound
state from which the dark time was extracted.

Figure 3.8b shows two CDFs, and two histograms of the mean dark
and bright times of all observed lifetimes on a single particle. For
the CDF of the dark times, a single-exponential distribution (blue



dashed line) with 7; = 12.2 0.1 s was observed indicating for a
single-molecular binding process. In contrast, the CDF for the bright
times only exhibit an approximate single-exponential distribution (red
dashed line) with 7, = 830 %29 ms for 70% of all observed bright times.
This effect might be explained by filtering the dark times with a length
that equals a single frame; this results in a tail of merged, and thus
longer, bright times. However, since 70% of the observed bright times
and all observed dark times follow a single-exponential distribution, we
neglected the influence of this effect on the quantitation of the number
of targeting moieties per particle.
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FIGURE 3.8: DATA ANALYSIS PROCEDURE OF EXPERIMENTAL QPAINT DATA. (a) Integrated intensity
in a ROI (i. e., a single particle) as a function of time. The threshold (red dashed line) is determined
by means of the background signal and has the value of yj, + 503, with p;, and 0, the mean and
the standard deviation of the background signal respectively. The inset shows a zoom-in in which
individual bright and dark times can be observed after thresholding the integrated intensity (red solid
line). (b) Lifetime analysis of the dark and bright times observed in a single particle. The cumulative
distribution function (CDF) of all observed dark times shows a single-exponential distribution (blue
dashed line) with 7; = 12.2 4 0.1 s. The CDF of all observed bright times shows a single-exponential
distribution (red dashed line) for approximately 70% of the observed bright times with 7, = 830 & 29
ms. The errors indicated in the caption are fitting errors.

Mass transport limitation in gPAINT experiments

Since the number of targeting moieties per particle is calculated from
the mean dark time 7; per particle, no more than a single event within a
ROI should occur at a point in time per particle. If this condition is not
met, the number of targeting moieties per particle is underestimated.*®
However, in order to meet this condition, particles with a large num-
ber of targeting moieties (in this chapter ~400,000 moieties per par-
ticle) pose an intrinsic imager strand transport problem since low
imager strand concentrations are required (~fM) in order to determine
the number of targeting moieties per particle. Conventional qPAINT
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measurements'*'>'® are performed at imager strand concentrations

of > 100 pM which result in a mean intermolecular distance d,,,) in
solution of < 3 pm with a corresponding characteristic diffusion time
Taief of < 0.03 s where 14i is defined as the time required for the
imager strand to diffuse over distance dy,:

d> )
Tt = (3-4)
where d,, = 1'1%‘/13(‘)79 and D being the diffusion coefficient of the

imager strand. Under the assumption that 14;¢ < 74, T is indeed in-
versely proportional to Npoiety and ¢; according to Equation 3.3. How-
ever, when low imager strand concentrations (sub-picomolar range) are
used, the assumption that 74y < 77 does no longer hold; the observed
association kinetics are then mass transport limited and the number of
docking strands is underestimated.

In Figure 3.9 the results of a qPAINT experiment are given in which
the mass transport limitation is clearly visible. Figure 3.9a shows the
dependency of the number of active targeting moieties per particle,
quantified by qPAINT, as a function of the ssDNA to particle ratio
present in solution during incubation (blue). The top x-axis indicates the
incubated ssDNA concentration and the y-axis the measured number of
ssDNA targeting moieties per particle. For an increasing ratio, a linearly
increasing number of targeting moieties per particle was observed
at low ssDNA concentrations. This linear relation is similar to the
linear relation presented in Figure 3.2a (gray dashed line). However, at
high ssDNA concentrations, the experimental data exhibit a deviating
behavior from this linear dependency; in this regime, the imager strand
concentration is in the low pM concentration range, and thus mass
transport limits the observed transient binding behavior.

