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S U M M A RY

Studies on the dynamics of biological systems and biotechnological pro-
cesses require biomolecular sensors that can reveal time-dependencies
of concentrations of specific biomolecules. Such sensors are important
for fundamental research on biological dynamics, for the development
of patient monitoring strategies, and for the development of closed loop
control strategies. However, the applicability of such sensors depends
on their analytical performance, e. g., sensitivity, molecular specificity,
and degree of parallelization. Single-molecule techniques proved to be
impactful for increasing the performance of bioanalytical methods, but
in the upcoming field of sensors for continuous biomolecular monitor-
ing the advantages are yet to be discovered. This thesis explores the
opportunities of sensors for continuous biomolecular monitoring with
a single-molecule resolution and quantifies potential enhancements
enabled by single-molecule techniques.

Firstly, in Chapter 1, an introduction is given to the field of sensors
for continuous biomolecular monitoring and state-of-the-art single-
molecule approaches. Here we specifically focus on how single-molecule
approaches can be used to enhance the performance of biomolecular
recognition strategies.

In Chapter 2 we demonstrate a new multiplexing method by means
of single-molecule kinetic identification of single particles. Here, multi-
plexing is enabled by an analyte-sensitive, single-molecular nanoswitch
with a particle as a reporter. We demonstrate by experiments and sim-
ulations, using biosensing by particle mobility (BPM) as an example
monitoring technique, multiplexed continuous monitoring of oligonu-
cleotides at picomolar concentrations.

In Chapter 3 we present a framework to study the influence of het-
erogeneities, focused on particle-based sensing applications. Using
single-molecule techniques (DNA-PAINT, qPAINT and BPM), the vari-
ability in particle reactivity is quantified by counting and spatially
mapping individual binder molecules on particles, and by measuring
the resulting reactivity of single particles. By combining experimental
results and simulations, the influence of various heterogeneities and
the collective effect of all heterogeneities on the reactivity of particles is
studied as a function of system parameters, such as particle interaction
area, targeting moiety density, particle size and number of particles.

v



In Chapter 4 we present a sensing methodology that enables rapid
monitoring of low-concentration biomolecules. We demonstrate using
simulations and experiments that this sensing methodology is suitable
for monitoring picomolar and sub-picomolar concentrations, for mea-
surement intervals of a few minutes, and in principle for sensing over
an endless time span.

In Chapter 5 we investigate continuous biomolecular analyte ex-
change between a dynamic system of interest and the measurement
chamber of a sensor. For this, we simulate mass transport and surface
reactions, where an oscillating concentration-time profile is used as
input. Subsequently, we quantify the time lag of the measured con-
centration and the sensitivity of the sensor as a function of system
parameters, such as measurement chamber geometry and flow rate.
This enables researchers to rationally design a biomolecular monitoring
system with a desired sensor performance for specific applications.

Lastly, Chapter 6 discusses the main findings in this thesis and
sketches the outlines of further research in the field of continuous mon-
itoring applications and the added value of single-molecule techniques
to enhance the performance of sensors for continuous biomolecular
monitoring.
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1I N T R O D U C T I O N

The goal of this thesis is to investigate bioanalytical functionalities that
can be achieved with continuous affinity-based biomolecular sensors
using single-molecule resolution. This chapter describes a general intro-
duction into the field of biosensors, with particular focus on biosensors
for continuous monitoring. Subsequently, a short overview is given of
the development of bioanalytical single-molecule techniques and how
these techniques are used in the field of biosensing. Then, we focus on
the promises of continuous monitoring biosensors with single-molecule
resolution by comparing the theoretical limits for biosensor sensitivity
with an ensemble read out versus a single-molecule read out. Finally,
the main research question and the outline of the thesis are given.
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2 introduction

1.1 state-of-the-art biosensors

Biosensors are compact devices that are used to quantify the concen-
tration of a chemical substance of interest, referred to as biomarker,
analyte, or target molecule. Figure 1.1 shows three components of
a generic biosensor design: (1) receptors, also referred to as binder
molecules, capture molecules, probes, or targeting moieties; (2) a trans-
duction method; and (3) signal processing and concentration display.1–5

The very heart of a biosensor is formed by a bioanalytical assay to recog-
nize the biomarker molecules using the receptors that bind specifically
to these biomarker molecules, forming biomarker-receptor complexes.
A biosensor integrates this recognition reaction between the biomarker
molecule and the receptor via a transduction method to a signal that
relates to the biomarker concentration in the sample.

19±1 nM

Enzymes

Antibodies

Aptamers

Cells

Biomarker

molecules
Receptors

Transduction

method

Signal processing and

concentration display

Mechanochemical

Optical

Electrochemical S
ig

n
a

l

Concentration
Colorimetric

Figure 1.1: schematic overview of a generic biosensor design. Biomarker molecules are
recognized using (biological) receptors. Subsequently, the formed biomarker-receptor complexes are
detected via a transduction method. The measured signal is converted via a predetermined calibration
curve into a biomarker concentration which reflects the biomarker concentration present in the
analyzed sample.

1.1.1 Rapid biosensors

Laboratory-based in vitro tests are the prevailing methods for biomarker
concentration quantification. These tests require transportation of sam-
ples to a laboratory and as a consequence the test results are not directly
available. For example in health care applications, due to the demand
for more effective and efficient patient care, faster and easy-to-use
diagnostic methods are being developed.6–12 These rapid biosensors
for health care are known as point-of-care (POC) biosensors, which
are handheld devices that test at or near the site of the patient, to
facilitate immediate and well-considered decisions improving patient
outcomes. Currently developed POC biosensors are able to measure the
concentration of various biomarkers such as glucose, CRP, and cardiac
troponin.10–14
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1.1.2 Continuous biomolecular monitoring

When a biosensor is able to measure a biomarker concentration contin-
uously, the applicability of biosensors expands even further. Especially
for rapidly fluctuating biomarker concentrations, small changes in
trends become useful parameters, when concentration information is
available on a continuous basis.15–20 An example in health care of such
a biosensor is the continuous glucose biosensor, which can be worn
in or on the skin, or can be connected to a catheter.21,22 The sensor
records how the glucose concentration fluctuates over time in order to
provide optimal treatment for the patient. Commercial biosensors are
currently available for glucose and lactate21–23 and research is ongoing
for the monitoring of for example antibiotics.24 These biomarkers are
present in relatively high concentrations (millimolar and micromolar)
and therefore these studies mainly focus on electrochemical detection
methods. For biomarkers with lower concentrations, more sensitive
and more specific sensing methods have to be developed. In the search
for highly sensitive and highly specific transduction methods suitable
for continuous biomolecular monitoring, the field of single-molecule
biophysics forms a source of inspiration.

1.2 combining single-molecule techniques and biosens-
ing

1.2.1 Single-molecule techniques

In the early 90’s of the last century, in the research field of biophysics
the first single-molecule measurements were developed, based on
absorption25 and fluorescence.26 These methods enabled researchers
to reveal phenomena that were previously concealed in traditional
ensemble-based methods, as these record averages over many molecules.
Single-molecule fluorescence measurement techniques27–29 are nowa-
days part of the standard research arsenal in biochemical and biophysi-
cal laboratories. Other single-molecule measurement methods30 are for
instance force-based techniques, such as tethered particle motion,31–33

magnetic and optical tweezers,34–36 and single-molecule atomic force
microscopy,37 which are primarily applied for studies of enzyme activ-
ity, DNA interactions, and DNA properties.

1.2.2 Single-molecule detection in endpoint assays

Single-molecule biophysical techniques penetrated into the field of
biosensing for achieving high sensitivities. Here, sensitivity is defined
as the signal change for a given concentration change, where a high
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sensitivity refers to a biosensor in which a small concentration change
results in a large signal change. Biosensors with a high sensitivity are
therefore able to quantify low biomarker concentrations with a high pre-
cision. A high sensitivity is important for many applications,17,18 e. g.,
the measurement of inflammatory markers.38–40 The majority of the
approaches described in literature to increase the sensitivity of a biosen-
sor assay are focused on reducing the background of the signal41,42

or changing assay components and formats.43 Single-molecule detec-
tion poses the ability to count individual molecules and therefore get
digital read out signals. In principle, discrete counting of molecules
results in an infinitely high precision of the actual number of counted
molecules; the sensitivity of the biosensor itself is then only determined
by counting statistics.

Figure 1.2 shows two examples of endpoint assays with single-
molecule detection: single-molecule arrays (Simoa®, commercialized by
Quanterix)44 and single-molecule counting (SMCTM, commercialized
by Singulex).45,46 Figure 1.2a shows a general sandwich type assay us-
ing micrometer-sized particles. These particles are functionalized with
capture molecules, such as antibodies or aptamers, which are able to
specifically bind to the biomarker molecule of interest. Upon binding of
the biomarker molecule from the bulk solution to the capture molecule
on the particle, biomarker-capture molecule complexes are formed.
Subsequently, these complexes are detected using labeled detection
molecules, by forming sandwich complexes.

Figure 1.2b schematically shows a single-molecule biosensing tech-
nique using Simoa®, illustrated for a sandwich assay. The particle
concentration during incubation is chosen in such a way that the ma-
jority of the particles do not bind a biomarker molecule from solution,
and that only a few percent of the particles capture a single or more
biomarker molecules following a Poisson distribution. This method
provides the opportunity to achieve both a small, micrometer-sized
(~fL) detection space in which a single particle can be isolated and
subsequently observed, as well as a high degree of parallelization
(~50, 000 particles in a single concentration determination). Therefore,
the presence of a luminescence signal per well corresponds to a single
particle that captured a biomarker molecule. If the number of particles
with a single biomarker molecule is much larger than the number of
particles with two or more biomarker molecules, the number of parti-
cles that show a luminescence signal scales directly with the biomarker
concentration.

Figure 1.2c schematically shows a single-molecule biosensing tech-
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Figure 1.2: single-molecule biosensing methods for biomolecular concentration

quantification with a high sensitivity. (a) General sandwich type assay on micrometer-
sized particles which are functionalized with capture molecules. The particles are incubated with
the biomarker of interest, which results in biomarker-capture molecule complexes on the particles.
Since an excess of particles is used, the equilibrium is towards the biomarker-capture molecule
complexes. Subsequently, sandwich complexes are formed by adding labeled detection molecules
specific for the biomarker of interest. (b) Single-molecule array (Simoa®) technology used to read
out the luminescence signal of the detection molecules. The probability that a particle contains zero,
one, or more sandwich complexes, follows a Poisson distribution. The signal is proportional to the
biomarker concentration when the average number of sandwich complexes per particle is low. By
loading the particles into micrometer-sized (~fL) wells, the luminescence signal of a single particle
can be measured as a digital "on" and "off" signal. Due to the fact that a femtoliter detection space and
a high degree of parallelization (~50, 000 particles) are possible, a concentration quantification with a
limit of detection down to ~1 fg mL-1 for various markers could be reached.47 Panel adapted from
Rissin et al.44 (c) Single-molecule counting (SMCTM) technology used to read out a fluorescence signal
of the detection molecules. The formed sandwich complex on the particle is eluted after which the
eluate, containing the detection molecules and biomarker molecules, is separated from the particles.
Subsequently, the eluate is analyzed using a confocal laser beam with an excitation volume of roughly
5 µm (~fL).48 To obtain high counting statistics, a static confocal laser beam and capillary flow, or a
scanning confocal laser beam is used. The fluorescence signal of a detection molecule passing through
the excitation volume measured using an avalanche photodiode (APD), results in a sharp peak in the
APD signal. Due to the small excitation volume and the fast sequential measurements, a concentration
quantification with a limit of detection down to ~10 fg mL-1 for various markers could be reached.47

nique using SMCTM, again illustrated for a sandwich assay. After
eluting the detection molecules from the sandwich complexes formed
on the particle, single detection molecules are observed using a focused
laser beam in combination with an avalanche photodiode (APD) detec-
tor. The passing of detection molecules through the excitation volume
of the focused laser beam results in sharp peaks in the APD signal. To
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achieve subdiffusional times before a detection molecule is observed, a
capillary flow45,46 or a scanning confocal laser beam48 is used.

1.2.3 Continuous biomolecular monitoring with single-molecule resolution

A continuous biomolecular monitoring method with single-molecule
resolution, developed at Eindhoven University of Technology, is biosens-
ing by particle mobility (BPM).49–51 In Figure 1.3, the sensing principle
is schematically visualized. In a BPM assay, the particles are tethered
to a surface by a flexible molecular tether, causing every particle to
move due to thermal motion within a confined space which is restricted
by the tether. The sensing capability of the particles is derived from
binder molecules on the particle (cf. Figure 1.2a, capture molecules)
and multiple binder molecules on the planar substrate (cf. Figure 1.2a,
detection molecules), see Figure 1.3a,49,50 or a single binder molecule
on the molecular tether (not shown here).51 Biomarker molecules in
solution can bind to the particle binder molecules and subsequently
to the substrate binder molecules. When such a compact molecular
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Figure 1.3: molecular design and measurement principle of biosensing by particle

mobility (bpm). (a) Micrometer-sized particles (gray) are tethered to a substrate using a flexible
molecular tether (black). The particle is functionalized with particle binder molecules (black lines)
and multiple substrate binder molecules (gray lines) on the planar surface. Both particle binder and
substrate binder molecules can reversibly bind to single biomarker molecules (orange) present in
solution. Biomarker molecules binding to the binder molecules on the particle and subsequently
binding and unbinding to the binder molecules on the substrate cause the particle to exhibit either of
two concentric Brownian motion patterns, corresponding to the unbound state (high mobility) and
bound state (low mobility). (b) Digital binding and unbinding events are identified by following the
mobility of the hundreds of particles over time and subsequently used for concentration determination.
For a high or low target concentration in solution, the microparticle shows a high or a low switching
frequency respectively.
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sandwich complex is formed (cf. Figure 1.2a, sandwich complex), the
motion of the particle is strongly restricted. The molecular interac-
tions between the particle binder molecule, biomarker molecule, and
the substrate binder molecule are designed to be reversible, causing
unbound and bound particle states to be observed over time. In the
particular design visualized in Figure 1.3a, for a high biomarker con-
centration, the mean unbound state lifetime of a particle decreases
when the number of captured biomarker molecules on the particle
increases, see Figure 1.3b. Therefore, the average switching frequency
of particles between unbound and bound states increases with an in-
creasing biomarker concentration. For a low biomarker concentration,
the number of biomarker molecules bound to the particle is small,
resulting in a low switching frequency.

Figure 1.4 shows a matrix scheme that illustrates the developments
in the field of biosensing. The scheme highlights the development
toward single-molecule resolution on the x-axis (to achieve a higher
sensitivity) and developments toward continuous monitoring on the
y-axis (to obtain real time insight). The BPM technology is being de-
veloped to realize the monitoring functionality for biomolecules at low
concentrations (orange arrow).
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Figure 1.4: conceptual

overview of the devel-
opments in the field of

biosensing . With in vitro
diagnostics and POC testing
as starting points, continuous
monitoring biosensors are
being developed (vertical gray
arrow) as well as biosensing
systems with single-molecule
resolution for measuring
biomarkers at low concentra-
tions (horizontal gray arrow).
The BPM technology is being
developed to realize both as-
pects: continuous monitoring
functionality with single-
molecule resolution, for the
monitoring of biomolecules
at low concentrations (orange
arrow).
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1.3 challenges in concentration determination using

single-molecule quantitation

Applying single-molecule techniques to biosensing, poses three main
challenges which have to be overcome to be able to quantify biomarker
concentrations accurately and precisely. These challenges are dictated
by (1) the biomarker concentration, (2) diffusion of the biomarker mol-
ecule, and (3) by the free-energy landscape of the biomarker molecule
with its corresponding receptor molecule.

First, the detection volume needs to be small enough so that single
molecules can be detected reliably. This is achieved by reducing the
detection space (cf. Figure 1.2), e. g., by using small detection volumes
(compartmentalization)44–46 or surfaces (surface immobilization).52,53

Second, molecules need to travel into the detection volume, which
takes time. At low concentrations, the intermolecular distance is so
large that the typical diffusion time from one molecule to the other is
long. This diffusion time results in prolonged times before molecules of
interest diffuse into the detection volume where detection is possible.
Example calculations to quantify this challenge using a typical diffusion
time52,54 are given in Figure 1.5, assuming a protein molecule with a
molecular weight of 50 kDa and a corresponding diffusion coefficient
D = 10−10 m2 s-1, detected in a detection volume of 1 fL, i. e., 1 µm3

(note that a molecular binding process is not included in these calcula-
tions). With these conditions, concentrations of a femtomolar and lower
result in a typical diffusion time of several minutes before a single
molecule enters the detection volume, and thus resulting in a long
assay time. Besides this long assay time, the occurrence of stochastic
events itself form an intrinsic problem for single-molecule quantitation:
first, the number of sampled molecules in the detection volume should
reflect the concentration in the bulk, and second, the precision of the
concentration determination needs to be high. To achieve both, enough
molecules have to be detected in order to accurately and precisely
determine the bulk concentration. Solutions to detect many molecules
within a short period of time are a high degree of parallelization (cf.
Figure 1.2b and Figure 1.3)44,49–51 or decreasing the time for a molecule
to enter the detection volume and therefore enabling fast sequential
measurements (cf. Figure 1.2c).45,46,48

Third, the binding of biomarkers to specific receptors requires time,
determined by kinetic and thermodynamic properties of the molecules.
Here, reaction mechanisms of association and dissociation of molecules
determine the response time of the signals. Binder molecules, such as
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Figure 1.5: challenges in

single-molecule biosens-
ing . Top: biomarker concentra-
tion (orange gradient) and the
number of molecules for a detec-
tion volume of 1 fL. Bottom: typi-
cal diffusion time (gray gradient)
for molecules to enter the detec-
tion volume, assuming a protein
of 50 kDa with a diffusion coeffi-
cient D = 10−10 m2 s-1.

antibodies, can have equilibrium dissociation constants down to a few
picomolar resulting in slow reaction kinetics at low concentrations.55,56

Here, the kinetic properties and concentrations of biomarkers and
binder molecules need to be taken into account in order to determine
the time-dependence of the observed signals.

1.4 biosensor sensitivity : ensemble versus single-mole-
cule read out

In this section, we want to address the question how the sensitivity
of a biomolecular assay is improved using a single-molecule read out
compared to an ensemble read out. Assume a particle-based assay
where each particle has roughly 105 binder molecules that are specific
for the biomarker of interest, hereafter referred to as analyte, and where
104 particles generate the observed signal. In case of first-order affinity
binding under equilibrium conditions and infinite supply of analyte
molecules, the fraction f a

b of binder molecules that captured an analyte
molecule can be calculated by:

f a
b =

Ca,0

Ca,0 + Kd
(1.1)

with Ca,0 being the analyte concentration and Kd the equilibrium disso-
ciation constant. We assume that the observed signal S scales directly
with f a

b (i. e., we can directly observe the analyte-binder complexes),
which yields the dose-response curve described by:

S = Sbg + (1 − Sbg)
Ca,0

Ca,0 + Kd
(1.2)
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with Sbg being the background signal. Figure 1.6 shows how the shape
of the dose-response curve, described by Equation 1.2, and the error
of the measured signal influence the precision of the concentration
determination. In Figure 1.6a, two dose-response curves are given
for an assay without any background (orange solid line) and with
10% background signal (orange dashed line). The background signal
changes the slope of the dose-response curve in particular at low
concentrations (see inset). The error of the observed signal σS can be
calculated by including a stochastic error σstoch due to the discrete
nature of binder and analyte molecules, a background error σbg, and an
error σother that is caused by other sources of variability than stochastics
and the background signal:

σ2
S = σ2

stoch + σ2
bg + σ2

other (1.3)

The background error σbg can be measured directly and is used in
the definition of the limit of detection (LoD, gray dashed line) which is
the concentration at which the signal is equal to Sbg + 3σbg. The error
σother can be estimated based on heterogeneities in the measurement
system, such as heterogeneity in particle size, i. e., σother = S · CVother
where CVother is the coefficient of variation of the heterogeneity present
in the assay, e. g., heterogeneity in particle size. The stochastic error
σstoch can be calculated using the number of binder molecules that have
captured an analyte molecule:

σstoch =
1√

f b
a AsΓb

=
1√

f b
a NpNparticle

b

(1.4)

with As being the sensor area over which the signal is collected, Γb is
the total binder density, Np the number of observed particles, Nparticle

b
the number of binder molecules per particle. To determine how pre-
cise a concentration determination is, the concentration error σC needs
to be calculated by projecting the signal error σS that results from
Equation 1.3 on the dose-response curve, using the slope of the dose-
response curve (see Figure 1.6b). In the absence of background, this
slope is approximately linear at low concentrations, while this slope
becomes sublinear at high concentrations, resulting in increased con-
centration errors.

In Figure 1.7 the influence of the error contributors, as defined
in Equations 1.3 and 1.4, on the coefficient of variation CVC of the
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Figure 1.6: propagation of an error of the signal to a precision of the concentra-
tion determination. (a) Dose-response curves with the normalized signal S as a function of
analyte concentration Ca,0, in case of equilibrium conditions and infinite supply of analyte molecules,
in absence of any background (solid orange line) or with a 10% background signal Sbg (dashed
orange line). The inset shows the same data on a logarithmic-logarithmic scale. A background signal
Sbg (dashed black line) changes the slope of the dose-response curve at low analyte concentrations
while the background error σbg induces an imprecision in the slope of the dose-response curve. The
limit of detection (LoD, dashed gray line) is defined as Sbg + 3σbg . (b) Estimating the concentration
error σC using the signal error σS and the slope of the dose-response curve. At low concentrations,
the slope of the dose-response curve is approximately linear (in absence of background signal). At
high concentrations, the slope of the dose-response curve is sublinear which results in an increased
concentration error σC .

concentration, as a measure of precision, defined as CVC = σC/Ca,0, is
shown. The CVC is given as a function of the analyte concentration Ca,0
for a background signal Sbg (left), a corresponding background error
σbg (middle) and error σother (right). Here the limit of quantification
(LoQ, black dashed line) is given, which is the concentration where the
concentration determination has a precision of 10%.

Under the assumption that we can determine any background signal
infinitely precise, the presence of this background signal induces an
increased concentration error σC (see left graph) by a change of the
shape of the dose-response curve (cf. Figure 1.6a). This results in a
decreased precision of the concentration determination in particular at
low concentrations (i. e., an increased CVC), since here the signal has to
be distinguished from a relatively high background signal. In contrast,
at high concentrations, the majority of the observed signal is generated
by the analyte-binder complexes and thus the precision is not limited
by the background signal.

Let us now assume that the background signal has an error σbg of
1% (i. e., σbg = Sbg/100). Since the shape of the dose-response curve
is based on the measured background signal, the precision of this
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background measurement has a large influence on the precision over
the full concentration range (see middle graph). The background error
has a slightly larger influence on the precision at low concentrations
since here the influence of the background itself is larger (cf. left graph).

Lastly, other sources of variabilities present in the system result
in additional variations in the concentration determination. Here, we
assume an error σother of 1% (i. e., σother = Sbg/100). This total error
σother caused by these sources of variability, mostly influences the
higher concentration determinations, since the signal is high and the
contributions of the stochastic and background errors are relatively
small, i. e., σother ≫ σstoch, σbg (see right graph).
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Figure 1.7: influence of error contributors on the precision of a concentration

determination. Left: influence of background signal on the precision of a concentration determi-
nation in the absence of background (orange solid line) and with 10% background signal (orange
dashed line). Middle: influence of background error on the precision of a concentration determination
for no error (orange solid line) and 1% error (orange dashed line). Right: influence of the error caused
by other sources of variability for no error (orange solid line) and 1% error (orange dashed line).

Now we can address the question how the precision of a concentra-
tion determination depends on the level of read out of a particle-based
affinity assay. In Figure 1.8, three read out modes are sketched. First,
an ensemble read out mode where the observed signal is generated by
a large number of particles. Second, a single-particle read out mode
where the observed signal is distinguished per particle. Third, a single-
molecule read out mode, where the observed signal is distinguished
per molecule resulting in digital quantitation. For the ensemble read
out mode, the corresponding dose-response curve is equal to the curve
given in Figure 1.6a and Equation 1.1. At low concentrations, the pre-
cision is mainly determined by the background signal, while at high
concentrations the precision is mainly determined by saturation of the
binders. For a single-particle read out where the observed signal is
distinguished per particle, the detection sensitivity needs to be higher
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compared to the ensemble read out mode. The concentration precision
at high concentrations is determined by either saturation of the binders,
or signal saturation of the reader and/or transduction method. Here,
an EC50, i. e., the concentration at which the signal is 50%, was assumed
to be 1% of the Kd, effectively shifting the dose-response curve to lower
concentrations. For a single-molecule read out, we assumed that the
observed signal is the fraction of particles that show a signal (e. g., a
luminescence or fluorescence signal, cf. Figure 1.2). At low concentra-
tions the precision of the concentration determination is determined
by the number of observed molecules (i. e., the precision is limited by
stochastics), while at high concentrations the precision is determined
by saturation since no distinction between one, two, three molecules
can be made. The shift of the dose-response curve in the direction of
the negative x-axis depends on the number of particles and the number
of binder molecules per particle.
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Figure 1.8: three read out modes of a biomolecular particle-based affinity assay

with their corresponding dose-response curve . Left: ensemble read out mode yields a
dose-response curve which is located around the Kd value. Middle: single-particle read out mode
results in an EC50 which can be several orders of magnitude lower than the Kd value of the binders on
the particle. Right: single-molecule read out yields a high precision at the lowest concentration since
the signal generated by single-molecules can be distinguished, resulting in digital quantitation. The
EC50 with respect to the Kd value depends on the number of observed particles and the number of
binder molecules per particle. Here the number of particles Np = 104 and number of binder molecules
per particle Nb = 105.

Figures 1.6-1.8 show quantitatively with simple calculations the po-
tential increase in sensitivity by designing an assay with a single-
particle or single-molecule read out mode instead of an ensemble read
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out mode. The precision of the assay can be increased, where an EC50 of
more than five orders of magnitude below the Kd value can be achieved.
Besides, assays with multiple read out modes, such as Simoa®,44 have
the potential of using these multiple read out modes to increase the
dynamic concentration range over which concentration determinations
with a high precision can be performed. For both advantages, the key
challenge in assay development is to design an assay which yields a
highly precise signal generated by only a limited number of analyte-
binder complexes, using specific chemistries and efficient receptor
molecules and transduction methods.

1.5 outline of the thesis

The goal of this thesis is to study analytical functionalities that can
be achieved in continuous biomolecular sensing with single-molecule
resolution. The thesis focuses on two main topics. First, Chapters 2 and
3 describe new applications of single-molecule information within the
field of biosensing. It has been shown that a single-molecule resolution
can be used to enable multiplexing functionalities and to quantify het-
erogeneities and their consequences. Second, Chapters 4 and 5 focus
on the speed, sensitivity and precision functionalities of continuous
biomolecular monitoring sensors in the limit of single-molecule resolu-
tion.

In Chapter 2 we demonstrate a new application of single-molecule
detection in continuous monitoring, namely multiplexing by means of
single-molecule kinetic identification of single particles. Here, multi-
plexing is enabled by an analyte-sensitive, single-molecular nanoswitch
with a particle as a reporter. We demonstrate by experiments and simu-
lations, using BPM as an example, multiplexed continuous monitoring
of oligonucleotides at picomolar concentrations.

In Chapter 3 we present a framework to study the influence of het-
erogeneities, focused on particle-based biosensing applications. Using
single-molecule techniques (DNA-PAINT, qPAINT and BPM), the un-
derlying distributions in particle reactivity are quantified by counting
and spatially mapping individual binder molecules on particles, and
by measuring the resulting reactivity of single particles. By combining
experimental results and simulations, the influence of various hetero-
geneities and the collective effect of all heterogeneities on the reactivity
of particles is studied as a function of biosensor system parameters,
such as particle interaction area, binder molecule density, particle size
and number of particles.
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In Chapter 4 we present a sensing methodology that enables rapid
monitoring of low-concentration biomolecules. We demonstrate using
simulations and experiments that this sensing methodology is suitable
for monitoring picomolar and sub-picomolar concentrations, with mea-
surement intervals of a few minutes, and in principle for sensing over
an endless time span, where continuous monitoring biosensors with
a single-molecule resolution are advantageous for obtaining a high
sensitivity.

In Chapter 5 we investigate continuous biomolecular analyte ex-
change between a dynamic system of interest and the measurement
chamber of a biosensor. For this, we simulate mass transport and sur-
face reactions, where an oscillating concentration-time profile is used
as input. Subsequently we quantify the time lag of the measured con-
centration and the precision of the biosensor as a function of system
parameters, such as measurement chamber geometries and flow rates.
This enables researchers to rationally design a biomolecular monitoring
system with a desired biosensor performance for specific applications
such as monitoring low-concentration biomarkers.

Lastly, Chapter 6 summarizes the main findings in this thesis and
sketches the outlines of further research in the field of continuous mon-
itoring applications and the added value of single-molecule techniques
to enhance sensing performance.
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abstract : Single-molecule techniques have become impactful in the
bioanalytical sciences, though the advantages for continuous biosens-
ing are yet to be discovered. In this chapter, we present a multiplexed,
continuous biosensing method, enabled by an analyte-sensitive, single-
molecular nanoswitch with a particle as a reporter. The nanoswitch
opens and closes under the influence of single target molecules. This
reversible switching yields binary transitions between two highly repro-
ducible states, enabling reliable quantification of the single-molecule
kinetics. The multiplexing functionality is encoded per particle via the
dissociation characteristics of the nanoswitch, while the target concen-
tration is revealed by the association characteristics. We demonstrate by
experiments and simulations the multiplexed, continuous monitoring
of oligonucleotide targets, at picomolar concentrations in buffer and in
filtered human blood plasma.

Parts of this chapter have been published as: Lubken, R. M. et al. Multiplexed Continuous Biosensing
by Single-Molecule Encoded Nanoswitches. Nano Letters 4, 2296–2302 (2020).
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2.1 introduction

Single-molecule techniques have become impactful in the bioanalytical
sciences because of their high detection sensitivity and digital quan-
titation.1–3 However, in the upcoming field of sensors for continuous
biomolecular monitoring,4–8 the advantages of single-molecule method-
ologies are yet to be discovered. Multiplexing refers in the bioanalysis
to the ability to measure multiple specific molecules in parallel. This
is used to obtain comprehensive knowledge about biological systems
and optimal diagnostic power in medical applications. Well-known
methods for multiplexing are, for example, bead arrays,9,10 real time
PCR,11 and DNA microarrays.12 Here, samples are processed with mix-
tures of reagents and thereafter analyte-specific signals are measured
in separate spectral channels or distinct positions. Such reagent-based
multiplexing assays involve taking distinct samples and passing these
through sequential processing steps. However, an ideal multiplexing
methodology for real time monitoring does not require reagents nor
complicated sample processing. Such a methodology would allow the
generation of a continuous and uninterrupted stream of measurement
data, over a prolonged period of time, in a simple and cost-effective
manner.

In this chapter, we describe a novel methodology to achieve reagent-
less, multiplexed, continuous biomolecular sensing by single-molecule
encoded binary nanoswitches. The molecular design and measurement
principle are sketched in Figure 2.1, exemplified with a DNA model sys-
tem. Figure 2.1a shows a micrometer-sized particle bound to a substrate
by a single nanoswitch. The nanoswitch comprises three components:
(1) a single double-stranded DNA (dsDNA) stem tethering the particle
to the substrate; (2) a single probe attached to the dsDNA stem; and
(3) multiple probes attached to the particle surface. The probe on the
stem binds reversibly to target molecules that are captured from so-
lution by the probes on the particle. The probe on the stem encodes
the nanoswitch, because the interaction between this stem probe and
the target molecules is designed to have a characteristic dissociation
rate, which is the basis of the multiplexing functionality. In previous
work, we studied sensor designs with less controlled numbers and
orientations of probes on the substrate,13 giving variable responses
within and between particles. In the nanoswitch design of Figure 2.1,
every particle has only a single probe, in a well-defined orientation
on the central stem. Combined with the smooth spherical particle,
unambiguous concentric Brownian motion patterns are obtained (see
Figure 2.1b).
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Figure 2.1: sensor concept with a single-molecule encoded binary nanoswitch . (a)
Micrometer-sized particles (yellow) are tethered to a substrate using a 56 nm dsDNA stem (black).
The particle is functionalized with particle probes of type i (dark green) and a single stem probe of
type i (green). Both probes bind reversibly to a single target molecule of type i (light green) present
in solution. The inset shows schematically the DNA-based nanoswitch conjugated to the particle by a
NeutrAvidin–biotin interaction and to the substrate by an antibody–antigen (digoxigenin) interaction.
A detailed overview of the DNA sequences is given in Supplementary note 2.5.1. (b) Target molecule
binding to the nanoswitch causes the particle to exhibit either of two concentric motion patterns
corresponding to the unbound (high mobility) and bound state (low mobility).

The Brownian motion patterns translate into time traces with bi-
nary transitions, from which unbound and bound state lifetimes, and
therefore association and dissociation kinetic rates, are extracted at
the single-particle level. The dissociation kinetics of each particle are
a unique signature that identifies to which kinetic subpopulation the
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particle belongs (index i or j, see Figure 2.2a). Hundreds of particles
are measured simultaneously, each kinetically identified, and assigned
to their specific subpopulation. In each subpopulation, the association
rates are continuously measured. The effective association rate depends
on the amount of target molecules captured on the particle. Thus, by
using a differently kinetic encoded nanoswitch per particle subpopu-
lation, the concentration of multiple specific analyte molecules can be
recorded over time simultaneously (see Figure 2.2b).
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Figure 2.2: kinetic identification for multiplexed continuous biomolecular moni-
toring . (a) Radial position of a particle over time shows binary transitions caused by single-molecule
binding and unbinding events. The distribution of observed bound state lifetimes per particle can
be used to distinguish between, e. g., low-affinity (particles i, blue) and high-affinity (particles j, red)
target-specific particle subpopulations, referred to as kinetic identification. Examples of raw data
traces are shown in Supplementary note 2.5.2. (b) Hundreds of particles, each functionalized with
an encoded binary nanoswitch, are observed simultaneously. By kinetic identification based on the
dissociation kinetics, each particle can be assigned to a target-specific particle subpopulation. For
each particle subpopulation, the respective target concentration can be determined over time using
the measured association kinetics.

2.2 results and discussion

Figure 2.3 illustrates the analytical performance and tunability of the
stem probe sensor of Figure 2.1a. Figures 2.3a,b show the association
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and dissociation rates measured in both buffer (a) and filtered blood
plasma (b) for a single-stranded DNA target with a mid affinity to
the particle probe. The mean bound state lifetime τB (red), determined
by fitting all observed bound state lifetimes by a single-exponential
distribution (see Supplementary note 2.5.3), is independent of the target
concentration and of the matrix, which is the basis for the kinetic en-
coding strategy. In contrast, the mean unbound state lifetime τU shows
a clear concentration dependency (blue); an increasing target concen-
tration in solution results in a shorter τU as more target molecules are
bound to the particle and therefore accessible for hybridization to the
stem probe. In contrast to the dissociation kinetics, the association kinet-
ics per particle show a broad distribution, indicating particle-to-particle
variability. The mean unbound state lifetime τU could be determined by
fitting all observed unbound state lifetimes by a lognormal multiexpo-
nential distribution (see Supplementary note 2.5.4). This method gives
large errors at low statistics, which is particularly visible at low con-
centrations (see inset of Figure 2.3b). Figure 2.3c shows dose–response
curves for DNA targets with different affinities. The signal plotted on
the y-axis is the switching activity, the average number of binding and
unbinding events per particle per time interval.13 The dose–response
curves exhibit an S-shape on a linear-logarithmic scale, which is charac-
teristic for first-order affinity binding. The curves are fitted by the Hill
equation:14

A = Ab + Aa
[C]

EC50 + [C]
(2.1)

with A being the activity, Ab the background signal, Aa the activity am-
plitude (difference between the maximum signal and the background
signal), EC50 the half maximal effective concentration, and [C] the tar-
get concentration in solution. The curves shift to lower concentrations
for an increasing affinity between target and particle probes, show-
ing the tunability of the system. Figure 2.3d shows a dose–response
curve measured for the mid-affinity target in blood plasma filtered
with a 50 kDa molecular weight cutoff. Here, a similar EC50 was found,
but a higher background activity and larger uncertainty were found,
compared to its counterpart in buffer. The higher background activity
and larger uncertainty are caused by more nonspecific interactions and
lower statistics, respectively.

The response to dynamic changes in target concentration is quantified
in Figure 2.4 for the low- and mid-affinity targets in buffer (a, b) and
the mid-affinity target in blood plasma (c). The response to a sudden
drop in target concentration can be described with a single-exponential
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Figure 2.3: performance of the sensor concept with a single-molecule encoded

nanoswitch in buffer and blood plasma . (a-b) Mid-affinity target concentration depen-
dencies of the bound state lifetime τB (red) and the unbound state lifetime τU (blue). We observed
that τB = 15.2 ± 0.3 s and τB = 12.5 ± 0.5 s, and τU scales approximately as τU ∝ [T]−0.8±0.1 and
[T]−0.64±0.09 for buffer and blood plasma conditions respectively. (c) Dose-response curves of ssDNA
targets in buffer, with a high-, mid- and low-affinity to the particle probe. Hill equation fits according
to Equation 2.1 (solid lines) yield EC50 values of 14 ± 6 pM, 0.17 ± 0.05 nM and 1.7 ± 0.3 nM respec-
tively. (d) Dose-response curve in blood plasma of the mid-affinity ssDNA target. Hill equation fit
(solid line) yields EC50 of 0.4 ± 0.1 nM. The inset shows the data on a double linear scale. Reported
errors are the standard errors of the fit. The error bars in the activity graphs are the stochastic errors
and mostly smaller than the symbol size. The shading in the figures indicates the 95% confidence
interval of the Hill equation fit according to Equation 2.1. The number of particles per data point was
between 15 and 100, measured in two microscopic fields-of-view.
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relaxation of the observed activity, with characteristic relaxation times
of approximately 10 min for the low-affinity target and 40 min for the
mid-affinity target. For the mid-affinity target, the single-exponential
relaxation profiles in buffer and in blood plasma show comparable
time scales within their uncertainty interval (see Figures 2.4b,c).
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Figure 2.4: concentration response of the sensor concept with a single-molecule

encoded nanoswitch in buffer and blood plasma . Concentration response traces for low-
and mid-affinity ssDNA target in buffer (a, b), and mid-affinity ssDNA target in blood plasma (c) with
τR = 10± 1 min, τR = 41± 6 min, and τR = 37± 8 min respectively. Reported errors are the standard
errors of the fit. The error bars in the activity graphs are the stochastic errors and mostly smaller than
the symbol size. The number of particles per data point was between 15 and 100, measured in two
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The multiplexing functionality is shown in Figure 2.5, using two
particle populations having different particle probes and equal stem
probes, and two targets with comparable affinities to the particle probes
and different affinities to the stem probes (see Supplementary note
2.5.1). For this, separate flow cells were used to determine the mul-
tiplexing specificity and sensitivity. Figure 2.5a shows the measured
average bound state lifetimes for the two cases, that are clearly different
and that are independent of target concentration, confirming that par-
ticle populations can be identified on the basis of kinetic dissociation
rates. Each particle can in fact be considered as a single sensing entity.
The distribution of the bound state lifetimes of all individual particles
shows clearly two populations, as depicted in Figure 2.5b. The two
populations can be separated by a combination of thresholding (indi-
cated by the black line) and discarding the overlap of the distributions
(indicated by the shaded area). The bound state lifetime distributions
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correspond to the distribution found using simulations (see inset Fig-
ure 2.5b and Material and methods 2.4). Due to the finite duration of
the measurement, long bound state lifetimes are underestimated, caus-
ing the mean of the distribution of the longer lifetimes to be smaller
than the ensemble bound state lifetime (cf. Figure 2.5a). Increasing the
measurement time from 10 to 30 min reduces this underestimation.
Longer measurement times result in narrower distributions, which
increases the ability to discriminate between the two populations. Fig-
ure 2.5c quantifies the performance of the kinetic identification by its
sensitivity and specificity for the low-affinity target. The sensitivity
is defined as the fraction of true positives of the total number of par-
ticles below the threshold, and the specificity as the fraction of true
negatives of the total number of particles above the threshold. Both the
sensitivity and specificity can be increased by discarding overlapping
data. This is shown in the inset for the values at the position of the red
dot in the graph. In Figure 2.5d, the cross-talk between two particle
populations is shown. In this experiment, the low- and high-affinity
DNA targets were added to both flow cells sequentially, as indicated in
the target concentration profiles. For the mismatched target condition,
only a small fraction of switching particles was observed, indicating
a negligible cross-talk. For both particle populations, the number of
switching particles and the activity per particle increased when the
fluid-cell-specific DNA targets were added, confirming the selectivity
and sensitivity of the system.

In Figure 2.6a, the kinetic identification is demonstrated using two
mixed particle populations in a single flow cell. The combined bound
state lifetimes exhibit a double-exponential distribution, caused by the
superposition of two single-exponential distributions of low-affinity
and high-affinity dissociation reactions. Using the threshold and win-
dow determined in Figures 2.5b,c, the two particle populations can be
separated, resulting in two single-exponential distributions (see inset
Figure 2.6a).