In Figure 3.9b the experimentally determined number of targeting
moieties on a single particle and the characteristic diffusion time is
given as a function of imager strand concentration. On the left, two
samples, with an incubated ssDNA concentration of 333 nM (dark
blue) and 56 nM (light blue), were measured each with three imager
strand concentrations. Since no imager strand dependency exists, the
conditions of 7g4;; < T, is met at lower ssDNA concentrations. However,
on the right, the characteristic diffusion time is calculated as a function
of imager strand concentration. Since mass transport effects start to
appear at a ssDNA concentration of 667 nM (see Figure 3.9a), with
a corresponding imager concentration of 4 pM, the gray solid line
indicates the threshold below which the condition of T4 < T; is met.
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FIGURE 3.9: MASS TRANSPORT LIMITATION IN THE QUANTIFICATION OF THE NUMBER OF
TARGETING MOIETIES PER PARTICLE. (a) Number of targeting moieties (blue) as a function of the
ssDNA to particle ratio in solution. The saturation point (gray solid line) of (2.0 +0.2) - 10° targeting
moieties per particle is determined by a supernatant assay (see Supplementary note 3.6.3). The gray
dashed line indicates the linear relation between the number of targeting moieties per particle present
in solution and the number of observed targeting moieties presented in Figure 3.2a. The secondary
x-axis reveals the incubated ssDNA concentration. The errors indicated in the panel are the standard
deviations. (b) Left: two samples (333 nm and 56 nM ssDNA) which were measured thrice with a
different imager strand concentration. Right: calculated characteristic diffusion time as a function of
imager strand concentration. The gray line indicates the threshold above which mass transport effects
are visible in the quantitation of the number targeting moieties.

To solve this mass transport problem, only a fraction of the ssDNA
molecules on the particle (2.9% in this chapter) has a sequence com-
plementary to the used imager strand, which results in imager strand
concentrations of > 5 pM. The remainder of the ssDNA molecules
have a random, noncomplementary sequence with an equal length.
Therefore, the y-axis of Figure 3.2a shows the measured number of
ssDINA molecules after correcting from 2.9% to 100%.

3.6.2  DNA points accumulation in nanoscale topography

DNA-PAINT measurements

DNA points accumulation in nanoscale topography (DNA-PAINT) is
a fluorescence-based measurement technique from which the spatial
distribution of molecules on complexes or surfaces can be obtained.
Similar to qPAINT, the well-defined and controllable binding behavior
of dye-labeled imager strands to ssDNA docking strands is exploited.?
Hybridization of an imager strand to the ssDNA docking strand results
in a fluorescent signal, from which the super-resolved location can be
extracted using its diffraction-limited spot (see Figure 3.10). Therefore
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DNA-PAINT can be used to map the active targeting moieties on the
surface of nanomaterials.

FIGURE 3.10: MEASUREMENT PRINCI-
PLE OF DNA POINTS ACCUMULA- ! Y e -
TION IN NANOSCALE TOPOGRAPHY

(DNA-PAINT) TO MAP THE POSI- /
TIONS OF TARGETING MOIETIES ON

A SINGLE PARTICLE. Binding of dye- - -
labeled ssDNA image strands (red)

to ssDNA docking strands (green) \ j

yields an observable fluorescence sig- f - ~ TN
nal. Only the associated ssDNA im- / A\ VAR
ager strands close to the glass sub- T
strate yield a fluorescent signal due N Y R <y
to total internal reflection excitation, =~ - ~ -
causing an evanescent field (red gra-
dient). Since it concerns an isolated

emitter, its diffraction-limited spot can {
be fitted with a point-spread function,
from which the super-resolved posi- \ - -
tion of the emitter can be determined - 4
(black star).

\
\

\

3D DNA-PAINT measurements

In Figure 3.11, the results of a 3D DNA-PAINT measurement are
shown. Here an astigmatic lens was used in order to obtain the z-
position of the targeting moieties. Figure 3.11a shows the 3D positions
of the targeting moieties on a single particle; the shape of the lower
hemisphere of the particle can be distinguished. The z-coordinates span
from approximately 0-1200 nm which suggests that the whole particle
is imaged. However, the localization uncertainty in the z-direction is
large compared to the uncertainty in the xy-direction, thus the targeting
moiety positions were projected on the xy-plane in Figure 3.11b. From
panels a and b can be concluded that the localized targeting moieties
are mainly located on the lower hemisphere of the particle, and no
targeting moieties are found on the top hemisphere of the particle.
Therefore, it can be concluded that at least the lower hemisphere of the
silica particles is imaged in a DNA-PAINT experiment.