The simulations of Figure 2.6b support the multiplexing potential.
Simulated data were generated from measurements of particles with
different dissociation rate constants, corresponding to different inter-
action strengths between target and stem probe. The association rate
constants of all six data sets were equal. The graph shows the resulting
bound state lifetime distributions per particle, for a 30 min measure-
ment duration. The width of the distributions is mainly determined by
the stochastic binding and unbinding processes; increasing the length
of the measurement decreases the width of the distribution. Therefore,
longer measurements increase the multiplexing capabilities. To sepa-
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Figure 2.5: multiplexing performance by kinetic identification of nanoswitches in

separate flow cells . (a) Concentration dependencies of the bound state lifetime τB for low- and
high-affinity target (blue and red respectively). We observed that τB = 15.4 ± 0.1 s and τB = 86 ± 2 s
for low- and high-affinity targets respectively. (b) Bound state lifetime distribution per particle for
low- and high-affinity target. The threshold and overlap window used for kinetic identification are
indicated by the black line and shaded area respectively. The dashed black lines show lognormal
distributions. The inset shows simulated bound state lifetime distributions for both affinities, for a 10
minutes (solid lines) and 30 minutes (dashed lines) measurement. (c) Receiver operating curve that
quantifies the performance of the kinetic identification. An optimum of a kinetic sensitivity of 97%
and a kinetic specificity of 88% was found at a zero window width. The inset shows the approximate
trend of the kinetic sensitivity and specificity as a function of the window width. (d) Cross-talk
between particle populations in the sensor. Flow cell A contains particles specific for low-affinity
target molecules and flow cell B for high-affinity target molecules. The concentration-time profiles
show how the targets are applied to each individual flow cell. Both sensors only respond to their
specific target.

rate bound state lifetime distributions on a single-particle level, a high
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accuracy to determine the mean bound state lifetime per particle is not
required when the distributions are distinguishable; i. e., the kinetic
sensitivity and specificity should be high. Therefore, kinetic encoding
potentially results in six levels of multiplexing within a measurement
time of 30 min. The time window suitable for multiplexing can be
extended by another decade into shorter time scales, by increasing the
particle diffusivity (see the Supplementary note 2.5.5).
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Figure 2.6: multiplexing performance by kinetic identification of nanoswitches

in a single flow cell . (a) Cumulative distribution function (CDF) of the bound state lifetimes
with τ1

B = 13.7 ± 0.1 s and τ2
B = 113 ± 2 s resulting from a double-exponential fit (yellow). The

inset shows the CDFs of the two separate particle populations. The single-exponential fits (yellow)
give τB = 14.4 ± 0.1 s and τB = 113 ± 2 s for the low- and high-affinity interaction respectively. (b)
Simulated bound state lifetime distributions for a 30 minutes measurement show the multiplexing
potential with the current experimental limits. The blue and red distributions have mean bound state
lifetimes that are matched with the lifetimes found in panel a. Reported errors are the standard errors
of the fit. The number of particles per data point was between 15 and 100.

2.3 conclusion

In this chapter, we presented a sensor design with an encoded binary
nanoswitch, enabling continuous sensing of target molecules at pico-
molar concentrations in human blood plasma, across a broad dynamic
range. The ability to create and identify particle subpopulations with
distinct dissociation properties allows multiplexed biosensing with
high sensitivity and specificity. Multiplexing by single-molecule kinetic
encoding does not require any reagents and is therefore suited for
continuous sensing and real time biomolecular monitoring, in con-
trast to multiplexing methods such as bead arrays,9,10 real time PCR,11

and DNA microarrays.12 Kinetic encoding can be supplemented with
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orthogonal identification approaches, such as using particles with dif-
ferent colors (optical identification) and patterning of the sensor surface
(identification by surface area imaging). Combining three identification
approaches, each with six levels of multiplexing, would potentially give
in total 63 = 216 levels. In practice, a tradeoff exists between the degree
of multiplexing and the analytical performance of the biosensor. To
maintain the precision of the concentration determination of multiple
target molecules, the number of particles should scale linearly with
the degree of multiplexing. Furthermore, while the functionality of
kinetically encoded nanoswitches is demonstrated in this chapter using
DNA as a model system, other markers may be addressed using affinity
binders such as aptamers and antibodies.13

In conclusion, single-molecule encoded nanoswitches open the per-
spective to gain accurate real time insights into live biological systems
by continuous monitoring of biomolecules with a high level of mul-
tiplexing, high sensitivity, and high specificity using single-molecule
information.

2.4 material and methods

binary nanoswitch assembly : All ssDNA oligonucleotides
(IDT, standard desalting and HPLC purification for chemically modi-
fied DNA, stem probe: 5’ - ~TGC GAG AAC TCA GCA TAC ATC TA
- 3’) were diluted in TE buffer (10 mM Tris–HCl, 1 mM EDTA at pH
8.0) to a final concentration of 50 µM. The DNA strands were added
together in equivalent amounts to a final concentration of 5 µM per
strand in TE buffer with 50 mM NaCl. Using a thermal cycler (Bio-Rad,
T100 Thermal Cycler), the mixture was heated to 95°C and cooled down
to 4°C with a temperature decrease of 1°C every 35 s. Analysis of DNA
tethers was performed in a non-denaturing TBE gel (Thermo Fisher
Scientific, Novex TBE Gels, 4-20%). The TBE gel was assembled accord-
ing to the supplier’s instructions, loaded with sample DNA mixtures
in Nucleic Acid Sample Loading Buffer (Bio-Rad Laboratories) and an
O’GeneRuler Ultra Low Range DNA Ladder (Thermo Fisher Scientific),
and ran in TBE buffer (89 mM Tris–HCl, 89 mM boric acid, 2 mM
EDTA at pH 8.3). Subsequently, the gel was stained with SYBR Gold
Nucleic Acid Gel Stain (Thermo Fisher Scientific, 10, 000× concentrate
in DMSO) in TBE buffer for 30 min. Finally, the TBE gel was visualized
using an ImageQuant camera setup (GE Healthcare Life Sciences).

silica particle functionalization : Carboxyl-functionalized
silica particles (Bangs Laboratories, 1 µm mean diameter) at a con-
centration of 10 mg mL-1 were activated with EDC (Sigma-Aldrich,
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final concentration of 4.3 mM) and NHS (Merck, for synthesis, fi-
nal concentration of 10 mM) in MES buffer (0.1 M MES at pH 5.0)
for 30 min at room temperature. After activation, the particles were
centrifugally washed at 6, 000× g for 5 min using a tabletop spinner
(Eppendorf MiniSpin) and resuspended in MES buffer. NeutrAvidin
(Thermo Fisher Scientific) was dissolved in Milli-Q (Thermo Fisher
Scientific, Pacific AFT 20) at a concentration of 10 mg mL-1 and added
to the activated particles at a final concentration of 500 µg mL-1. The
protein functionalization was performed overnight at room tempera-
ture. The NeutrAvidin-functionalized silica particles were twice washed
in TBS–Tween-20 buffer (25 mM Tris–HCl, 0.15 mM NaCl, 0.05 vol-%
Tween-20) and twice in 0.1 wt-% BSA in PBS–Tween-20 buffer (130 mM
NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4, 0.05 vol-% Tween-20, at pH
7.4). The binding capacity was determined using a fluorescence super-
natant assay with Atto655-biotin and was approximately 800 pmol per
mg of particles. The NeutrAvidin-functionalized silica particles were
stored at 10 mg mL-1 in PBS–Tween-20 at 5°C for up to 2 months until
use.

flow cell experiments : Glass slides (25 × 75 mm, #5, Menzel-
Gläser) were cleaned by 15 min of sonication in methanol (VWR, ab-
solute), isopropanol (VWR, absolute), and methanol (VWR, absolute)
baths. After each sonication step, the glass coverslips were dried under
nitrogen flow. A custom-made fluid cell sticker (Grace Biolabs) with
an approximate volume of 24 µL was attached to the glass slide. A
flow cell was made by inserting tubing (Freudenberg Medical, monolu-
men) into the fluid cell sticker and connecting the tubing to a syringe
pump (Harvard Apparatus, Pump 11 Elite). First, the flow cell was
prewetted with PBS (130 mM NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4

at pH 7.4) at a flow speed of 500 µL min-1 for 2 min. Functionaliza-
tion of the glass substrate was performed by physisorption of 83 ng
mL-1 anti-digoxigenin antibodies (Thermo Fisher Scientific) in PBS for
60 min. Finally, the glass substrate was blocked by incubation with
1.0 wt-% casein (Sigma-Aldrich, casein sodium salt from bovine milk)
in PBS for 60 min. After each incubation step, the fluid cells were
flushed with PBS (250 µL min-1 for 1 min). NeutrAvidin-functionalized
silica particles were incubated in bulk with a 10 nM nanoswitch for
10 min. Subsequently, the particles were coated with ssDNA by an
incubation with 40 µM biotin-labeled single-stranded oligonucleotide
(IDT, standard desalting, 5’ - TAG TCA GGT TGG ATG TCT AC - 3’
- biotin). The particles were thrice centrifugally washed in 1.0 wt-%
BSA (Sigma-Aldrich, lyophilized powder, essentially globulin free, low
endotoxin, ≥ 98%) and 0.05 vol-% Tween-20 (Sigma-Aldrich) in PBS
at 6, 000× g for 5 min using a tabletop spinner (Eppendorf MiniSpin).
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Finally, the particles were resuspended in PBS/BSA/Tween-20 to a
final concentration of 0.17 mg mL-1 (0.26 pM) and sonicated using
an ultrasonic probe (Hielscher). The particles were added to the flow
cell at a flow speed of 50 µL min-1 for 5 min and incubated for 30
min. After incubation, the fluid cell was reversed and subsequently
flushed with PBS/BSA/Tween-20 at a flow speed of 50 µL min-1 for
5 min to remove unbound particles. A ssDNA target (IDT, standard
desalting, low-affinity: 5’ - AAC CTG ACT AAA AAT AGA TGT ATG -
3’, mid-affinity: 5’ - CAA CCT GAC TAA AAA TAG ATG TAT G - 3’,
high-affinity: 5’ - CCA ACC TGA CTA AAA ATA GAT GTA TG - 3’)
at the required concentration in PBS/BSA/Tween-20 was added at a
flow speed of 50 µL min-1 for 5 min and incubated for 20 min to reach
equilibrium.

flow cell experiments with blood plasma : Single-donor
human blood plasma (Sanquin, the Netherlands, citrate stabilized,
healthy volunteer) was filtered through a 50 kDa molecular weight
cutoff centrifugal filter (Merck Millipore, Amicon). The plasma filtrate
was collected and spiked with ssDNA at the required concentration.
The measurements were then performed as described in the previous
section.

particle imaging and tracking : Samples were observed under
a white light source using a microscope (Leica DM6000M) using a dark
field illumination setup at a total magnification of 20× (Leica objective,
N PLAN EPI BD, 20×, NA 0.4). A field-of-view of approximately 400 ×
400 µm2 was imaged using a CMOS camera (Grasshopper 2.3 MP Mono
USB3 Vision, Sony Pregius IMX174 CMOS sensor) with an integration
time of 10 ms and a sampling frequency of 30 Hz. The silica particles
were tracked with a 3 nm accuracy using the center-of-intensity of the
bright particles on the dark background. Trajectory parameters were
calculated which describe the motion pattern and were used to select
single-tethered particles.13

state lifetime analysis : Particles that showed strong irregulari-
ties in their motion pattern (e. g., strongly confined or asymmetrical)
or no switching behavior were excluded from further analysis.13 The
measurements were performed in a flow cell setup in which the target
concentration was increased sequentially by means of buffer exchange.
After 20 min incubation, the measurement was performed. Trajectory
analysis was performed only on particles showing a bimodal distri-
bution in the averaged radial position. In order to detect binding and
unbinding events, a dual thresholding method was implemented in
which the threshold was set on the (local) minimum between the two
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peaks of the bimodal distribution. A dual threshold with a 12.5% offset
was found to yield accurate event detection with 91% sensitivity and
96% specificity (data not shown here). Based on the detected events,
the bound (low mobility) and unbound states (high mobility) could be
identified. The lifetimes of the two states were plotted in a cumulative
distribution function for different target concentrations to extract the
association and dissociation rate constants (see the Supplementary
notes 2.5.3 and 2.5.4). This was done for single binding and unbinding
events per particle or as an ensemble using the information on single
binding and unbinding events of all particles together or of a subset
(specific population) of particles after kinetic identification.

simulations : Data were simulated using experimental positional
data of bound and unbound particles. For each simulation, two single-
exponential distributions were generated: one with a given mean bound
state lifetime and one with a given mean unbound state lifetime. The
particle traces were reconstructed block-by-block with each block length
according to the two predefined single-exponential distributions. Non-
specific interactions and inter- and intraparticle heterogeneity were
neglected. Subsequent time-dependent analysis was performed as if
experimental data were analyzed.

2.5 supplementary notes

2.5.1 DNA sequences

The DNA sequences for the stem probe, particle probes and target
molecules used in this chapter are given in Figure 2.7. In Figure 2.7a the
DNA sequences are given that were used to demonstrate the sensitivity
for multiple concentration regimes (see Figure 2.3) and the continuous
monitoring concept (see Figure 2.4). In order to ensure an activity per
particle that depends on the fractional occupancy of the particle probes
by target molecules, the molecular system has been designed to have a
(relatively) high-affinity particle probe and a low-affinity stem probe.
Therefore, the particle probe functions as a capture molecule and the
stem probe as a detection molecule. For all three target molecules the
interaction with the stem probe has a free energy of ∆G = −10.2 kcal
mol-1. The interaction with the particle probe are ∆G = −12.3 kcal
mol-1, −14.4 kcal mol-1 and −17.0 kcal mol-1 for the low-, mid- and
high-affinity targets respectively based on their sequence.15 Therefore,
all target molecules have a higher affinity for the particle probes than
for the stem probe.

The difference in the found EC50 for the three target molecules
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can be explained by the exponential relation between the equilibrium
dissociation equilibrium constant Kd and the free energy of the affinity
reaction ∆G described by:

Kd =
koff
kon

= exp
(
− ∆G

kbT

)
· c⊖ (2.2)

with koff being the dissociation rate constant, kon the association rate
constant, kb the Boltzmann’s constant, T the temperature and c⊖ the
standard reference concentration. Under the assumption that there is
no target depletion from solution and the number of particle probes
occupied by a target molecule scales linearly with the observed sig-
nal, we can assume that the EC50 is an accurate representation of the
dissociation equilibrium constant Kd of the particle probe and target

3' - GT ATG TAG ATA AAA ATC AGT CCA ACC - 5'

3' - GT ATG TAG ATA AAA ATC AGT CCA AC - 5'

3' - GT ATG TAG ATA AAA ATC AGT CCA A - 5'

 ...TGC GAG AAC TCA GCA TAC ATC TA-3'

Mid-affinity target

Low-affinity target

High-affinity target

5'-TAG TCA GGT TGG ATG TCT AC - 3' - Biotin

Particle probeStem probe

5' - CGT ATG TAG AAA AA AG TTA CAT CAG - 3'

5'-TC AAT GTA GTC TCT GCT CAC - 3' - Biotin

Particle probe (multiplex)

High-affinity target (multiplex)

 ...TGC GAG AAC TCA GCA TAC ATC TA-3'

Stem probe

a

b

Figure 2.7: overview of the dna sequences used in the experiments . (a) DNA sequences
of the stem probe, particle probe and three target molecules, used to demonstrate the sensing concept
with single stem probe, see Figures 2.3 and 2.4. The complementary DNA sequence for target detection
(to the stem probe) is given in red. For all three targets this sequence is equal, resulting in equal
dissociation kinetics. The complementary DNA sequence for target capturing (to the particle probe)
is given in yellow. The affinity between the target molecule and particle probe is tuned by the number
of complementary base pairs; increasing the number of complementary base pairs yields a higher
affinity target molecule. (b) DNA sequences of the stem probe, particle probe and target molecule
used to demonstrate multiplexing, see Figures 2.5 and 2.6. The complementary DNA sequence for
target detection is given in red. The complementary DNA sequences for target capturing is given in
yellow.
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interaction. The Kd values at 298 K for the three observed interactions,
calculated using Equation 2.2, are 0.96 nM, 28 pM, and 0.35 pM for the
low-, mid- and high-affinity targets respectively.

In Figure 2.7b the DNA sequences are given that were used to
demonstrate multiplexing by kinetic encoding, see Figures 2.5 and 2.6.
The same stem probe is used, but the DNA sequence complementary
to the target molecule is shifted by a single base in order to introduce
a higher affinity. The free energy of the interaction between the high-
affinity target and the stem probe is ∆G = −11.7 kcal mol-1 indicating
a higher affinity compared to the target molecules in Figure 2.7a. The
free energy of the interaction between this target and the particle
probe with ∆G = −13.2 kcal mol-1 is in the range of the three target
molecules in Figure 2.7a. Furthermore, the particle probe used for the
multiplexing experiment has a different sequence in order to obtain
two separate sensing entities with limited cross-talk. The second target
for the multiplexing experiments is the mid-affinity target given in
Figure 2.7a. All free energies were calculated for the condition of
[Na+] = 1 M and pH 7.0.15 The systems presented in Figures 2.7a,b
share the same DNA sequence of the stem probe; this implies that
there is a possibility of having cross-talk between the two particle
populations. However, since the lifetimes of a bond between the target
and the stem probe is relatively short (~15 s and ~100 s) compared
to the measurement time (10 minutes), the effect of cross-talk was
assumed to be limited and cross-talk was indeed not observed in the
measurements.

2.5.2 Time traces per particle

In Figure 2.8 three examples are given of accumulated motion patterns
and their corresponding radial position as a function of time.

2.5.3 Quantifying single-molecule affinity kinetics

Equations to quantitatively interpret single-molecule information have
been described in literature.16 Here, a brief derivation is given of the
equations used in this chapter, focusing on the affinity kinetics.

We assume that the system is observed for a total time t in which
there are N time intervals of equal length ∆t. During a given time
interval, the probability P that an event (binding or unbinding) occurs
is determined by the reaction rate k and can be described by P = k∆t.
The assumption is that the events are caused by a single molecular
process with equal (local) conditions per particle. Since the chance
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Figure 2.8: examples of accumulated motion patterns , and radial position time

traces for three particles . (a) Accumulated motion pattern for three particles. The in-plane x-
and y-coordinates of the position of all particles were optically recorded from which the accumulated
motion pattern per particle was reconstructed. (b) Radial position over time for three particles. Using
the x- and y-coordinates, the radial position per particle was calculated. The radial position over
time shows binary transitions caused by single-molecule binding and unbinding events. The length
of the primary tether (i. e., the dsDNA stem) determines the radius of the unbound state motion
pattern (~250-300 nm). The length of the secondary tether (i. e., stem probe, target, and particle probe)
determines the radius of the bound state motion pattern (~150-175 nm). The accumulated motion
patterns with their corresponding radial position time trace were measured at a bulk concentration of
63 pM high-affinity target (see Figure 2.3c).

per time interval is independent of the preceding time interval, for
each interval the probability that an event occurs equals k∆t while the
probability that no event occurs equals 1 − k∆t. When considering all
time intervals within the total observation time, the number of time
intervals in which an event has occurred is x while the number of time
intervals in which no events could be observed is equal to N − x. The
probability of a specific sequence of x events during measurement time
t can then be described by:

P(x|N) = (k∆t)x(1 − k∆t)N−x, with x = 0, 1, . . . , n (2.3)

with n being the number of observed events where n ≤ N. However,
since this relates to a specific sequence, all combinations of x events
in all N time intervals should be considered. This can be done by
implementing a binomial coefficient as given in the following equation:
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P(x|N) =
N!

x!(N − x)!
(k∆t)x(1 − k∆t)N−x,

with x = 0, 1, . . . , n
(2.4)

If we assume that the number of time intervals is very large (i. e.,
N → ∞) and the time interval length very short compared to the
reaction rate (∆t < 1/k, i. e., ∆t → 0), Equation 2.4 can be simplified
to:16–18

lim
N→∞

P(x|N) = lim
N→∞

N!
x!(N − x)!

(
λ

N

)x (
1 − λ

N

)N−x

P(x) =
λx

x!
exp (−λ)

(2.5)

with λ = N(k∆t). Since the total measurement time t is described by
N∆t, and the cumulative distribution function (CDF) of the observed
state lifetimes can be described by the probability that no event has
occurred, i. e., x = 0, the equation simplifies to:

P(x = 0) = exp (−kt) (2.6)

Since the time that no events have occurred equals the lifetime of
the state (either bound or unbound) of the system, Equation 2.6 can be
expressed as follows:

F(t) =
n(t)
n0

= exp (−kt) = exp
(
−t
τ

)
(2.7)

with n0 being the total number of observed lifetimes, n(t) the number
of observed lifetimes with a length larger than t, and τ the mean
bound or unbound state lifetime. Using Equation 2.7, the reaction rate
constant k has the meaning of a probability per unit time that a binding
or unbinding event happens. Therefore, it describes the CDF of the
observed state lifetime in a molecular system and can be interpreted
as the apparent association rate constant κ (for unbound states) and
dissociation rate constant koff (for bound states).

2.5.4 Heterogeneity in association kinetics

state lifetime heterogeneity : In Figure 2.9 the CDFs of both
the bound and the unbound states are shown, experimentally deter-
mined using the system described in Figures 2.1 and 2.2. The straight
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line of Figure 2.9a is in agreement with the assumption of a well-
defined, single-molecular process with similar (local) conditions which
holds for the bound state lifetimes, since the observed bound state
lifetimes are single-exponentially distributed. This indicates that the
bound state lifetime distribution can be used to kinetically identify the
molecular interaction. In contrast, the observed unbound state lifetimes
show a curved line and indicate a multiexponential distribution. We
attribute the multiexponential behavior to particle-to-particle variability.
This hypothesis is supported by plotting the unbound state lifetimes
per particle (Figure 2.9b). The per-particle curves appear approximately
as straight lines (with noise due to lower event statistics), which indi-
cates that the association kinetics of every particle are determined by a
bimolecular interaction with a single association rate and that differ-
ent particles exhibit different rates. The particle-to-particle variability
causes the curved line in Figure 2.9a, where the data is accumulated
for all particles. A large contribution to the heterogeneity is caused by
the nonuniformity of the NeutrAvidin coating on the particles, which
we visualized using quantitative points accumulation for imaging in
nanoscale topography (qPAINT). Hypotheses for the presence of such
a multiexponential distribution are variability in (1) NeutrAvidin func-
tionalization on the particle surface; (2) particle probe conjugation to
the NeutrAvidin complexes; or (3) target hybridization to the parti-
cle probes, such as slow equilibrium of the fractional occupancy of
the particle probes whereby the affinity reaction did not reach (local)
equilibrium. Besides, only a small fraction of the particle surface area
is probed, namely the area close to the stem. This might lead to a
small number of accessible particle probes and therefore increase the
susceptibility to variability between particles.

In Figure 2.10 the distributions of the mean state lifetime per particle
are given. For the dissociation kinetics, the experimentally found width
of the distribution is similar to the width that was found using simu-
lated data (see Material and methods 2.4). However, for the association
kinetics, a large distribution was observed compared to simulations.
Both observations correspond to the findings in Figure 2.9. It was found
that the mean unbound state lifetime τU is approximately lognormal
distributed, as shown in Figure 2.10 (right). Therefore the distribution
of τU per particle can be described by:

f (τU ; µτU , στU ) =
1

τUστU

√
2π

exp

(
− (ln τU − µτU )

2

2σ2
τU

)
(2.8)

with µτU being the mean and στU the standard deviation of the natural
logarithm of the unbound state lifetime τU per particle, respectively.
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Figure 2.9: state lifetime analysis of the observed state lifetimes . (a) Cumulative
distribution function (CDF) of observed bound (top) and unbound (bottom) state lifetimes of all
particles. Top: the red dashed line shows a single-exponential fit. For longer bound state lifetimes
(> 40 seconds, < 3% of the total number of observed bound states) a minor deviation from the fit is
observed, caused by merged bound states (missed unbound state lifetime in particular at high target
concentrations). Bottom: the red dashed line shows a multiexponential fit according to Equation 2.8.
For longer unbound state lifetimes (> 350 seconds, < 4% of the total number of observed unbound
states), a deviation of the fit is observed due to a finite measurement time. (b) CDFs of the observed
unbound state lifetimes of three individual particles (classified as slow, moderate, fast switching) at
equal target concentration. The red dashed lines show a single-exponential distribution fit per particle.
All accumulated CDFs are reconstructed using all observed state lifetimes of all particles (N = 58) at
a fixed target concentration for a single measurement (10 minutes).

Figure 2.10: experimental

(blue) and simulated

(red) distributions of

the observed state life-
time per particle . Left:
experimental and simulated
lognormal distributed bound
state lifetimes per particle
show a high similarity. Right:
experimental and simulated
lognormal distributed un-
bound state lifetimes per
particle. The experimental
distribution shows a broad
distribution with a coeffi-
cient of variation of approx-
imately 80% indicating for a
large particle-to-particle het-
erogeneity.
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In order to interpret the unbound state lifetime distribution, we first
assume that all unbound state lifetimes τU can be found during a
single measurement. The fraction of observed unbound state lifetimes
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FU , defined in Equation 2.7, can be described by the integral over all
positive values of τU . By combining Equations 2.7 and 2.8, particles
with short unbound state lifetimes have a larger contribution in the
CDF. In order to correct for this, a weight factor should be implemented.
The CDF of the observed unbound state lifetimes can then be described
by:

FU(t) =
∫ ∞

0
w(τU) f (τU) exp

(
− t

τU

)
dτU (2.9)

with w(τU) = TM
τU+τB

, with Tm being the measurement time and τB
the mean bound state lifetime. By fitting the CDF with this multiex-
ponential distribution, with a lognormal distributed contribution of
each exponential component, the concentration dependency can be con-
densed in a single parameter that describes the lognormal distribution:
this single parameter is the median of the lognormal distribution and
referred to as the ensemble mean unbound state lifetime τens. In order
to accurately determine τens, the distribution of τU per particle should
comprise a considerable number of particles and events. It appears that
τens suffers from missed long state lifetimes due to a finite measurement
time and low statistics at low target concentrations, and therefore the
mean unbound state lifetime is underestimated and large uncertainty
intervals are obtained. In the limit of low target concentrations, the
assumption that all unbound state lifetime τU can be observed during
a single measurement therefore does not hold. Note that the calculated
mean unbound state lifetime τens is reported as τU in this chapter, see
Figures 2.3a,b.

variability in neutravidin functionalization : To inves-
tigate the origin of the broad distribution of association lifetime (see
Figures 2.9 and 2.10), we quantified the particle-to-particle variabil-
ity in NeutrAvidin functionalization using qPAINT.19 The number of
NeutrAvidin-bound, biotinylated ssDNA strands (docking strands) per
particle was determined using total internal reflection (TIR) excitation
of transiently binding dye-labeled ssDNA strands (imager strands)
with a complementary sequence. Here, it was assumed that the number
of docking strands represents the number of NeutrAvidin complexes.
In order to quantify the particle-to-particle variability, the coefficient
of variation (CV) of the distribution of number of docking strands per
particle was calculated.

In qPAINT the number of docking strands is calculated using the
association kinetics of the transient binding of imager strands to the
docking strands, according to the following equation:
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NDS =
1

konciτd
(2.10)

with NDS being the number of docking strands, kon the association
rate constant (assumed to be 2.3 · 106 M-1 s-1),19,20 ci the imager strand
concentration and τd the mean dark time, i. e., the time in which no
imager strand is bound to a docking strand. Since this method is prone
to underestimating the number of docking strands when multiple
binding events occur simultaneously, τd should be much larger than
the mean bright time τb, i. e., the time in which a single imager strand
is bound to a docking strand. Furthermore, to ensure comparable
statistics for sparsely and densely functionalized particles, the τd/τb
ratio is tuned by decreasing ci for increasing number of docking strands
per particle.

Figure 2.11 shows the results of the qPAINT measurements. For these
measurements, the incubated ssDNA concentration consists of 3% dock-
ing strands and 97% ssDNA strands with a random sequence and equal
length. Using an imager strand complementary to the docking strand,
only the docking strands are imaged. Subsequently, the total number of
ssDNA strands can be calculated with the known ratio between dock-
ing strand and ssDNA strands with a random sequence. The number of
ssDNA strands is therefore the sum of the number of docking strands
and ssDNA strands with a random sequence. Figure 2.11a shows a
concentration series of ssDNA strands incubated with NeutrAvidin-
functionalized particles. For the measured concentration range, a linear
relationship with the observed number of ssDNA strands was found.
The saturation point of 5.5 µM (~350, 000 binding sites per particle) was
found using a supernatant assay with Atto655-biotin (data not shown
here) from which a number of ssDNA strands per particle as a function
of ssDNA concentration could be calculated (gray dashed line). Here
it was assumed that there exists a linear relationship between number
of ssDNA strands per particle and ssDNA strand concentration, that
the binding capacity of Atto655-biotin is equal to the binding capacity
of biotinylated ssDNA strands, and that approximately 50% of the
docking strands could be observed due to TIR excitation. Therefore, the
maximum possible number of observable docking strands per particle
is approximately 175, 000.

Figure 2.11b shows an example of the found distribution of the
number of ssDNA strands per particle for particles incubated with a
ssDNA concentration of 667 nM. The distribution is fitted with a normal
distribution, from which the CV can be calculated. Figure 2.11c shows



43

the dependency of the observed and expected CV on the incubated
ssDNA strand concentration. The expected CV is calculated using
the mean observed number of ssDNA strands per particle and the
mean number of observed binding events under the assumption of
a Poisson distributed ssDNA strand functionalization and probing
processes. It appears that for both the observed and expected CVs the
CV scales with the incubated ssDNA concentration (dashed blue and
red lines) with CV ∝ N−0.5

DS which is expected based on the previously
mentioned assumptions. The difference between the observed CV and
the expected CV is approximately 10%; this can only partially explain
the broad distribution observed in Figure 2.10, caused by particle-to-
particle heterogeneity in NeutrAvidin functionalization. Note that the
experimental results presented in this figure were obtained using a
preliminary event detection algorithm which suffers from background
signals with many false positive events, effectively inflating the CV
at low DNA concentrations. In Chapter 3, in particular Figure 3.2,
the same data have been analyzed with an improved event detection
algorithm. Nevertheless, the data in Figure 2.11 show a clear difference
between the observed and expected variability, indicating variability
between particles.
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Figure 2.11: quantification of interparticle surface functionalization variability.
(a) Experimentally found (blue) number of ssDNA strands as a function of the incubated ssDNA strand
concentration. The calculated number of ssDNA strands (gray dashed line) are based on supernatant
assay from which the total binding capacity was calculated. The inset shows the specificity of the
imager strands for the docking strands; a fully matched docking strand (FM) yields a high number of
localizations per particle while a negative control with a fully mismatched docking strand yields a low
number of localizations. The box plots show the median, 5%, 25%, 75% and 95% confidence intervals.
The error bars in the graphs represent the calculated standard deviation with N ≥ 150 accumulated
over two fields-of-view. (b) Calculated number of binding sites per particle at an incubated docking
strand concentration of 25 nM; an approximate normal distribution was found from which the
coefficient of variation (CV) was calculated. (c) The experimentally observed (blue) and expected
(red) CV as a function of incubated ssDNA strand concentration show a significant difference at each
ssDNA strand concentration. The dashed lines show the approximately trend of CV ∝ N−0.5

BS . The
error bars in the graphs represent the calculated standard deviation of the fit of the distributions.
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qpaint : All ssDNA oligonucleotides (IDT, HPLC purification) were
diluted in Milli-Q water (Thermo Fisher Scientific, Pacific AFT 20) to
a final concentration of 20 µM for the docking strand, 10 µM for the
ssDNA strand with a random sequence, and 200 nM for the imager
strand. Glass slides (25 × 75 mm, #1, Menzel-Gläser) were cleaned
by 15 minutes sonication in methanol (VWR, absolute) and thereafter
dried under nitrogen flow. A custom-made fluid cell sticker (Grace
Biolabs) with an approximate volume of 24 µL was attached to the
glass slide. NeutrAvidin-functionalized silica particles were incubated
in bulk overnight with docking strands at the required concentration.
The particles were thrice centrifugally washed in PBS (130 mM NaCl, 7
mM Na2HPO4, 3 mM NaH2PO4 at pH 7.4) at 6, 000× g for 5 minutes
using a tabletop spinner (Eppendorf MiniSpin). Finally, the particles
were resuspended in PBS to a final concentration of 0.17 mg mL-1 (0.26
pM) and sonicated using an ultrasonic probe (Hielscher). The particles
were added to the fluid cell and nonspecifically absorbed to the glass
surface for 30 minutes. After incubation, the fluid cell was washed with
200 µL buffer B+ (5 mM Tris-HCl, 10 mM MgCl2, 1 mM EDTA, 0.05
vol.-% Tween-20 at pH 8.0) to remove unbound particles and change
the buffer in the fluid cell. Finally, 200 µL imager strand of the required
concentration in buffer B+ was added and the fluid cell was closed
using sticky tape. Imaging at a 60× magnification (Nanoimager S, ONI)
was performed under TIR conditions using a 647 nm laser at 50 mW at
a frame rate of 13.3 Hz for 30 minutes. The integrated pixel intensity
of the region of interest around each particle was used to determine
binding and unbinding events of imager strands. The mean dark time
was extracted by fitting all observed dark times to a single-exponential
distribution.

2.5.5 Potential of multiplexing by kinetic encoding and temporal resolution

The potential of multiplexing by single-molecule kinetic encoding is
determined by the temporal resolution of the measurement of the
dissociation rate, which is governed by the diffusion coefficient of the
tethered particle. The tethered particle moves within a confined volume
defined by the molecular tether. At the boundaries of the confinement,
the molecular tether is fully stretched and the entropic spring effect
forces the particle to move toward the center of the confined space. This
confinement effect can be described by the mean squared displacement
(MSD) of the position of the particle in a two-dimensional space:21

⟨r2(t)⟩ = R2
c · (1 − exp (−t/τc)) (2.11)
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with Rc being the radial confinement and τc a time constant which
describes the diffusion time scale on which the particle experiences the
confinement of its motion. On small time scales of t ≪ τc, the diffusion
resembles free diffusion. Therefore, by taking the limit of the derivative
of Equation 2.11 at t = 0, Rc and τd can be related to the bulk diffusion
coefficient D of the particle:

d⟨r2(t)⟩
dt

= R2
c ·

exp (−t/τc)

τc

→ lim
t→0

(
R2

c ·
exp (−t/τc)

τc

)
=

R2
c

τc
= 4D

(2.12)

In Figure 2.12 normalized MSD curves of four particles are given
as an example and the calculated diffusion coefficient D for all parti-
cles. In Figure 2.12a, the MSD was fitted with Equation 2.11 for the
first 10 data points (~300 ms) since all particles follow the diffusive
behavior of a confined particle. From the MSD fits it was found that
for NeutrAvidin-functionalized silica particles the observed diffusion
coefficient D = 1.5 ± 0.2 · 10−13 m-2 s-1 (see Figure 2.12b). To account
for the hydrodynamic coupling between the particle and the substrate,
a correction can be applied according to Faxén’s Law.22 The corrected
diffusion coefficient was found to be D = 3.4± 0.4 · 10−13 m-2 s-1 which
is close to the theoretical bulk diffusion coefficient calculated using the
Stokes-Einstein equation, i. e., DSE = 4.2 · 10−13 m-2 s-1:

DSE =
kBT

6πηa
(2.13)

with kB being the Boltzmann constant, T the temperature, η the viscos-
ity of the fluid, and a the particle radius.

The temporal resolution of kinetic encoding is limited by the par-
ticle diffusivity in two ways. First, a slow diffusing particle increases
the probability of target rebinding, causing longer bound state life-
times than would be expected based on the affinity of the molecular
interaction alone. Second, the time scale in which the particle exhibits
confined diffusion should be smaller than the observed bound and
unbound state lifetimes in order to separate the unbound from the
bound states, i. e., τc ≪ τU , τB. We assume that this requirement is met
when τU , τB = 5 · τc which corresponds to the time step at which ⟨r2⟩
equals approximately 99% of the plateau value Rc. Using these values,
for the current experimental design the achieved temporal resolution
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Figure 2.12: characterization of the confined diffusion behavior of tethered

silica particles . (a) Mean squared displacement (MSD), normalized to Rc , as a function of data
lag time, normalized to τc with a diffusion time τc = 68 ± 16 ms. (b) Calculated bulk diffusion
coefficient calculated per particle using Equation 2.12. The mean of the fitted normal distribution is
D = 1.5 ± 0.2 · 10−13 m2 s-1

is 340 ± 80 ms. Since the state lifetimes are exponentially distributed,
the mean state lifetime should be longer than this temporal resolution;
when ≥ 90% of all state lifetimes are observed the found mean state
lifetime is overestimated by less than or equal to 10%. To meet this
requirement, it was found that the mean state lifetime τ should be
larger than 50 · τc which corresponds to approximately ≥ 4 seconds.

When faster kinetics have to be observed, the particle has to diffuse
faster in order to meet the stated requirements. By decreasing the
radius of the particle, the diffusivity is increased. However, the radial
confinement of the tethered particle is decreased as well. According
to Equation 2.12 the diffusion time τc depends on both the diffusion
coefficient of the particle and the radial confinement. The diffusion
coefficient scales with the inverse of the radius according to the Stokes-
Einstein equation, and the radial confinement with the square root of
the radius:

Rc =
√

R2
e−e + 2Re−e · a (2.14)

with Re−e being the end-to-end distance of the tether. Therefore the
diffusion time τc scales with the radius squared. Decreasing the current
particle radius by a factor 3, decreases the diffusion time to approxi-
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mately 7 ms. Therefore, decreasing the particle size opens an additional
decade of time space (0.35–4 s as a mean bound state lifetime) available
for kinetic encoding.
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3H O W R E A C T I V I T Y VA R I A B I L I T Y O F
B I O F U N C T I O N A L I Z E D PA RT I C L E S I S D E T E R M I N E D
B Y S U P E R P O S I T I O N A L H E T E R O G E N E I T I E S

abstract : The biofunctionalization of particles with specific target-
ing moieties forms the foundation for molecular recognition in biomed-
ical applications such as targeted nanomedicine and particle-based
biosensing. To achieve a high precision of targeting for nanomedicine
and high precision of sensing for biosensing, it is important to un-
derstand the consequences of heterogeneities of particle properties.
In this chapter, we present a comprehensive methodology to study
with experiments and simulations the collective consequences of par-
ticle heterogeneities on multiple length scales, called superpositional
heterogeneities, in generating reactivity variability per particle. Single-
molecule techniques are used to quantify stochastic, interparticle, and
intraparticle variabilities, in order to show how these variabilities col-
lectively contribute to reactivity variability per particle, and how the
influence of each contributor changes as a function of the system pa-
rameters such as the particle interaction area, the particle size, the
targeting moiety density, and the number of particles. The results give
insights into the consequences of superpositional heterogeneities for
the reactivity variability in biomedical applications and give guidelines
on how the precision can be optimized in the presence of multiple
independent sources of variability.

Parts of this chapter have been published as: Lubken, R. M. et al. How Reactivity Variability of
Biofunctionalized Particles Is Determined by Superpositional Heterogeneities. ACS Nano 15, 1331–
1341 (2021).
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3.1 introduction

The biofunctionalization of micro- and nanoparticles with specific tar-
geting moieties forms the basis of biomedical applications such as
particle-based biomolecular assays and targeted nanomedicine.1–6 The
specific targeting moieties are coupled to particles that can have various
chemical compositions, e. g., metallic particles, polymer-based particles,
and oxide-based particles. To achieve targeting and sensing with high
precision, good control is needed of the particles and their biofunction-
alization. Therefore, it is important to know the heterogeneities present
in the system and understand how these lead to variabilities in the
targeting functionality of the particles.7,8 For example, heterogeneities
in the particle surface (e. g., nonuniform chemical composition, surface
roughness), heterogeneities in the targeting moieties (e. g., number and
location of conjugation sites), and heterogeneities in the coupling pro-
cesses (e. g., nonuniform reaction conditions) cause variabilities, such
as variable densities of targeting moieties, variable orientations of the
moieties, and variable functional activities. In that way, the underlying
heterogeneities affect the number of molecular interactions that the
particles can effectuate.

In this work we ask the question, how do multiple independent het-
erogeneities collectively determine the reactivity variability of particles?
Here, reactivity is defined as the number of particle-coupled targeting
moieties that are available for interaction toward a countersurface. The
independent particle heterogeneities are referred to as superpositional
heterogeneities, as the heterogeneities are superposed onto each other
to generate the total observed reactivity variability. We address this
question using three experimental techniques with single-molecule
resolution and using simulations. Single-molecule techniques are able
to count molecules and molecular events, revealing detailed hetero-
geneities and stochastic properties of biomolecular systems.9–16 Here,
we use two fluorescence-based single-molecule techniques (qPAINT
and DNA-PAINT) to identify individual targeting moieties on particles
and gain insight in their number and spatial distribution.9,10 The re-
activity variability is studied using a biosensing technique with both
single-particle and single-molecule resolution, called biosensing by
particle mobility (BPM).17–19 These techniques jointly cover all relevant
length scales of the interactions of the particles. The data quantify the
reactivity variability and how this reactivity variability scales as a func-
tion of the system parameters, namely, particle interaction area, particle
size, targeting moiety density, and number of particles. The results
provide insights into the origins of variability and give guidelines how
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particle-based biomedical applications can be engineered in such a way
that a high precision can be obtained.