3.6.3 Supernatant assay

A supernatant assay with Atto655-biotin was performed to determine
the mean binding capacity per particle. Figure 3.12 shows the experi-
mental results of the supernatant assay from which the saturation point
was obtained as visualized in Figure 3.2a and Figure 3.9a. Figure 3.12a
shows the measured fluorescence intensity of the supernatant as a func-
tion of the initial Atto655-biotin concentration. For the calibration curve
where no NeutrAvidin-coated particles were incubated (blue dots) a
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FIGURE 3.11: TARGETING MOIETY POSITIONS IN A 3D DNA-PAINT MEASUREMENT. (a) 3D visualiza-
tion of the targeting moiety positions. The color is an indication for the height. (b) 2D projection of the
targeting moiety positions visualized in panel a. At the edge of the position cloud, the z-coordinates
of the positions are larger compared to the positions in the middle of the cloud. The color indicates
the z-coordinates, equal to panel a.

linear dependency was observed (blue dashed line). When the Atto655-
biotin solution was incubated with the NeutrAvidin-coated particles the
dependency was no longer linear, since Atto655-biotin can bind to the
NeutrAvidin complexes on the particles. By calculating the remaining
Atto655-biotin concentration in the supernatant using the measured
fluorescence intensity of the supernatant and the calibration curve, the
binding capacity could be calculated. In Figure 3.12b, the amount of
protein per particle and the binding capacity of a particle is given for
two samples (each measured twice). From an absorbance measurement
at 280 nm, the amount of absorbed protein on the particle surface was
determined to be (2.6 & 0.4) - 10° (mean =+ standard error, two samples
each measured twice). A binding capacity of (4.0 £0.3) - 10° (mean
=+ fitting errors, two samples) Atto655-biotin molecules per particle
follows from panel a. This results in (2.0 +0.2) - 10° targeting moieties
per hemisphere which was observed in qPAINT experiments. The pa-
rameter n indicates the number of accessible biotin-binding sites on
the NeutrAvidin molecules, determined by dividing the total binding
capacity by the number of protein complexes. This parameter was
found to be n = 1.5 £ 0.3 Atto655-biotin molecules per NeutrAvidin
complex.

Based on the supernatant assay, a saturation point is expected for
ssDNA concentrations higher than 6.3 uM. In the qPAINT data (see
Figure 3.2a), no saturation point was found. This absence of a satu-
ration point in the qPAINT measurement is probably caused by two
differences in experimental conditions between qPAINT and super-
natant assay experiments. Firstly, the supernatant assay uses an excess
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FIGURE 3.12: SUPERNATANT ASSAY TO DETERMINE THE BINDING CAPACITY OF NEUTRAVIDIN-
COATED PARTICLES. (a) Supernatant assay with Atto655-biotin to determine the mean binding
capacity per particle. The calibration curve (blue dots) shows a linear dependency (blue dashed line)
between the measured fluorescence intensity and the Atto655-biotin concentration. When NeutrAvidin-
functionalized particles were added to an Atto655-biotin solution (red), no linear dependency could
be observed, which shows that Atto655-biotin binds to NeutrAvidin. The black solid line indicates
the background signal and the dashed gray line y; + 303 (i.e., Limit of Detection, LoD) where
up is the background signal and ¢}, the standard deviation of the background signal. The arrow
on the x-axis indicates the binding capacity in the experiment. (b) The protein absorption using
absorption measurements was found to be (2.7 & 0.4) - 10° and (2.5 4+ 0.4) - 10° (mean + standard
error) NeutrAvidin complexes per particle for sample 1 and sample 2 respectively, and the binding
capacity that results from panel a was found to be (4.1 4 0.3) - 10° and (3.9 £0.3) - 10° Atto655-biotin
molecules per particle (mean = fitting errors) for sample 1 and sample 2 respectively. The mean
number of Atto655-biotin molecules per NeutrAvidin complex was found to be 1.5+ 0.3 and 1.6 0.3
for sample 1 and sample 2 respectively.

of Atto655-biotin to quantify the saturation point which precludes
depletion of Atto655-biotin. The association of Atto655-biotin to the
particle is therefore faster compared to the association of ssDNA to the
particle in the qPAINT experiment. Furthermore, Atto655-biotin is a
smaller and a less charged molecule compared to ssDNA, causing less
steric hindrance and charge repulsion on the particle surface respec-
tively. These differences both cause a slower association of ssDNA to
NeutrAvidin and thus a higher saturation point in qPAINT experiments
compared to the supernatant assay.