3.2 superpositional heterogeneity

The concept of superpositional heterogeneity is explained in Figure 3.1,
showing the various contributors to reactivity variability and the dis-
tributions of reactivity caused by each individual contributor. Fig-
ure 3.1a sketches two important applications of biofunctionalized
particles, namely, targeted nanomedicine and biosensing. In targeted
nanomedicine applications, biofunctionalized particles interact with a
biological countersurface such as a vessel wall, a cell membrane, or a
tissue. In particle-based biosensing, particles interact with a biosensor
substrate. In both cases, biofunctionalized particles form biomolecular
bonds with a countersurface. In this chapter, we study how multiple
heterogeneities of the particles cause reactivity variability, i. e., vari-
ability in the number of particle-coupled targeting moieties that are
available for interaction toward a uniformly reactive countersurface.
The reactivity variability is analyzed as a function of system param-
eters, such as particle size and density of targeting moieties on the
particles. The reactivity variability can have stochastic and nonstochas-
tic origins. Stochastic heterogeneity relates to the discrete nature of the
targeting moieties, causing random placements of targeting moieties
on the particle surface and distributions according to Poisson statistics.
Nonstochastic heterogeneity refers to physical and chemical differences,
such as particle size, surface roughness, and chemical surface hetero-
geneities. We subdivide the nonstochastic heterogeneity into two parts:
heterogeneity between particles, which is called interparticle hetero-
geneity, and heterogeneity within particles, which is called intraparticle
heterogeneity.

Figure 3.1b shows the stochastic heterogeneity of targeting moieties
on the particle surface for three different reaction levels: ensemble level,
single-particle level, and subparticle level. At ensemble level (left), the
interaction is effectuated by a large ensemble of particles, where the
total surface area of all particles contributes to this interaction. The
total area is large, so many targeting moieties generate molecular inter-
actions, resulting in a small reactivity variability between individual
measurements. For a single-particle level (middle), where each particle
is an individual effectuator, the total number of targeting moieties
is much lower and therefore the distribution of reactivity per single-
particle measurement is broader. The distribution is broadened even
further when the interaction area is reduced to a fraction of the surface
of a single particle (right).
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The contributions of interparticle and intraparticle heterogeneity to
the superpositional heterogeneity are visualized in Figure 3.1c. When
these heterogeneities are present, the reactivity variability is larger
than would be expected based on the stochastic contribution alone
(gray dashed lines). The collective effect of stochastic, interparticle, and
intraparticle heterogeneity results in the observed reactivity variability.
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Figure 3.1: superpositional heterogeneity and how it induces reactivity variability.
(a) Sketch of two applications of biofunctionalized particles: targeted drug delivery in nanomedicine
(left) and sandwich assay biosensor with a particle as detection label (right). The reactivity variability is
determined by the collective sum of stochastic and non-stochastic heterogeneities resulting in varying
numbers of targeting moieties on the particle surface. (b) Stochastic heterogeneity, where the width of
the reactivity distribution is determined by Poisson statistics. Left: in case the targeting or sensing is
effectuated by targeting moieties on the surfaces of many particles, then the total number of involved
targeting moieties is large (indicative: 106-109 targeting moieties) and therefore the width of the
reactivity distribution is narrow. Middle: when the targeting or sensing is caused by a single-particle
measurement, a lower number of targeting moieties is involved (indicative: 103-106 targeting moieties),
resulting in a larger variability of reactivity. Right: if only a subparticle area is available for interaction
to a countersurface, the number of targeting moieties is low (indicative: 100-103 targeting moieties),
resulting in the broadest reactivity distribution. (c) Nonstochastic heterogeneities. Interparticle
heterogeneity refers to targeting moiety variability between particles, e. g., due to size dispersion.
Intraparticle heterogeneity refers to targeting moiety variability between different subparticle areas,
e. g., due to nonuniform targeting moiety density. The observed reactivity distribution is determined
by the superposition of stochastic, interparticle and intraparticle heterogeneities, i. e., superpositional
heterogeneity.

In the next section we will study how the reactivity variability is
influenced by stochastic, interparticle, and intraparticle heterogeneities.
The interparticle variability is quantified by measuring the number of
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active targeting moieties per particle, and the intraparticle variability is
determined by mapping the locations of active targeting moieties on the
particle surface. Subsequently, the reactivity variability is studied using
BPM. Finally, using simulations the reactivity variability is studied as
a function of the system parameters, namely, particle interaction area,
targeting moiety density, particle size, and number of particles.

3.3 results and discussion

3.3.1 Interparticle targeting moiety variability

The particles used in this work are commercially available silica parti-
cles with a diameter of 1 µm, functionalized with single-stranded DNA
(ssDNA) molecules as targeting moieties (see Material and methods
3.5). These particles are used in this study because they have a low size
dispersion (CVsize = 5%) and a smooth surface (see Supplementary
note 3.6.4). For each particle, the number of ssDNA molecules was
quantified using a fluorescent imaging method with single-molecule
resolution, namely, quantitative points accumulation in nanoscale to-
pography (qPAINT).10,12,16 qPAINT makes use of the distribution of
observed unbound times (i. e., dark times) of imager strands to targeting
moieties in a region of interest (ROI), which depends on the number of
targeting moieties present in this ROI (see Supplementary note 3.6.1).
In Figure 3.2 the interparticle targeting moiety variability is quantified
on the silica particles, which were functionalized with NeutrAvidin
and subsequently incubated with a dilution series of biotinylated ss-
DNA molecules. Figure 3.2a shows the dependency of the number
of active targeting moieties per particle, quantified using qPAINT, as
a function of the ssDNA to particle ratio present in solution during
incubation (blue). For an increasing ratio, a linearly increasing number
of targeting moieties per particle was observed (gray dashed line). This
linear dependency is expected when the solution with biotinylated
ssDNA molecules is depleted by the particles and the particles are not
saturated. The found number of targeting moieties per particle is ap-
proximately a factor 2 lower than the ssDNA to particle ratio; this is in
agreement with the fact that only half of the particle surface is observed
due to illumination by total internal reflection (see Supplementary note
3.6.2).

Figure 3.2b shows the experimentally found and simulated coefficient
of variation (CV) of the number of targeting moieties per particle as a
function of the incubated ssDNA concentration. Two CVs are indicated:
the observed total CV (blue) and the CV induced by the qPAINT
measurement (red). In the simulations it was assumed that the particle
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size has a normal distribution (CVsize = 5%; see Supplementary note
3.6.4) and that the solution with biotinylated ssDNA molecules is
depleted by the particles. The variability in the number of targeting
moieties induced by the qPAINT measurement σqPAINT can be described
by:

σ2
qPAINT = σ2

sampling + σ2
stochastic (3.1)

with σsampling being the variability in the number of targeting moieties
introduced by the finite sampling time, and σstochastic the variability in
the number of targeting moieties introduced by the stochastic place-
ment of ssDNA molecules on the NeutrAvidin-functionalized particles.
These two individual variabilities can be further defined as:

σsampling = Nmoiety ·
(

TM
τb + τd

)−0.5

σstochastic =
√

Nmoiety

(3.2)

with Nmoiety being the average number of targeting moieties per parti-
cle, TM the measurement time, τb and τd the mean bright and dark times
respectively. At low ssDNA concentrations, and thus a low number of
targeting moieties per particle, σqPAINT is dominated by the stochastic
contribution, where σsampling ∝ Nmoiety and σstochastic ∝

√
Nmoiety.

When comparing the experimental data to the simulated data, it
appears that the variability in particle size and the qPAINT measure-
ment variability together (light blue) are not sufficient to explain the
CVmoiety observed in the experiment. This implies that an additional
variability contribution must be present which is not included in the
simulation. A possible additional contributor is variability in targeting
moiety density per particle; including a targeting moiety density vari-
ability per particle in the simulations (with CVdensity = 15%, dark blue)
matches the simulated results to the experimental results. A variability
in targeting moiety density may originate from variations in surface
chemistry (e. g., causing variable NeutrAvidin densities and thus vari-
able targeting moiety densities) or other differences between particles
on subparticle length scales. Such variability on a smaller length scales,
i. e., intraparticle variability, will be discussed in the next section.
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Figure 3.2: interparticle targeting moiety variability quantified using qpaint

experiments . (a) Number of targeting moieties (blue) as a function of the ssDNA to particle ratio
in solution. The saturation point of (2.0 ± 0.2) · 105 targeting moieties per particle is determined
by a supernatant assay (gray solid line, see Supplementary note 3.6.3). The values on the y-axis
are the number of targeting moieties per particle (i. e., corrected for the fractional occupation of
the NeutrAvidin by the complementary ssDNA molecules in the qPAINT experiment, see Material
and methods 3.5). The gray dashed line indicates a linear relation (slope = 1) between the number
ssDNA molecules per particle present in solution and the number of observed targeting moieties
in the qPAINT experiment. The top x-axis indicates the total incubated ssDNA concentration (both
complementary and non-complementary ssDNA). The reported errors are standard deviations. The
inset shows the specificity of the qPAINT experiment by means of the number of localizations per
particle for full match (FM) ssDNA and control (C) ssDNA with a random sequence. The boxes
show the median, 25

th and 75
th percentile, and the whiskers show the 5

th and 95
th percentile. (b)

Variability in the number of active targeting moieties per particle. The panels indicate the experimental
results (left) and the simulated results (right). Experiment: the observed CV is indicated in blue, the
CV caused by the qPAINT measurement only is indicated in red. The CV caused by the qPAINT
measurement shows a weak concentration dependency due to stochastics. Simulation: light blue
includes only size variability (CVsize = 5%); dark blue includes size as well as targeting moieties
density variability (CVdensity = 15%). The experimental data was measured in two fields-of-view with
approximately 102 particles each. The errors are the fitting errors for the experiment, and the standard
error for the simulation using 10 simulations with 102 particles per simulation.

3.3.2 Intraparticle targeting moiety variability

The intraparticle targeting moiety variability was investigated by DNA-
PAINT experiments.9 The imaging data were used to confirm or reject
whether the positions of these moieties on the particle surface were
spatially randomly distributed. Figure 3.3a shows the positions of (a
subset of) targeting moieties obtained in a DNA-PAINT measurement
on a single particle (see Supplementary note 3.6.2). Since the targeting
moieties are located on the surface of a spherical particle, the 2D local-
ization data need to be projected on a hemisphere (see Supplementary
note 3.6.2) to calculate the true distance (great-circle distance) between
the localizations. The dashed circle visualizes the projection of the
particle on the xy-plane based on the DNA-PAINT localization cloud
(see Supplementary note 3.6.4).

Figure 3.3b quantifies the degree of targeting moiety clustering and
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the influence of the DNA-PAINT measurement on the observed degree
of clustering using clustering parameter zm, the standardized mean
nearest-neighbor (NN) distance, which is a measure for the degree of
clustering (negative zm) or dispersion (positive zm) (see Supplementary
note 3.6.5).20 Examples are shown of simulated (true) targeting moiety
positions (blue) on a particle hemisphere and corresponding simulated
DNA-PAINT localizations (red), both projected on the xy-plane. The
simulated data are shown for three cases: absence of clustering, su-
perposition of clustered (25% of the localizations) and nonclustered
localizations (75% of the localizations), and full clustering (100% of the
localizations). For all simulated particles, the zm values are shown for
the true positions (blue) and corresponding DNA-PAINT localizations
(red). The data show that the zm distributions measured with DNA-
PAINT data are wider and that the mean is less negative compared to
the true positions. In Figure 3.3c, experimental zm values calculated
from DNA-PAINT results (green line) are shown for all particles in
a field-of-view as a function of particle coverage by ssDNA. The re-
mainder of the ssDNA consists of noncomplementary ssDNA equal in
length. As a reference, DNA-PAINT simulations (red line) are shown
for particles without targeting moiety clustering. Both curves show a
slight decrease of zm with decreasing coverage. The lower zm values at
low particle coverage represent a clustering artifact due to repeated lo-
calizations of the same targeting moiety in a DNA-PAINT experiment.
This artifact is not present at the higher targeting moiety densities.
The experimental results systematically show more negative zm val-
ues compared to the simulation over the full particle coverage range,
which indicates the presence of clustered true positions of the target-
ing moieties. The histogram (bottom panel) shows the experimentally
found zm per particle at a NeutrAvidin coverage by complementary
ssDNA of 2.9%. The distribution is comparable to the simulated distri-
bution for 25% clustering in both mean and width (zm = −1.2± 0.6 and
zm = −1.4± 0.6 for the experiment and simulation respectively, see Fig-
ure 3.3b), indicating that a degree of nonrandomness is indeed present
in the spatial distribution of targeting moieties on the particle surface.
A nonrandomness of targeting moiety positions gives an intraparticle
contribution to the reactivity variability that scales with the interaction
area of the particle (see Supplementary note 3.6.6). Furthermore, it was
found that a comparable distribution of zm values could be observed
for the full range of number of targeting moieties per particle (see
Supplementary note 3.6.7), indicating that the typical length scale of
intraparticle variability is much smaller than the particle size. The inter-
and intraparticle targeting moiety variabilities cause a variability of
reactivities of the biofunctionalized particles. This reactivity variability
depends in particular on the interaction area of the particle, size of the
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particle, targeting moiety density, and number of particles. This topic
is explored in the next section, using BPM, a particle-based biosensing
method with single-particle and single-molecule resolution.
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Figure 3.3: intraparticle targeting moiety variability studied using dna-paint

experiments . (a) Example of an experimentally measured 2D and calculated 3D localization image
of DNA-PAINT localizations with the contours of the particle (black dashed line). Using the x- and y-
coordinates of the localizations and the calculated diameter of the localization cloud, a 3D localization
image on the lower particle hemisphere can be reconstructed. (b) Examples of simulated true positions
of targeting moieties (blue) and simulated DNA-PAINT localizations (red) with corresponding zm per
particle for three cases: randomly distributed targeting moieties, 25% clustering and 75% random,
and 100% clustering of targeting moieties. For an increasing degree of clustering, more negative zm
values were found. For this example, a cluster size of 25 nm and an average 10 ssDNA molecules
per cluster were used as an example. (c) Experimentally calculated zm (green) and simulated zm
(red) values as a function of the particle coverage by the complementary ssDNA. Here the particles
are incubated with a dilution series of ssDNA comprising 2.9% of complementary ssDNA and the
remainder non-complementary ssDNA equal in length. For all data points, a systematic difference
could be observed which indicates the presence of clustered targeting moieties. The experimental data
were measured in two fields-of-view with approximately 102 particles each. The distribution shows
zm per particle for a ssDNA coverage of 2.9%, with zm = −1.2± 0.6 (mean ± standard deviation). The
arrow indicates that a negative zm corresponds to clustered targeting moieties. The errors indicated in
the figure are the standard deviations.

3.3.3 Reactivity variability

The reactivity variability was studied using BPM.19 A detailed descrip-
tion of the BPM technique is given in Supplementary note 3.6.8. Briefly,
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particles are tethered to a surface by a flexible double-stranded DNA
(dsDNA) stem, causing every particle to move due to thermal motion
within a confined space. The sensing capability of the particles results
from targeting moieties on the particle and a single targeting moiety
on the dsDNA stem. Target molecules in solution can bind to targeting
moieties on the particle as well as to the targeting moiety on the stem;
when this happens simultaneously, a compact molecular sandwich
arrangement is formed, which strongly reduces the motion of the parti-
cle. The molecular interactions are designed to be reversible, causing
bound and unbound particle states to be observed over time. The mean
unbound state lifetime of a particle decreases when the number of
captured target molecules increases. Therefore, the average switching
frequency of particles between unbound and bound states increases
with the target concentration in solution.

The BPM sensor is designed in such a way that the affinity between
target molecule and targeting moieties on the particle is much higher
than the affinity between target molecule and the single moiety on the
stem. Therefore, the sensing mechanism can be described as a two-step
process: target molecules bind first to the targeting moieties on the
particle and thereafter to the moiety on the stem. This effectively results
in target molecules bound to targeting moieties on the particles to
function as the reactive component toward the moiety on the stem (see
Supplementary note 3.6.8).

Figure 3.4a shows the response of the sensor as a function of the
ssDNA target concentration in solution. The left graph shows the
measured particle switching frequency, defined as the mean frequency
with which a single particle switches between bound and unbound
states. The right graph shows the measured mean state lifetimes. The
switching frequency as a function of target concentration follows an
S-shaped dose-response curve on a linear-logarithmic scale,19 which is
characteristic for a first-order affinity binding process. The mean state
lifetime as a function of target concentration shows different behaviors
for the mean bound state lifetime τB (red) and mean unbound state
lifetime τU (blue). τB is independent of target concentration, because
it is determined by the dissociation lifetime of the single-molecular
interaction between a ssDNA target molecule and the ssDNA molecule
on the stem. In contrast, τU shows a clear concentration dependency,
which is in agreement with the fact that the occupation of targeting
moieties by target molecules depends on the target concentration in
solution.

The reactivity variability per particle becomes apparent when ana-
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lyzing the distributions of measured lifetimes. Figure 3.4b shows the
bound and unbound state lifetimes of all observed particles plotted
as cumulative distribution functions (CDFs), for a high target concen-
tration (blue) and a low target concentration (green). The CDFs of
the bound state lifetimes show straight lines on a linear-logarithmic
scale, equal for both target concentrations. This demonstrates a single-
exponential lifetime distribution, which is in agreement with a well-
defined single-molecular unbinding process. In contrast, the CDFs of
the unbound state lifetimes do not show single-exponential distribu-
tions. The data cannot be fitted with straight lines but can be fitted
with lognormal distributed mean unbound state lifetime per particle.19

The fact that the association kinetics do not show a single-exponential
distribution suggests the presence of reactivity variability per particle.

Figure 3.4c plots the CDFs of the unbound state lifetimes for two
individual particles as an example; these CDFs of individual particles
show single-exponential distributions (red dashed lines) in contrast
to the ensemble CDFs in Figure 3.4b. The CDFs of the two individual
particles show a different τU , indicating that the molecular binding pro-
cess occurs under different local conditions per particle. Experiments
show that the observed difference in τU per particle is of static nature,
i. e., does not change during a measurement. Therefore, we attribute
the observed differences between particles to time-independent het-
erogeneities, such as differences in the number of accessible targeting
moieties. For example, if more targeting moieties are present in the
interaction area, then more target molecules are captured at a given
target concentration, resulting in a shorter τU (see the two sketches in
Figure 3.4c).

In Figure 3.4d the experimental (blue) and simulated (red) distri-
butions of both τB and τU per particle are visualized. The simulated
distributions were determined using mock data with a measurement
duration equal to the experiment; the distribution width reported by
the simulations is therefore only caused by the finite measurement
time. The observed bound and unbound state lifetimes for all parti-
cles were sampled from a single-exponential distribution, with mean
bound and mean unbound state lifetimes equal to the peak values
of the experimental distributions (blue dashed line). The experimen-
tal and simulated distributions for τB (panel d, left) per particle show
CVexp = 24± 3%, and CVsim = 14± 1%, respectively. The slightly larger
CVexp compared to CVsim is caused by a relatively long τU for the ma-
jority of the particles (panel d, right), resulting in lower bound state
lifetime statistics per particle compared to the simulation. However, the
results for the unbound state lifetime show large differences between



62 reactivity variability of biofunctionalized particles

experiment and simulation. The experimental distribution for τU per
particle shows a much larger variability than would be expected from
the simulated results, namely, CVexp = 80 ± 10% in the experiment
versus CVsim = 14 ± 2% in the simulation. The data in Figure 3.4 show
strong differences in the reactivity between individual particles. In the
next section, the contribution of each source of variability (stochas-
tic, nonstochastic interparticle, and nonstochastic intraparticle) will
be studied. Subsequently, using simulations the reactivity variability
will be determined as a function of interaction area, targeting moiety
density, particle size, and the number of particles.

3.3.4 Influence of system parameters on reactivity variability

In this section we study by simulations the scaling behavior of different
contributors to the reactivity variability for different system parameters,
namely, particle size, targeting moiety density, interaction area, and
number of particles. In the simulations we generate initial distributions
(e. g., of particle size and targeting moiety density) with an experimen-
tally found or estimated mean and width, and subsequently perform
calculations on these distributions to determine the number of target-
ing moieties per interaction area, which determines the reactivity per
particle. Finally, we determine the mean and width of the distributions
for the given number of particles in the system. The results are shown
in Figure 3.5a for particle-based biosensing by BPM and are generalized
in Figures 3.5b and 3.6 for other particle-based biosensing and targeted
nanomedicine applications.

Figure 3.5a shows the reactivity variability in BPM as a function of
the particle interaction area, highlighting the contributions of stochas-
tic, interparticle, and intraparticle variability. In the BPM design with
a single ssDNA molecule on the stem, the reactivity variability per
particle is caused by variability in the number of target molecules cap-
tured on the particles that can interact with the ssDNA molecule on
the stem. Due to the limited length of the tether between particle and
substrate, the stem can reach only a limited area on the particle. Only
target molecules captured within this interaction area are able to reach
the ssDNA molecule on the stem. It was found that the interparticle
variability σinterparticle depends on particle size dispersion and targeting
moiety density fluctuations (see Figure 3.2). The intraparticle variability
σintraparticle originates from nonuniform functionalization of targeting
moieties (see Figure 3.3) and was found to scale with the inverse square
root of ai (see Supplementary note 3.6.6). The stochastic contribution
of the targeting moieties is defined as σstochastic =

√
f · Nmoiety, with f
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Figure 3.4: reactivity variability per particle quantified using biosensing by parti-
cle mobility (bpm). (a) Sensing response as a function of ssDNA target concentration. Left: the
switching frequency as a function of target concentration. A Hill equation fit21 (blue dashed line)
yields an EC50 value of 170 ± 50 pM. Right: the bound and unbound state lifetimes as a function of
target concentration, derived from distributions as shown in panel b.19 The red dashed line represents
a constant time; the blue dashed line represents a fitted line with slope 1/[T]. The errors indicated in
this panel are the standard errors for the switching frequency, and fitting errors for the state lifetimes.
(b) State lifetime analysis by means of cumulative distribution functions (CDFs) for ssDNA target con-
centrations of 125 pM (blue) and 16 pM (green). The bound state lifetime shows a single-exponential
distribution while the unbound state lifetime shows a multiexponential distribution (red dashed lines).
(c) CDFs for two individual particles which show an approximate single-exponential distribution. (d)
Distributions of the observed state lifetime per particle for both the bound and unbound states for a
target concentration of 125 pM. The width of the experimentally found distribution (blue) is rather
close to the simulated distribution (red) for the bound state lifetime per particle (CVexp = 24 ± 3%,
and CVsim = 14 ± 1%). However, for the unbound state lifetime per particle, the experimental and
simulated distributions are very different (CVexp = 80 ± 10% and CVsim = 14 ± 2%). The errors
indicated in the caption are the fitting errors.

being the fraction of targeting moieties occupied by a target molecule
and Nmoiety the average number of targeting moieties in the interac-
tion area. The fractional occupancy is typically less than 1% in the
low-concentration regime of a BPM sensor and depends on the tar-
get concentration in solution. For Figure 3.4d, f was estimated to be
approximately 0.3%. The parameters σinterparticle and σreactivity were
determined experimentally in the previous sections using qPAINT (Fig-
ure 3.2b) and BPM data (Figure 3.4d), respectively. On the basis of these
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parameters, σintraparticle could be estimated and therefore the reactivity
variability could be calculated as a function of ai.

The results in Figure 3.5a show that for a small ai, where the number
of targeting moieties Nmoiety is small, the CVreactivity is dominated
by stochastic and intraparticle variability. For large ai, where Nmoiety
is large, the contribution of interparticle variability dominates. The
stochastic contribution scales as CV ∝ a−1/2

i , corresponding to Poisson
statistics. The intraparticle contribution scales with CV ∝ a−1/2

i as
well (see Supplementary note 3.6.6), while the superposition of all
contributions scales roughly with CV ∝ a−2/3

i .

The three histograms on the right side of Figure 3.5a show reactivity
distributions for different ai, i. e., distributions of the number of target
molecules captured onto a particle interaction area of a given size. This
is indicated as Nmoiety,eff, because these target molecules are the moi-
eties effective for generating a signal. The top histogram applies to the
BPM sensor with a single ssDNA molecule on the stem (see Figure 3.4),
which has a particle interaction area ai of about 6 · 103 nm2. In this con-
dition, the simulations show that the reactivity variability is dominated
by stochastic and intraparticle variabilities of targeting moieties that
captured a target molecule on the small interaction area of the particle.
The simulations predict a CV of 82%, which is similar to the experimen-
tal value for the unbound state lifetime reported in Figure 3.4d. The
middle histogram applies to a BPM sensor with the whole substrate
coated with ssDNA molecules, as reported in previous work.17,18 This
sensor design has a larger particle interaction area of about 6 · 104 nm2

(see Supplementary note 3.6.8). With this larger interaction area, the
simulations show that the contributions of stochastic and inter- and
intraparticle heterogeneity are approximately equal, giving a CV of
21%. This value is in agreement with the experimentally measured
CV for the BPM sensor with the whole substrate coated with ssDNA
molecules.18 The third histogram applies to a sensor that would probe
the full area of a particle (i. e., ai = 4πR2

p, with Rp being the particle
radius). Here, the CV is dominated by interparticle heterogeneity and
the CV is about 19%. This result is in agreement with the experimental
value found in the qPAINT experiments when the qPAINT induced
contribution is neglected (see Figure 3.2b). Overall, the results show
that the stochastic contribution to the reactivity variability in BPM is
small with respect to the other sources of variability if the interaction
area is at least 5% of the particle surface.

The reactivity variability calculated by simulations in Figure 3.5a
and the corresponding experimental values are in good agreement
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for different BPM sensor designs, where the particles interact with a
biofunctionalized sensing surface. To extrapolate these results toward
targeted nanomedicine and particle-based biosensing in general, the
calculated reactivity variability is shown in Figures 3.5b and 3.6 for dif-
ferent sizes of interaction area, particle radii, targeting moiety densities,
and number of particles.

Figure 3.5b shows the reactivity variability as a function of interac-
tion area for two particle radii Rp (50 and 500 nm) and two targeting
moiety densities ρmoiety. A lower ρmoiety = 1, 600 µm-2 corresponds to
an average intermolecular distance of 25 nm and resembles a typical
density of a particle surface functionalized with antibodies. A higher
ρmoiety = 130, 000 µm-2 corresponds to an average intermolecular dis-
tance of 3 nm and resembles a typical density of a particle surface
functionalized with oligonucleotides. The reactivity variability is ex-
pressed as a function of the relative interaction area, i. e., the percentage
of the total particle surface. Due to stochastics, the reactivity variability
is largest for small particles and for a low targeting moiety density.
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Figure 3.5: limiting effect of superpositional heterogeneity on the reactivity

variability of biofunctionalized particles for various interaction areas . (a)
Reactivity variability as a function of the interaction area ai for BPM. Shown are the stochastic
(black), interparticle (yellow), and intraparticle (blue) contributions to the variability as well as the
superposed result (red), for a particle with a radius of 500 nm and an effective targeting moiety
density ρmoiety,eff of 3 · 102 µm-2. The errors indicated in the figure are standard errors using 5
simulations with 103 particles per simulation; most error bars are smaller than the symbol size. On
the right, examples of three distributions of the number of target molecules per interaction area
ai are visualized. Particles are schematically shown with their corresponding ai indicated in dark
orange. The found CVreactivity are 82 ± 1%, 21.3 ± 0.3%, and 18.9 ± 0.5% (mean ± standard error) for
intraparticle heterogeneity dominated, mixed, and interparticle heterogeneity dominated examples
respectively. (b) The variability of reactivity per particle as a function of the interaction area for two
particle radii Rp (50 and 500 nm) and a low targeting moiety density (top, ρmoiety = 1.6 · 10

3

µm-2)
and high targeting moiety density (bottom, ρmoiety = 1.3 · 105 µm-2). The arrows in the panel indicate
three values for the interaction area ai that are used in Figure 3.6.
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For large interaction areas, the reactivity variability converges to about
20%; here the stochastic contribution is small and the variability is
dominated by interparticle heterogeneity (see also Figure 3.5a).

Figure 3.6a shows how the reactivity variability depends on particle
radius Rp, for two targeting moiety densities, and for three interaction
areas (indicated by the arrows in Figure 3.5b). For all conditions, the
reactivity variability decreases as a function of particle radius, due to
the decreasing contribution of stochastic and intraparticle variability.
The particle radius where the stochastic and intraparticle contributions
become insignificant depends on the interaction area and the targeting
moiety density: a smaller interaction area results in a larger reactivity
variability while a higher density of targeting moiety results in a smaller
reactivity variability.

Figure 3.6b visualizes the ensemble reactivity variability as a function
of the number of particles, shown for two targeting moiety densities,
two different particle sizes (solid and dashed lines), and three inter-
action area percentages (indicated by the three colors). The ensemble
reactivity variability is lower (lower CV, better precision) when more
particles are used, scaling with the inverse square root of the number of
particles. The number of particles required to get a desired CV depends
on the particle size, interaction area, and targeting moiety density. The
stochastic and intraparticle heterogeneity are large in the case of small
particles, low targeting moiety density, and small interaction area. The
results show that systems with small particles (< 100 nm), low target-
ing moiety density (for example particles coated with proteins), and a
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ability of biofunctionalized particles . (a) Reactivity variability per particle as a function of
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limited interaction area between particle and countersurface, can have
very large reactivity variability. When the targeting at the biological
site of interest is effectuated by a limited number of particles (< 1000
particles), then the number of molecular interactions realized by the
particles can vary by tens of percent.

3.4 conclusion

The reactivity variability of biofunctionalized particles used in targeted
nanomedicine and particle-based biosensing applications depends on
heterogeneities of various kinds. We have studied three factors that
contribute to a variability in the number of targeting moieties on the
particles, namely, stochastic heterogeneity, interparticle heterogeneity,
and intraparticle heterogeneity, jointly referred to as superpositional
heterogeneity.

In this chapter, we have presented a comprehensive methodology to
quantify particle heterogeneities and their consequences. We have ex-
perimentally quantified targeting moiety variabilities using microscopy
methods with single-molecule resolution, namely, qPAINT and DNA-
PAINT, using ssDNA-functionalized silica particles as a model system.
The data show that the interparticle heterogeneity originates from par-
ticle size dispersion and targeting moiety density fluctuations, and
intraparticle heterogeneity is caused by nonuniform functionalization.

The three types of heterogeneities cause biofunctionalized particles to
have variable reactivities, where reactivity is defined as the number of
particle-coupled targeting moieties that are available for interaction to-
ward a countersurface. The variability was quantified by the coefficient
of variation, which depends on the interaction area of the particles, the
particle size, the targeting moiety density, and the number of particles.
The reactivity variability was studied by experiments and simulations
for BPM, a particle-based biosensing technique with single-particle
and single-molecule resolution. The results show that the reactivity
variability strongly depends on the size of the interaction area. When
the contributions of stochastic and inter- and intraparticle heterogeneity
are approximately equal, then the reactivity variability stabilizes and
is approximately equal to the reactivity variability for a full-particle
interaction.

The results were extrapolated toward the fields of targeted nanome-
dicine and particle-based biosensing in general, where the precision in
the available number of particle-coupled targeting moieties depends
on the particle size, targeting moiety density, interaction area, and
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number of particles. The stochastic and intraparticle heterogeneity are
large in the case of small particles, low targeting moiety density, and
small interaction area. The results show that large fluctuations (tens of
percent) can be expected when targeting effects at a biological site of
interest or at a sensor surface are determined by interactions from a
limited number of particles.

The methodologies and understanding described in this chapter war-
rant further studies on variabilities of biofunctionalized particles on
multiple length scales. Studies can include various biofunctionalization
strategies, different particle materials, sizes, and geometries of parti-
cles, different targeting moiety types, and the influence of complex
biological matrices (e. g., protein corona). Measured distributions and
heterogeneity simulations can be related to the precision of particle-
based targeting effects. The developed insights will enable researchers
to engineer particles for biomedical applications with high precision,
guided by a thorough understanding of heterogeneities and their col-
lective consequences.

3.5 material and methods

qpaint : All ssDNA oligonucleotides (IDT, HPLC purification) were
diluted in Milli-Q water (Thermo Fisher Scientific, Pacific AFT 20) to
a final concentration of 20 µM for the complementary ssDNA, 10 µM
for the ssDNA with a random sequence, and 200 nM for the imager
strand. Glass slides (25 × 75 mm, #1, Menzel-Gläser) were cleaned by
15 min sonication in methanol (VWR, absolute) and thereafter dried
under nitrogen flow. A custom-made fluid cell sticker (Grace Biolabs)
with an approximate volume of 24 µL was attached to the glass slide.
NeutrAvidin-functionalized silica particles19 were incubated in bulk
overnight with biotinylated ssDNA at the required concentration. The
particles were thrice centrifugally washed in PBS (130 mM NaCl, 7
mM Na2HPO4, 3 mM NaH2PO4 at pH 7.4) at 6000× g for 5 min using
a tabletop spinner (Eppendorf MiniSpin). Finally, the particles were
resuspended in PBS to a final concentration of 0.17 mg mL-1 (0.26
pM) and sonicated using an ultrasonic probe (Hielscher). Thereafter,
the silica particles were added to the fluid cell and nonspecifically
absorbed to the glass surface for 30 min (approximately 100 particles
per field-of-view). After incubation, the fluid cell was washed with
200 µL of buffer B+ (5 mM Tris-HCl, 10 mM MgCl2, 1 mM EDTA, 0.05
vol-% Tween-20 at pH 8.0) to remove unbound particles and change the
buffer in the fluid cell. Finally, 200 µL of imager strand of the required
concentration in buffer B+ was added and the fluid cell was closed
using sticky tape. Imaging at a 60× magnification (Nanoimager S, ONI)
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was performed under TIR conditions using a 647 nm laser at 50 mW
at a frame rate of 13.3 Hz for 30 min. Thresholding the integrated
pixel intensity of the ROI around each particle was used to determine
binding and unbinding events of imager strands. The mean dark time
was extracted by fitting all observed dark times to a single-exponential
distribution.

dna-paint : Experimental conditions as described under qPAINT.
Drift correction was performed by cross-correlation. After drift correc-
tion, the positions of the targeting moieties were determined by cluster-
ing the DNA-PAINT localizations both in space and time; DNA-PAINT
localizations were clustered into a single targeting moiety position if
the distance between DNA-PAINT localizations was less than 100 nm in
space and less than 15 frames in time. The diameter of the localization
cloud was determined using the area of the convex hull; this diameter
represents the diameter of the particle (see Supplementary note 3.6.4).
Second, the localization cloud was centered by averaging all targeting
moiety positions after discarding top and bottom 5% outliers. The cen-
tered positions are projected on a sphere with the calculated diameter.
The NN-distance is determined for each position by calculating the
great-circle distance to the closest position.

bpm assay : Glass slides (25 × 75 mm, #5, Menzel-Gläser) were
cleaned by 15 min of sonication in methanol (VWR, absolute), iso-
propanol (VWR, absolute), and methanol (VWR, absolute) baths. After
each sonication step, the glass coverslips were dried under nitrogen
flow. A custom-made fluid cell sticker (Grace Biolabs) with an approx-
imate volume of 60 µL was attached to the glass slide. A fluid cell
was made by inserting tubing (Freudenberg Medical, monolumen) into
the fluid cell sticker and connecting this tubing to a syringe pump
(Harvard Apparatus, Pump 11 Elite). First the fluid cell was prewetted
with PBS (130 mM NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4 at pH
7.4) at a flow speed of 500 µL min-1 for 2 min. Functionalization of
the glass substrate was performed by physisorption of 83 ng mL-1

anti-digoxigenin antibodies (Thermo Fisher Scientific) in PBS for 60
min. Finally, the glass substrate was blocked by incubation with 1.0
wt.-% casein (Sigma-Aldrich, casein sodium salt from bovine milk) in
PBS for 60 min. After each incubation step, the fluid cells were flushed
with PBS (250 µL min-1 for 1 min). NeutrAvidin-functionalized silica
particles were incubated in bulk with 10 nM nanoswitch for 10 min.19

Subsequently, the particles were coated with ssDNA by an incubation
with 40 µM biotin-labeled single-stranded oligonucleotide. The parti-
cles were thrice centrifugally washed in 1.0 wt.-% BSA (Sigma-Aldrich,
lyophilized powder, essentially globulin free, low endotoxin, ≥ 98%)
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and 0.05 vol-% Tween-20 (Sigma-Aldrich) in PBS at 6000× g for 5 min us-
ing a tabletop spinner (Eppendorf MiniSpin). Finally, the particles were
resuspended in PBS/BSA/Tween-20 to a final concentration of 0.17 mg
mL-1 (0.26 pM) and sonicated using an ultrasonic probe (Hielscher).
The particles were added to the fluid cell at a flow speed of 50 µL min-1

for 5 min and incubated for 30 min. After incubation, the fluid cell
was turned over and subsequently flushed with PBS/BSA/Tween-20

at a flow speed of 50 µL min-1 for 5 min to remove unbound particles.
ssDNA target (IDT, standard desalting) at the required concentration
in PBS/BSA/Tween-20 was added at a flow speed of 50 µL min-1 for 5
min and incubated for 20 min. Samples were observed under a white
light source using a microscope (Leica DM6000M) using a darkfield illu-
mination setup at a total magnification of 20× (Leica objective, N PLAN
EPI BD, 20×, NA 0.4). A field-of-view of approximately 400 × 400 µm2

was imaged using a CMOS camera (Grasshopper 2.3 MP Mono USB3

Vision, Sony Pregius IMX174 CMOS sensor) with an integration time
of 10 ms and a sampling frequency of 30 Hz. The silica particles were
tracked using the center-of-intensity of the bright particles on the dark
background. Trajectory parameters were calculated which describe the
motion pattern and were used to select single-tethered particles.17 The
state lifetimes were extracted using a previously described method.19

simulations of bpm assay : Data were simulated using exper-
imental positional data of bound and unbound particles. For each
simulation, two single-exponential distributions were generated: one
with a given mean bound state lifetime and one with a given mean
unbound state lifetime. The particle traces were reconstructed block-by-
block with each block length according to the two predefined single-
exponential distributions. Nonspecific interactions and inter- and in-
traparticle heterogeneity were neglected. Subsequent time-dependent
analysis was performed as if experimental data were analyzed.

simulations on reactivity variability : Two independent
(normal) distributions were generated for the particle diameter (CVsize =
5%) and targeting moiety density (CVdensity = 15%); both a particle size
and a targeting moiety density were assigned randomly to a particle.
The spherical cap area (i. e., the interaction area) was calculated for
each particle. Using the assigned particle size and targeting moiety
density, the (mean) number of targeting moieties on the spherical cap
area was calculated. In the absence of intraparticle heterogeneity, the
number of targeting moieties per spherical cap and the number of
target molecules per spherical cap are Poisson distributed. To include
intraparticle heterogeneity, a lognormal distributed number of target-
ing moieties per spherical cap was used as well. The variance of the
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lognormal distribution of the number of targeting moieties on the in-
teraction area σ2

intraparticle was matched to the experimental value of
the reactivity variability found in Figure 3.4d and Supplementary note
3.6.6. Subsequently, the number of targeting moieties per spherical cap
was fitted by a lognormal distribution, from which the CVreactivity was
calculated.

3.6 supplementary notes

3.6.1 Quantitative points accumulation in nanoscale topography

qPAINT measurement

Quantitative points accumulation in nanoscale topography (qPAINT) is
a fluorescence-based measurement technique by which quantitative in-
formation on the number of molecules on complexes or surfaces can be
obtained.10 The method exploits the well-defined and controllable bind-
ing behavior of dye-labeled ssDNA imager strands to ssDNA docking
strands (see Figure 3.7), which are referred to in this chapter as target-
ing moieties. The number of targeting moieties can be determined via
imager strands that transiently bind to the complex- or surface-bound
ssDNA docking strands, causing observable binding and unbinding
events (see Figure 3.7a). The distribution of the observed unbound
times (i. e., dark times) of imager strands to ssDNA docking strands in
a ROI, depends on the number of ssDNA docking strands in this ROI
for a given imager strand concentration (see Figure 3.7b). Under the
assumption that no simultaneous binding events occur in a single ROI
at each given time point, the number of targeting moieties per ROI can
be calculated using:

Nmoiety =
1

konciτd
(3.3)

with Nmoiety being the number of targeting moieties in the ROI (in
this chapter a single particle), kon the association rate constant of the
interaction between the imager strand and the docking strand, ci the
imager strand concentration, and τd the mean observed dark time. Since
kon is a molecularly determined constant,10,12 and ci an experimental
condition, the observable τd reveals the number of targeting moieties
per particle. The precision with which Nmoiety can be determined ex-
perimentally depends on the number of observed dark states following
Poisson statistics (see Equation 3.2).
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Figure 3.7: measurement principle of quantitative points accumulation in

nanoscale topography (qpaint) to quantify the number of targeting moieties on

a single particle . (a) Binding and unbinding behavior of dye-labeled ssDNA imager strands (red)
to ssDNA docking strands (green) yields observable bright states (state 1) with length τ∗

b and dark
states (state 0) with length τ∗

d . Only the associated ssDNA imager strands close to the glass substrate
yield a fluorescent signal due to total internal reflection excitation, causing an evanescent field (red
gradient). (b) For particles with a low number of targeting moieties Nmoiety, the observed dark times
are on average longer than for particles with a high number of targeting moieties; using the mean
observed dark time τd , the number of targeting moieties can be determined using Equation 3.3.