SUPERNATANT AssAYy: 5L NeutrAvidin-coated silica particles (1
wt.-%) were added to 195 pL PBS (130 mM NaCl, 7 mM Na,HPO,, 3
mM NaH,PO, at pH 7.4). The particles were centrifuged at 6000x g for
5 minutes using a tabletop spinner (Eppendorf MiniSpin) to clear the
supernatant. The supernatant was carefully removed and discarded.
100 puL Atto6s5-biotin (Sigma-Aldrich, > 95.0%) in PBS in the required
concentration was added to the particles and vortexed to redisperse



the particles. The particles were incubated with the Atto655-biotin for 3
hours on a rotating fin. Again, the particles were centrifuged at 6000x g
for 15 minutes to clear the supernatant. The supernatant was separated
from the particles and the fluorescence intensity was measured with a
plate reader (Fluoroskan Ascent) using a 384 well plate (Corning).

3.6.4 Size dispersion of silica particles

In Figure 3.13, the size dispersion of silica particles was determined
by scanning electron microscopy (SEM). A circle was fitted through
each particle outline. The area of this circle was used to calculate the
particle diameter and was found to be 0.97 £ 0.04 pm (mean =+ standard
deviation). The size dispersion was quantified with the coefficient of
variation (CV) of the particle diameter and was found to be CVj,e =
3.9 £0.5% (mean = fitting error).
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FIGURE 3.13: SIZE DISPERSION QUANTIFICATION OF SILICA PARTICLES USING SCANNING ELEC-
TRON MICROSCOPY (SEM). (a) Overview SEM image with multiple silica particles. Scale bar indicates
5 pm. (b) Magnified SEM image of individual particles. Scale bar indicates 2 pm. (c) Histogram of the
measured particle diameter. The mean diameter was found to be 0.97 £ 0.04 pm (mean + standard
deviation) which results in a coefficient of variation of 3.9 & 0.5% (mean = fitting error).

The size dispersion of silica particles is also estimated from DNA-
PAINT images (see Figure 3.14). In Figure 3.14a, all DNA-PAINT lo-
calizations are visualized for a single field-of-view in a DNA-PAINT
experiment where the particles are clearly visible as high-density lo-
calization clouds. The area of each localization cloud was determined
by a convex hull, from which the diameter was calculated, which was
found to be 1.09 £ 0.05 pm (mean =+ standard deviation). A CVg;,e of
4.9 +0.7% (mean = fitting error) was calculated, which largely matches
with the results presented in Figure 3.13c. The slightly larger diameter
can be explained by the additional NeutrAvidin layer, the localization
imprecision in DNA-PAINT measurements, and possible inclusion of
nonspecific events close to the particle.
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FIGURE 3.14: SIZE DISPERSION QUANTIFICATION OF SILICA PARTICLES USING DNA-PAINT
LOCALIZATIONS. (a) x- and y-coordinates of all DNA-PAINT localizations in a single measurement.
(b) The mean diameter of the localization cloud is assumed to represent the particle diameter
dparticle = 1.09 & 0.05 pm (mean =+ standard deviation) which results in a coefficient of variation of
4.9 £0.7% (mean = fitting error).

3.6.5 Clark-Evans test

The Clark-Evans (CE) test is used to compare the mean observed
nearest-neighbor (NN) distance between two targeting moiety positions
to the expected mean NN-distance based on the targeting moiety
density.*® Based on this test, the targeting moiety positions can be
significantly dispersed, where the mean NN-distance is larger than
expected (i.e., ordered positions), significantly clustered, where the
mean NN-distance is shorter than expected, or randomly positioned,
where the mean NN-distance is comparable to what is expected under
the complete spatial randomness (CSR) hypothesis. The CSR hypothesis
was tested using a standardized sample mean z,, which is a measure
for the degree of clustering (negative z;,) or dispersion (positive z):

_du—F

with d, = Ly™ . D; being the observed mean NN-distance of m
targeting moiety positions, ji = 21% the expected mean NN-distance

mﬁp?:r) the expected

variance of the NN-distance. In order to use this method to accept or
reject the CSR hypothesis, three requirements have to be met:

based on a targeting moiety density p and 0 =

1. The total number of DNA-PAINT localizations Nj, per particle
should be high enough to accurately accept or reject the CSR



hypothesis, i. e., the number of targeting moieties falsely classified
as clustered (false positives) should be low.

2. The number of reflexive nearest-neighbors and edge effects should
be minimized, to prevent including double nearest-neighbors and
to prevent increased nearest-neighbor distances respectively.

3. The chance that a binder is observed multiple times should be
minimized, i. e., mean number of localizations per binder A is low.