Analysis of qPAINT data

In Figure 3.8 the data analysis procedure of experimental qPAINT data
is shown. Figure 3.8a visualizes an example of the integrated pixel
intensity (blue) of a single ROI (i. e., a single particle) as a function
of time. The red dashed line indicates a threshold of µb + 5σb with
µb and σb the mean and the standard deviation of the background
signal respectively. Using this threshold, the bright and dark times
can be extracted from the integrated pixel intensity trace. In order to
correct for intensity fluctuations in the bright time and blinking, which
might lead to falsely detected binding and unbinding events, two filters
were used. The first filter removes single frames below the intensity
threshold with neighboring frames above the intensity threshold; these
events are regarded as false unbinding events and set to a bound state,
under the condition that the integrated pixel intensity in this particular
frame is above µb + σb. The second filter removes single frames above
the intensity threshold with neighboring frames below the intensity
threshold; these are regarded as false binding events and set to an
unbound state, under the conditions that the integrated pixel intensity
in this particular frame is below µb + 9σb. The red solid line (see inset)
visualizes the state trace that results from thresholding the integrated
pixel intensity profile; a high level indicates a bound state from which
the bright time was extracted, and a low level indicates an unbound
state from which the dark time was extracted.

Figure 3.8b shows two CDFs, and two histograms of the mean dark
and bright times of all observed lifetimes on a single particle. For
the CDF of the dark times, a single-exponential distribution (blue
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dashed line) with τd = 12.2 ± 0.1 s was observed indicating for a
single-molecular binding process. In contrast, the CDF for the bright
times only exhibit an approximate single-exponential distribution (red
dashed line) with τb = 830± 29 ms for 70% of all observed bright times.
This effect might be explained by filtering the dark times with a length
that equals a single frame; this results in a tail of merged, and thus
longer, bright times. However, since 70% of the observed bright times
and all observed dark times follow a single-exponential distribution, we
neglected the influence of this effect on the quantitation of the number
of targeting moieties per particle.
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Figure 3.8: data analysis procedure of experimental qpaint data . (a) Integrated intensity
in a ROI (i. e., a single particle) as a function of time. The threshold (red dashed line) is determined
by means of the background signal and has the value of µb + 5σb with µb and σb the mean and
the standard deviation of the background signal respectively. The inset shows a zoom-in in which
individual bright and dark times can be observed after thresholding the integrated intensity (red solid
line). (b) Lifetime analysis of the dark and bright times observed in a single particle. The cumulative
distribution function (CDF) of all observed dark times shows a single-exponential distribution (blue
dashed line) with τd = 12.2 ± 0.1 s. The CDF of all observed bright times shows a single-exponential
distribution (red dashed line) for approximately 70% of the observed bright times with τb = 830 ± 29
ms. The errors indicated in the caption are fitting errors.

Mass transport limitation in qPAINT experiments

Since the number of targeting moieties per particle is calculated from
the mean dark time τd per particle, no more than a single event within a
ROI should occur at a point in time per particle. If this condition is not
met, the number of targeting moieties per particle is underestimated.16

However, in order to meet this condition, particles with a large num-
ber of targeting moieties (in this chapter ~400, 000 moieties per par-
ticle) pose an intrinsic imager strand transport problem since low
imager strand concentrations are required (~fM) in order to determine
the number of targeting moieties per particle. Conventional qPAINT
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measurements10,12,16 are performed at imager strand concentrations
of > 100 pM which result in a mean intermolecular distance dmol in
solution of < 3 µm with a corresponding characteristic diffusion time
τdiff of < 0.03 s where τdiff is defined as the time required for the
imager strand to diffuse over distance dmol:

τdiff =
d2

mol
D

(3.4)

where dmol
∼= 1.18·10−9

3√ci
and D being the diffusion coefficient of the

imager strand. Under the assumption that τdiff ≪ τd, τd is indeed in-
versely proportional to Nmoiety and ci according to Equation 3.3. How-
ever, when low imager strand concentrations (sub-picomolar range) are
used, the assumption that τdiff ≪ τd does no longer hold; the observed
association kinetics are then mass transport limited and the number of
docking strands is underestimated.

In Figure 3.9 the results of a qPAINT experiment are given in which
the mass transport limitation is clearly visible. Figure 3.9a shows the
dependency of the number of active targeting moieties per particle,
quantified by qPAINT, as a function of the ssDNA to particle ratio
present in solution during incubation (blue). The top x-axis indicates the
incubated ssDNA concentration and the y-axis the measured number of
ssDNA targeting moieties per particle. For an increasing ratio, a linearly
increasing number of targeting moieties per particle was observed
at low ssDNA concentrations. This linear relation is similar to the
linear relation presented in Figure 3.2a (gray dashed line). However, at
high ssDNA concentrations, the experimental data exhibit a deviating
behavior from this linear dependency; in this regime, the imager strand
concentration is in the low pM concentration range, and thus mass
transport limits the observed transient binding behavior.

In Figure 3.9b the experimentally determined number of targeting
moieties on a single particle and the characteristic diffusion time is
given as a function of imager strand concentration. On the left, two
samples, with an incubated ssDNA concentration of 333 nM (dark
blue) and 56 nM (light blue), were measured each with three imager
strand concentrations. Since no imager strand dependency exists, the
conditions of τdiff ≪ τd is met at lower ssDNA concentrations. However,
on the right, the characteristic diffusion time is calculated as a function
of imager strand concentration. Since mass transport effects start to
appear at a ssDNA concentration of 667 nM (see Figure 3.9a), with
a corresponding imager concentration of 4 pM, the gray solid line
indicates the threshold below which the condition of τdiff ≪ τd is met.



75

0.01 0.1 1 10
-200000

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000 FM Control

0
1
2
3
4
5

103 104 105 106
102

103

104

105 Saturation point

N
um

be
ro

ft
ar

ge
tin

g
m

oi
et

ie
s

[ssDNA]/[Particle]
in solution

101 102 103 104

ssDNA
concentration (nM)a b

10-1 100 101 102 103
10-3

10-2

10-1

100

C
ha

ra
ct

er
is

tic
di

ffu
si

on
tim

e
(s

ec
on

ds
)

Imager
concentration (pM)

101 102
102

103

104

333 nM ssDNA
56 nM ssDNAN

um
be

ro
ft

ar
ge

tin
g

m
oi

et
ie

s
Imager

concentration (pM)

Equation y = a + b*x
Plot Number of docking strands Number of docking strands
Weight Instrumental
Intercept 3.60588 ± 0.02233 2.72198 ± 0.03522
Slope 0 ± -- 0 ± --
Residual Sum of Squares 0.19258 0.29903
Pearson's r -0.72827 -0.89167
R-Square (COD) 0 0
Adj. R-Square 0 0

Figure 3.9: mass transport limitation in the quantification of the number of

targeting moieties per particle . (a) Number of targeting moieties (blue) as a function of the
ssDNA to particle ratio in solution. The saturation point (gray solid line) of (2.0 ± 0.2) · 105 targeting
moieties per particle is determined by a supernatant assay (see Supplementary note 3.6.3). The gray
dashed line indicates the linear relation between the number of targeting moieties per particle present
in solution and the number of observed targeting moieties presented in Figure 3.2a. The secondary
x-axis reveals the incubated ssDNA concentration. The errors indicated in the panel are the standard
deviations. (b) Left: two samples (333 nm and 56 nM ssDNA) which were measured thrice with a
different imager strand concentration. Right: calculated characteristic diffusion time as a function of
imager strand concentration. The gray line indicates the threshold above which mass transport effects
are visible in the quantitation of the number targeting moieties.

To solve this mass transport problem, only a fraction of the ssDNA
molecules on the particle (2.9% in this chapter) has a sequence com-
plementary to the used imager strand, which results in imager strand
concentrations of > 5 pM. The remainder of the ssDNA molecules
have a random, noncomplementary sequence with an equal length.
Therefore, the y-axis of Figure 3.2a shows the measured number of
ssDNA molecules after correcting from 2.9% to 100%.

3.6.2 DNA points accumulation in nanoscale topography

DNA-PAINT measurements

DNA points accumulation in nanoscale topography (DNA-PAINT) is
a fluorescence-based measurement technique from which the spatial
distribution of molecules on complexes or surfaces can be obtained.
Similar to qPAINT, the well-defined and controllable binding behavior
of dye-labeled imager strands to ssDNA docking strands is exploited.9

Hybridization of an imager strand to the ssDNA docking strand results
in a fluorescent signal, from which the super-resolved location can be
extracted using its diffraction-limited spot (see Figure 3.10). Therefore
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DNA-PAINT can be used to map the active targeting moieties on the
surface of nanomaterials.

Figure 3.10: measurement princi-
ple of dna points accumula-
tion in nanoscale topography

(dna-paint) to map the posi-
tions of targeting moieties on

a single particle . Binding of dye-
labeled ssDNA image strands (red)
to ssDNA docking strands (green)
yields an observable fluorescence sig-
nal. Only the associated ssDNA im-
ager strands close to the glass sub-
strate yield a fluorescent signal due
to total internal reflection excitation,
causing an evanescent field (red gra-
dient). Since it concerns an isolated
emitter, its diffraction-limited spot can
be fitted with a point-spread function,
from which the super-resolved posi-
tion of the emitter can be determined
(black star).

3D DNA-PAINT measurements

In Figure 3.11, the results of a 3D DNA-PAINT measurement are
shown. Here an astigmatic lens was used in order to obtain the z-
position of the targeting moieties. Figure 3.11a shows the 3D positions
of the targeting moieties on a single particle; the shape of the lower
hemisphere of the particle can be distinguished. The z-coordinates span
from approximately 0-1200 nm which suggests that the whole particle
is imaged. However, the localization uncertainty in the z-direction is
large compared to the uncertainty in the xy-direction, thus the targeting
moiety positions were projected on the xy-plane in Figure 3.11b. From
panels a and b can be concluded that the localized targeting moieties
are mainly located on the lower hemisphere of the particle, and no
targeting moieties are found on the top hemisphere of the particle.
Therefore, it can be concluded that at least the lower hemisphere of the
silica particles is imaged in a DNA-PAINT experiment.

3.6.3 Supernatant assay

A supernatant assay with Atto655-biotin was performed to determine
the mean binding capacity per particle. Figure 3.12 shows the experi-
mental results of the supernatant assay from which the saturation point
was obtained as visualized in Figure 3.2a and Figure 3.9a. Figure 3.12a
shows the measured fluorescence intensity of the supernatant as a func-
tion of the initial Atto655-biotin concentration. For the calibration curve
where no NeutrAvidin-coated particles were incubated (blue dots) a
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Figure 3.11: targeting moiety positions in a 3d dna-paint measurement. (a) 3D visualiza-
tion of the targeting moiety positions. The color is an indication for the height. (b) 2D projection of the
targeting moiety positions visualized in panel a. At the edge of the position cloud, the z-coordinates
of the positions are larger compared to the positions in the middle of the cloud. The color indicates
the z-coordinates, equal to panel a.

linear dependency was observed (blue dashed line). When the Atto655-
biotin solution was incubated with the NeutrAvidin-coated particles the
dependency was no longer linear, since Atto655-biotin can bind to the
NeutrAvidin complexes on the particles. By calculating the remaining
Atto655-biotin concentration in the supernatant using the measured
fluorescence intensity of the supernatant and the calibration curve, the
binding capacity could be calculated. In Figure 3.12b, the amount of
protein per particle and the binding capacity of a particle is given for
two samples (each measured twice). From an absorbance measurement
at 280 nm, the amount of absorbed protein on the particle surface was
determined to be (2.6 ± 0.4) · 105 (mean ± standard error, two samples
each measured twice). A binding capacity of (4.0 ± 0.3) · 105 (mean
± fitting errors, two samples) Atto655-biotin molecules per particle
follows from panel a. This results in (2.0 ± 0.2) · 105 targeting moieties
per hemisphere which was observed in qPAINT experiments. The pa-
rameter n indicates the number of accessible biotin-binding sites on
the NeutrAvidin molecules, determined by dividing the total binding
capacity by the number of protein complexes. This parameter was
found to be n = 1.5 ± 0.3 Atto655-biotin molecules per NeutrAvidin
complex.

Based on the supernatant assay, a saturation point is expected for
ssDNA concentrations higher than 6.3 µM. In the qPAINT data (see
Figure 3.2a), no saturation point was found. This absence of a satu-
ration point in the qPAINT measurement is probably caused by two
differences in experimental conditions between qPAINT and super-
natant assay experiments. Firstly, the supernatant assay uses an excess
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Figure 3.12: supernatant assay to determine the binding capacity of neutravidin-
coated particles . (a) Supernatant assay with Atto655-biotin to determine the mean binding
capacity per particle. The calibration curve (blue dots) shows a linear dependency (blue dashed line)
between the measured fluorescence intensity and the Atto655-biotin concentration. When NeutrAvidin-
functionalized particles were added to an Atto655-biotin solution (red), no linear dependency could
be observed, which shows that Atto655-biotin binds to NeutrAvidin. The black solid line indicates
the background signal and the dashed gray line µb + 3σb (i. e., Limit of Detection, LoD) where
µb is the background signal and σb the standard deviation of the background signal. The arrow
on the x-axis indicates the binding capacity in the experiment. (b) The protein absorption using
absorption measurements was found to be (2.7 ± 0.4) · 105 and (2.5 ± 0.4) · 105 (mean ± standard
error) NeutrAvidin complexes per particle for sample 1 and sample 2 respectively, and the binding
capacity that results from panel a was found to be (4.1 ± 0.3) · 105 and (3.9 ± 0.3) · 105 Atto655-biotin
molecules per particle (mean ± fitting errors) for sample 1 and sample 2 respectively. The mean
number of Atto655-biotin molecules per NeutrAvidin complex was found to be 1.5 ± 0.3 and 1.6 ± 0.3
for sample 1 and sample 2 respectively.

of Atto655-biotin to quantify the saturation point which precludes
depletion of Atto655-biotin. The association of Atto655-biotin to the
particle is therefore faster compared to the association of ssDNA to the
particle in the qPAINT experiment. Furthermore, Atto655-biotin is a
smaller and a less charged molecule compared to ssDNA, causing less
steric hindrance and charge repulsion on the particle surface respec-
tively. These differences both cause a slower association of ssDNA to
NeutrAvidin and thus a higher saturation point in qPAINT experiments
compared to the supernatant assay.

supernatant assay : 5 µL NeutrAvidin-coated silica particles (1
wt.-%) were added to 195 µL PBS (130 mM NaCl, 7 mM Na2HPO4, 3
mM NaH2PO4 at pH 7.4). The particles were centrifuged at 6000× g for
5 minutes using a tabletop spinner (Eppendorf MiniSpin) to clear the
supernatant. The supernatant was carefully removed and discarded.
100 µL Atto655-biotin (Sigma-Aldrich, ≥ 95.0%) in PBS in the required
concentration was added to the particles and vortexed to redisperse
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the particles. The particles were incubated with the Atto655-biotin for 3
hours on a rotating fin. Again, the particles were centrifuged at 6000× g
for 15 minutes to clear the supernatant. The supernatant was separated
from the particles and the fluorescence intensity was measured with a
plate reader (Fluoroskan Ascent) using a 384 well plate (Corning).

3.6.4 Size dispersion of silica particles

In Figure 3.13, the size dispersion of silica particles was determined
by scanning electron microscopy (SEM). A circle was fitted through
each particle outline. The area of this circle was used to calculate the
particle diameter and was found to be 0.97± 0.04 µm (mean ± standard
deviation). The size dispersion was quantified with the coefficient of
variation (CV) of the particle diameter and was found to be CVsize =
3.9 ± 0.5% (mean ± fitting error).
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Figure 3.13: size dispersion quantification of silica particles using scanning elec-
tron microscopy (sem). (a) Overview SEM image with multiple silica particles. Scale bar indicates
5 µm. (b) Magnified SEM image of individual particles. Scale bar indicates 2 µm. (c) Histogram of the
measured particle diameter. The mean diameter was found to be 0.97 ± 0.04 µm (mean ± standard
deviation) which results in a coefficient of variation of 3.9 ± 0.5% (mean ± fitting error).

The size dispersion of silica particles is also estimated from DNA-
PAINT images (see Figure 3.14). In Figure 3.14a, all DNA-PAINT lo-
calizations are visualized for a single field-of-view in a DNA-PAINT
experiment where the particles are clearly visible as high-density lo-
calization clouds. The area of each localization cloud was determined
by a convex hull, from which the diameter was calculated, which was
found to be 1.09 ± 0.05 µm (mean ± standard deviation). A CVsize of
4.9± 0.7% (mean ± fitting error) was calculated, which largely matches
with the results presented in Figure 3.13c. The slightly larger diameter
can be explained by the additional NeutrAvidin layer, the localization
imprecision in DNA-PAINT measurements, and possible inclusion of
nonspecific events close to the particle.
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Figure 3.14: size dispersion quantification of silica particles using dna-paint

localizations . (a) x- and y-coordinates of all DNA-PAINT localizations in a single measurement.
(b) The mean diameter of the localization cloud is assumed to represent the particle diameter
dparticle = 1.09 ± 0.05 µm (mean ± standard deviation) which results in a coefficient of variation of
4.9 ± 0.7% (mean ± fitting error).

3.6.5 Clark-Evans test

The Clark-Evans (CE) test is used to compare the mean observed
nearest-neighbor (NN) distance between two targeting moiety positions
to the expected mean NN-distance based on the targeting moiety
density.20 Based on this test, the targeting moiety positions can be
significantly dispersed, where the mean NN-distance is larger than
expected (i. e., ordered positions), significantly clustered, where the
mean NN-distance is shorter than expected, or randomly positioned,
where the mean NN-distance is comparable to what is expected under
the complete spatial randomness (CSR) hypothesis. The CSR hypothesis
was tested using a standardized sample mean zm which is a measure
for the degree of clustering (negative zm) or dispersion (positive zm):

zm =
dm − µ̂

σ̂
(3.5)

with dm = 1
m ∑m

i=1 Di being the observed mean NN-distance of m
targeting moiety positions, µ̂ = 1

2
√

ρ the expected mean NN-distance

based on a targeting moiety density ρ and σ̂2 = 4−π
m(4ρπ)

the expected
variance of the NN-distance. In order to use this method to accept or
reject the CSR hypothesis, three requirements have to be met:

1. The total number of DNA-PAINT localizations NL per particle
should be high enough to accurately accept or reject the CSR
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hypothesis, i. e., the number of targeting moieties falsely classified
as clustered (false positives) should be low.

2. The number of reflexive nearest-neighbors and edge effects should
be minimized, to prevent including double nearest-neighbors and
to prevent increased nearest-neighbor distances respectively.

3. The chance that a binder is observed multiple times should be
minimized, i. e., mean number of localizations per binder λ is low.

In Figure 3.15, the results of the optimization of the CE-method
have been visualized, where the aforementioned requirements are
considered. Random positions of targeting moieties were simulated
on a particle hemisphere for a total of 50 particles with NL = 150,
m = 30 and 10% edge removal (see black arrows on x-axes). For panels
a and b, the number of targeting moiety locations per particle equals
the number of localizations per particle, i. e., no stochastic binding of
imager strand was simulated. However, for panel c, stochastic binding
was included.

Figure 3.15a shows the dependency of zm on the number of local-
izations per particle NL. The error with which zm can be calculated
depends on NL due to statistics, since the error scales according to
σ ∝ N−0.5

L . In Figure 3.15b (top) the number of reflexive NNs is reduced
by taking 103 random subsamples of size m from all localizations and
calculate zm for all subsamples; the mean zm was reported as the zm
value of that particular particle. By increasing the subsample size m, zm
shows no change in its mean value while the variance increases, where
the error of zm scales with σzm ∝

√
m. However, since the estimated

variance of the NN-distances scales with σ̂ ∝ m−0.5 (see Equation 3.5), a
balance has to be found between reducing the effect of reflexive neigh-
bors and a reasonable error of the estimated mean NN-distance. In
Figure 3.15b (bottom) the dependency of zm on the edge localizations
removal is visualized. Here the x-axis resembles the percentage of the
z-coordinate span which is removed from analysis. Using this approach,
the highest z-coordinates (at the edge of the hemisphere) are removed
from analysis. By including all localizations, the zm value increases
since the mean NN-distance for localizations at the edge is larger, com-
pared to localizations in the middle of the hemisphere. By removing
10% of the edge, no bias was observed in the calculated zm value. In
conclusion, a number of localizations NL = 150 and subsample size
m = 30 yields approximately 0.1% false positives in rejecting the CSR
hypothesis (one-tailed test with α = 0.05).