In Figure 3.15, the results of the optimization of the CE-method
have been visualized, where the aforementioned requirements are
considered. Random positions of targeting moieties were simulated
on a particle hemisphere for a total of 50 particles with N;, = 150,
m = 30 and 10% edge removal (see black arrows on x-axes). For panels
a and b, the number of targeting moiety locations per particle equals
the number of localizations per particle, i.e., no stochastic binding of
imager strand was simulated. However, for panel c, stochastic binding
was included.

Figure 3.15a shows the dependency of z,;, on the number of local-
izations per particle Ni. The error with which z,, can be calculated
depends on N due to statistics, since the error scales according to
o o Ny 2. In Figure 3.15b (top) the number of reflexive NNs is reduced
by taking 10% random subsamples of size m from all localizations and
calculate z,, for all subsamples; the mean z,, was reported as the z,
value of that particular particle. By increasing the subsample size m, z;,
shows no change in its mean value while the variance increases, where
the error of z,, scales with ¢, « /m. However, since the estimated
variance of the NN-distances scales with & o 1m0 (see Equation 3.5), a
balance has to be found between reducing the effect of reflexive neigh-
bors and a reasonable error of the estimated mean NN-distance. In
Figure 3.15b (bottom) the dependency of z;; on the edge localizations
removal is visualized. Here the x-axis resembles the percentage of the
z-coordinate span which is removed from analysis. Using this approach,
the highest z-coordinates (at the edge of the hemisphere) are removed
from analysis. By including all localizations, the z; value increases
since the mean NN-distance for localizations at the edge is larger, com-
pared to localizations in the middle of the hemisphere. By removing
10% of the edge, no bias was observed in the calculated z;, value. In
conclusion, a number of localizations N;, = 150 and subsample size
m = 30 yields approximately 0.1% false positives in rejecting the CSR
hypothesis (one-tailed test with « = 0.05).

In Figure 3.15¢ the stochastic sampling of the targeting moieties was
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simulated for nonclustered targeting moieties (blue), and 25% clus-
tered targeting moieties (red, equal to the 25% clustered simulation
in Figure 3.3b), where the calculated z,, value is given as a function
of the mean number of localizations per targeting moiety A. A can
be tuned by the imager strand concentration and the duration of the
measurement and was approximately equal for all ssDNA coverages
given in Figure 3.3c. The simulations for no clustering show induced
clustering by oversampling, since the targeting moieties could be ob-
served more than once in a DNA-PAINT experiment. It was found that
for 0.05 > A > 0.15 (shaded area) induced clustering is minimized,
while the difference between no clustering and clustering is observable.
Larger values for A would result in a percentage of targeting moieties
that are imaged more than once of > 1%.

a b C

2.0 e . B . . . .

oy

o 24 —e—Noclustering
4 A 4 —&— 25% clustering
151 6 051 LR N 0-{—{/{\}/ -
.“m. 0+ i—u rrrrrrrrrrrrrrrr
odemze] | p L <
102 10° 10*

J 1 '2
€ 05, N 10 10 <21 \§ { ]
N Subsample size m N \

102 10° 10* 10° 10" 10? 102 10" 10°
Number of localizations N, Edge removal (%) Mean number of localizations
per targeting moiety A

FIGURE 3.15: OPTIMIZING THE CE-TEST TO ACCEPT OR REJECT THE COMPLETE SPATIAL RAN-
DOMNESS (CSR) HYPOTHESIS. (a) Dependency of the z,, value and its error on the number of
localizations per particle Ni.. Np = 150 (black arrow) is chosen to accurately reject the CSR hypothesis
(one-tailed test with & = 0.05 — false positives ~0.1%). The following parameters were used: m = 30,
edge removal = 10%, R, = 500 nm, and no Poisson sampling process. The error of z,, is shown in
the inset which scales with the number of localizations according to ¢ & N /2 as would be expected
with Poisson statistics. (b) Top: the effect of reflexive NNs. Including reflexive NNs causes an increase
of the variance of the mean z,, value. Bottom: dependency of z,, on the edge localizations removal;
including particle probe positions at the edge increases the mean z,,. m = 150 and edge removal
= 10% (black arrows) were chosen required to accurately reject the CSR hypothesis (one-tailed test
with « = 0.05 — false positives ~0.1%). The following parameters were used: N, = 150, m = 30
(bottom) or edge removal = 10% (top), R, = 500 nm, and no Poisson sampling process. (c) Stochastic
sampling of the targeting moieties for nonclustered targeting moieties (blue), and 25% clustered
targeting moieties (red, see Figure 3.3b), with z,, as a function of the