In Figure 3.15c the stochastic sampling of the targeting moieties was
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simulated for nonclustered targeting moieties (blue), and 25% clus-
tered targeting moieties (red, equal to the 25% clustered simulation
in Figure 3.3b), where the calculated zm value is given as a function
of the mean number of localizations per targeting moiety λ. λ can
be tuned by the imager strand concentration and the duration of the
measurement and was approximately equal for all ssDNA coverages
given in Figure 3.3c. The simulations for no clustering show induced
clustering by oversampling, since the targeting moieties could be ob-
served more than once in a DNA-PAINT experiment. It was found that
for 0.05 ≥ λ ≥ 0.15 (shaded area) induced clustering is minimized,
while the difference between no clustering and clustering is observable.
Larger values for λ would result in a percentage of targeting moieties
that are imaged more than once of > 1%.

a b c
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Figure 3.15: optimizing the ce-test to accept or reject the complete spatial ran-
domness (csr) hypothesis . (a) Dependency of the zm value and its error on the number of
localizations per particle NL . NL = 150 (black arrow) is chosen to accurately reject the CSR hypothesis
(one-tailed test with α = 0.05 → false positives ~0.1%). The following parameters were used: m = 30,
edge removal = 10%, Rp = 500 nm, and no Poisson sampling process. The error of zm is shown in
the inset which scales with the number of localizations according to σ ∝ N−1/2

L as would be expected
with Poisson statistics. (b) Top: the effect of reflexive NNs. Including reflexive NNs causes an increase
of the variance of the mean zm value. Bottom: dependency of zm on the edge localizations removal;
including particle probe positions at the edge increases the mean zm . m = 150 and edge removal
= 10% (black arrows) were chosen required to accurately reject the CSR hypothesis (one-tailed test
with α = 0.05 → false positives ~0.1%). The following parameters were used: NL = 150, m = 30
(bottom) or edge removal = 10% (top), Rp = 500 nm, and no Poisson sampling process. (c) Stochastic
sampling of the targeting moieties for nonclustered targeting moieties (blue), and 25% clustered
targeting moieties (red, see Figure 3.3b), with zm as a function of the mean number of localizations
per targeting moiety λ. Both curves show a decreasing zm for an increasing λ due to oversampling
and therefore induced clustering. The shaded area indicates the range in which the oversampling
is minimized, while the difference between nonclustered and clustered targeting moieties could
be distinguished. The following parameters were used: NL = 150, m = 30, edge removal = 10%,
Rp = 500 nm, and a Poisson sampling process. For all simulations each data point consists of 50
particles of which the means and standard deviations are visualized.
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3.6.6 Scaling of intraparticle targeting moiety variability with interaction
area

The contribution of intraparticle variability due to clustered functional-
ization on a particle to the reactivity variability for a given interaction
area can be defined by:

σ2
moiety = σ2

intraparticle + σ2
stochastic

σ2
intraparticle = σ2

moiety − Nmoiety
(3.6)

with σmoiety being the variation in the number of targeting moieties
for a given interaction area, σintraparticle the intraparticle variation for
a given interaction area, σstochastic the variability caused by stochastic
functionalization of targeting moiety, and Nmoiety the mean number
of targeting moieties in a given interaction area. All parameters are a
function of the interaction area ai.

In Figure 3.16a the variation in the number of targeting moieties is
given as a function of ai using the simulations presented in Figure 3.3b.
It was found that both the random, nonclustered particles (blue) and
clustered particles (red) show CVmoiety ∝ a−1/2

i (dashed blue and red
lines). This relation changes at the outer limits (dashed gray lines)
due to simulation artifacts. For small interaction areas, the distribution
changes from a normal distribution to a Poisson distribution causing
an underestimation of σmoiety. For large interaction areas, σmoiety ap-
proaches zero since a fixed number of targeting moieties was used
for each simulated particle to exclude interparticle variation effects.
Figure 3.16b shows σintraparticle as a function of the interaction area
using Equation 3.6. Similar to the variation in the number of targeting
moieties, the intraparticle variation scales with CV ∝ a−1/2

i (dashed
red line).

3.6.7 Correlation between inter- and intraparticle targeting moiety variabili-
ties

The correlation between the interparticle variability quantified by
qPAINT experiments, and the intraparticle variability quantified by
DNA-PAINT experiments, is shown in Figure 3.17. Here, the calcu-
lated zm value is indicated on the x-axis, and the number of targeting
moieties per particle measured using qPAINT on the y-axis. Each dot
represents a single particle, and the red cross the mean value of the
zm value and the number of targeting moieties per particle. This figure
shows that (1) there is no correlation between intraparticle variabil-
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Figure 3.16: scaling of the intraparticle variability with the interaction area

due to clustered targeting moiety functionalization. (a) Variation in the number of
targeting moieties as a function of the interaction area, where both stochastic and the intraparticle
variability are taken into account, for particles with a random placement of targeting moieties (blue)
and a superposition of 25% clustered and 75% random placement of targeting moieties (red). The
dashed blue and red lines indicate CV ∝ a−1/2

i . The gray dashed lines indicate the area between
which no simulation artifacts occur. (b) Variation in the number of targeting moieties as a function of
the interaction area, where only the intraparticle variability was considered using Equation 3.6. The
dashed red line indicates CV ∝ a−1/2

i .

ity and number of targeting moieties on a single particle, and (2) the
spread (i. e., the variation) in the distribution of the number of targeting
moieties per particle does not depend on the zm value. Both observa-
tions are in agreement with the fact that the intrinsic length scales of
inter- and intraparticle heterogeneity are very different, so that these
heterogeneities can be treated as independent terms.

Figure 3.17: correlation

between inter- and intraparti-
cle variabilities . On the x-axis,
zm is given (see Figure 3.3c), and on
the y-axis the number of targeting
moieties (see Figure 3.2a) for a particle
coverage of 2.9%. Each blue dot
represents a single particle for which
the number of targeting moieties
was determined using qPAINT
and for which zm was calculated
using DNA-PAINT data. The red
cross indicates the mean number of
targeting moieties and mean zm . The
dashed blue lines indicate a normal
distribution.
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3.6.8 Biosensing by particle mobility

Assay principle

In this chapter the concept and consequences of superpositional hetero-
geneity for the variability in reactivity of biofunctionalized particles, are
illustrated using BPM, a biosensing method with both single-particle
and single-molecule resolution.17–19 The molecular design and measure-
ment principle are sketched in Figure 3.18, illustrated with a sandwich
assay format. Figure 3.18a shows a particle that is tethered to a sub-
strate by a molecular nanoswitch system comprising three functional
components:19 (1) a dsDNA stem which tethers the particle to the
substrate; (2) a ssDNA targeting moiety coupled to the stem; and (3)
multiple ssDNA targeting moieties coupled to the particle surface. Fig-
ure 3.18b illustrates the sensing functionality of the BPM system. The
targeting moiety on the stem can transiently bind to target molecules
captured from solution by the targeting moieties on the particle. The
transient binding affects the mobility of the particle, because an un-
bound particle has a larger in-plane motional freedom than a bound
particle. Two mobility time traces are sketched in Figure 3.18c, at a high
(left) and low (right) target concentration. The switching frequency of
the particle depends on the target concentration, because the unbound
state lifetime of a particle decreases when the number of captured
target molecules increases.

Interaction area

Here, the interaction area ai is calculated for two BPM designs, namely,
the BPM sensor with single stem targeting moiety19 and the BPM
sensor having the substrate coated with multiple targeting moieties,17,18

see Figure 3.19. The interaction area can be calculated using the area
formula for a spherical cap:

ai = 2πR2
p · (1 − cos α) (3.7)

with Rp being the particle radius, and α the angle between the rays
from the center of the sphere to the apex of the cap and the edge
of the cap. The angle α can be calculated using d = Rpα where d is
the great-circle distance from the center to the edge of the cap of the
interaction area.

Figure 3.19 shows the BPM geometries for a small19 and large inter-
action area.17,18 The interaction areas are ai = 6.4 · 103 nm2 (i. e., ~0.2%
of the total particle area, see Figure 3.19a) and ai = 6.1 · 104 nm2 (i. e.,
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Figure 3.18: molecular design and measurement principle of biosensing by particle

mobility (bpm) using a single targeting moiety on the stem . (a) Micrometer-sized
particles (yellow) are tethered to a substrate using a dsDNA stem (black). The particle is functionalized
with targeting moieties (dark green) and a single stem targeting moiety (green). Both targeting moiety
types can bind reversibly to single target molecules (light green) present in solution. (b) Target
molecules binding to the targeting moieties on the particle and subsequently the targeting moiety
on the stem cause the particle to exhibit either of two concentric Brownian motion patterns, i. e.,
the projection of the center if the particle onto the xy-plane, corresponding to the unbound (high
mobility) and bound state (low mobility). (c) Digital binding and unbinding events are identified
by following the mobility of the particles over time. The time between two events corresponds to
either the unbound state lifetime, or the bound state lifetime. For a high or low target concentration
in solution, the microparticle shows a high or a low switching frequency respectively.

~2% of the total particle area, see Figure 3.19b), respectively. The BPM
design with a small interaction area exhibits variabilities dominated by
stochastic and intraparticle heterogeneity. The BPM design with a large
interaction area has variability due to all three components (stochastic,
intraparticle, and interparticle).
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Figure 3.19: schematic visualizations of the interaction area for two bpm system

designs . (a) Schematic visualization of the BPM design presented in Lubken et al.19 The characteristic
length of the interaction area d was estimated to be 45 nm which results in α ~ 5°. (b) Schematic
visualization of the BPM design presented in Yan et al.18 The characteristic length of the interaction
area d was estimated to be 140 nm which results in α ~ 16°.
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4S E N S I N G M E T H O D O L O G Y F O R T H E R A P I D
M O N I T O R I N G O F B I O M O L E C U L E S AT L O W
C O N C E N T R AT I O N S O V E R L O N G T I M E S PA N S

abstract : Studies on the dynamics of biological systems and bio-
technological processes require measurement techniques that can reveal
time-dependencies of concentrations of specific biomolecules, prefer-
ably with small time delays, short time intervals between subsequent
measurements, and the possibility to record over long time spans. For
low-concentration biomolecules, these requirements are very challeng-
ing since low-concentration assays are typically slow and require new
reagents in every assay. Here, we present a sensing methodology that
enables rapid monitoring of picomolar and sub-picomolar biomolecular
concentrations, using specific high-affinity binders in a reversible assay.
We demonstrate the sensing methodology using simulations and exper-
iments, showing that low-concentration biomolecules can be monitored
with small time delays, short time intervals, and in principle over an
endless time span.

Parts of this chapter have been published as: Lubken, R. M. et al. Sensing Methodology for the Rapid
Monitoring of Biomolecules at Low Concentrations over Long Time Spans. ACS Sensors. Accepted for
publication (2021).
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4.1 introduction

Biological systems and biotechnological processes exhibit time-depen-
dencies that are at the most basic level regulated by the dynamics of
constituting biomolecules, such as small molecules, hormones, proteins,
and nucleic acids. This calls for measurement technologies that allow
the monitoring of biomolecular concentrations, for instance to serve
fundamental research on biological and biomedical dynamics,1–6 to
enable the development of patient monitoring strategies based on real
time biomolecular data,7–10 as well as to enable the development of
closed loop control strategies in biotechnological applications.11–16 De-
sirable characteristics of a generic monitoring technology are (1) precise
and specific measurements; (2) small time delays between sampling
input and data output; (3) short time intervals between successive mea-
surements; and (4) a long total time span over which time-dependent
biomolecular concentration data can be recorded.

It is a fundamental challenge to develop a sensor technology that can
rapidly monitor low-concentration biomolecules over long time spans.
Sensitive assays are available, such as ELISA and flow cytometry,17–20

but in these assays new reagents are needed for every sample that is
taken. The repeated consumption of reagents complicates applications
where biomolecular concentrations need to be monitored over long
time spans. On the other hand, sensing technologies that can operate
without consuming reagents, such as surface plasmon resonance,21

redox cycling22 and quartz crystal microbalance,23 have not been de-
signed for monitoring biomolecules at low concentrations, such as in
the picomolar and sub-picomolar range.

A generic principle to measure specific biomolecules at low concen-
trations, is by using the biochemical affinity between specific binder
molecules (such as antibodies and aptamers) and the biomolecule that is
to be detected (the analyte). The specificity originates from molecular in-
teractions such as charge, hydrogen bonding, van der Waals forces, and
hydrophobic and steric effects.24 To be able to measure biomolecules at
low concentrations with high precision, binder molecules are needed
that have strong interactions with the analyte, which corresponds to
high binding energies, low equilibrium dissociation constants Kd, and
low dissociation rate constants koff.25,26 However, this conflicts with the
desire to have small time delays, because low dissociation rate constants
would imply a need for long incubation times to reach equilibrium.24–26

Furthermore, low dissociation rate constants result in a slow reversibil-
ity, which conflicts with the wish to enable short time intervals between
successive measurements.
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In this chapter, a sensing methodology is presented that enables
rapid monitoring of low-concentration biomolecules, in the picomolar
and sub-picomolar range. The method is based on the use of binder
molecules with a high affinity in a limited-volume assay, with a fully
reversible detection principle and time-dependent sampling of the
analyte of interest. The system allows optimal tradeoffs between time
characteristics and precision. We present the measurement concept,
time-dependencies of sensor signals, and a comprehensive analysis of
the achievable time characteristics and precision as a function of sensor
design parameters. We demonstrate that the sensing methodology
enables precise quantification of low biomolecular concentrations, with
time delays and interval times that are much shorter than the time
dictated by the dissociation rate constant of the binder molecules.
Furthermore, due to the reversible detection method, measurements
can in principle be done over an endless time span.

4.2 basic concept of the sensing methodology

The basic concepts of the sensing methodology are sketched in Figures
4.1 and 4.2. The sensing system features time-dependent sampling
of the analyte of interest, provided by a time-controlled analyte ex-
change between a biological or biotechnological system of interest and
a measurement chamber (see Figure 4.1a). The measurement chamber
contains specific binder molecules from which signals are recorded.
The data are translated into concentration-time profiles, which should
resemble as close as possible the true concentration-time profile of
analyte molecules in the system of interest. During the exchange of
analyte molecules, various processes occur, such as mass transport by
advection and diffusion, and association and dissociation of analyte
molecules to binder molecules (see Figure 4.1b). In this chapter, a rect-
angular measurement chamber is assumed with height H, width W,
and length L. The sensor surface is provided with binder molecules,
where association and dissociation of analyte molecules occurs. The
rates of association and dissociation depend on the association rate
constant kon, the dissociation rate constant koff, the density Γb of binder
molecules, and the analyte concentration Ca at the sensor surface. These
processes result in a time-dependent density γab of analyte-binder com-
plexes, also represented as a fractional occupancy f of binder molecules
occupied by analyte molecules, where f = γab/Γb. Variables γab and
f are changing as a function of analyte concentration and time. In an
affinity-based sensor, the observed sensor signal scales with f , therefore
f is used in this chapter as the sensor readout parameter to determine
the analyte concentration. Analyte exchange between the system of
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interest and the measurement chamber is facilitated by diffusion or a
combination of diffusion and advection. A net diffusive molar flux Ja
(orange gradient) is caused by concentration differences between the
system of interest and the measurement chamber and by concentration
differences within the measurement chamber. Advective mass trans-
port of analyte molecules into the measurement chamber is facilitated
by a developed laminar flow profile with flow rate Q and mean flow
speed vm (black arrows). Here, it is assumed that diffusive transport
occurs in both the longitudinal (x-direction) and the lateral direction (y-
direction) and scales with the diffusion coefficient D, while advective
transport occurs only in the longitudinal direction and scales with the
mean flow speed vm.
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Figure 4.1: concept of analyte monitoring using diffusion- and advection-based

sampling . (a) Sensing system for biomolecular monitoring. Analyte molecules are exchanged
between a biological or biotechnological system of interest and a measurement chamber. The data
result in a concentration-time profile which should correspond as close as possible to the true analyte
concentration in the system of interest. (b) Geometry of the measurement chamber, with height
H, width W, and length L. A reaction rate at the sensor surface is caused by the association and
dissociation between analyte molecules (orange) and binder molecules (brown), described by the
association rate constant kon, the dissociation rate constant koff, the total binder density Γb , the analyte
concentration Ca at the sensor surface, and the density of analyte-binder complexes γab . Analyte
exchange is facilitated by diffusion and advection, where diffusion occurs in both x- and y-direction
with diffusion coefficient D, resulting in a net molar flux Ja , and where advection occurs in the
x-direction only, with a developed flow profile with flow rate Q and a mean flow speed vm .

Figure 4.2a sketches two different sensor designs, namely an infinite-
volume assay and a limited-volume assay. The graphs visualize the frac-
tional occupancy f of binder molecules occupied by analyte molecules
as a function of time, with a corresponding characteristic time-to-
equilibrium τ, defined as the time needed to attain 63% of the dif-
ference between the starting level and the equilibrium level of f (see
Supplementary note 4.6.2). In an infinite-volume assay, continuous
analyte exchange is enabled between the system of interest and the
measurement chamber, where the system of interest is assumed to be
much larger than the measurement chamber. The continuous analyte
exchange could for example be facilitated by diffusive analyte transport
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across a contact area between the system of interest and the measure-
ment chamber, while another configuration may involve a continuous
flow of sample fluid provided into the measurement chamber from the
system of interest. When the analyte exchange is effective and gives
negligible time delay, then the analyte concentration at the sensor sur-
face (Ca) is equal to the analyte concentration in the system of interest
(Ca,0). In case of low analyte concentrations (Ca,0 ≪ Kd), the infinite-
volume assay condition leads to a characteristic time-to-equilibrium
τ ∼= 1/koff (see Supplementary note 4.6.2). This implies that the time-to-
equilibrium is determined by the dissociation rate constant koff, so this
time is long when the binder molecules strongly bind to the analyte
molecules.

The sensor design with a limited-volume assay has very different
properties. Here, analyte exchange is not enabled during the incubation,
so that the binder molecules in the measurement chamber interact with
only a limited sample volume and therefore with a limited amount of
analyte molecules. Due to this limited volume, we can now define an
effective volumetric concentration of binder molecules Cb,0 = Γb/H,
which is based on the number of binder molecules in the measurement
chamber and the volume of the measurement chamber. When Cb,0 is
high, with Cb,0 ≫ Ca,0 and Cb,0 ≫ Kd, then the time-to-equilibrium τ
of the assay becomes dominated by the high concentration of binder
molecules. When diffusional transport delays can be ignored, then
the time-to-equilibrium of the assay equals τ ∼= 1/(konCb,0) (see Ta-
ble 4.1 and Supplementary notes 4.6.1 and 4.6.2). Thus, the time-to-
equilibrium of the limited-volume assay is determined by the associ-
ation rate constant and the effective volumetric concentration Cb,0 of
binder molecules, which leads to equilibrium timescales that are much
shorter than the time-to-equilibrium of the infinite-volume assay.

In monitoring applications, one would like to be able to record mea-
surements with one and the same sensor over long time spans. To
realize the limited-volume assay principle in a monitoring application,
the sensor needs to be switched between two different conditions: an
open condition and a closed condition. In the open condition, analyte
molecules are exchanged effectively between the system of interest and
the measurement chamber, as sketched in Figures 4.1a and b (see also
Supplementary note 4.6.5). In the closed condition, analyte molecules
are not exchanged between the system of interest and the measurement
chamber, causing a limited-volume incubation in the measurement
chamber, as sketched in the bottom graph of Figure 4.2a. We refer
to the switching concept between the open and closed condition as
’time-controlled analyte exchange’. Figure 4.2b illustrates the operat-



96 rapid monitoring of biomolecules at low concentrations

ing principle for a sensor where time-controlled analyte exchange is
realized by a modulated flow. Phase 1 is the exchange phase, where
the measurement chamber is supplied with sample fluid, so that the
starting concentration in the chamber equals Ca,0. Phase 2 is the in-
cubation phase, where the exchange process is stopped, so that the
limited-volume assay condition is provided. During incubation in the
limited-volume condition, the analyte concentration Ca in the mea-
surement chamber decreases over time (depletion) or increases over
time (repletion), depending on the initial fractional occupancy finit of
binder molecules by analyte molecules. When finit is low, the concen-
tration of analyte molecules in the measurement chamber decreases
over time, corresponding to depletion of analyte. When finit is high,
the concentration of analyte molecules in the chamber increases over
time, corresponding to repletion of analyte. For known finit, the sup-
plied analyte concentration Ca,0 can be derived from the measured
time-dependent fractional occupancy f (t) during the incubation phase.
At least two measurements need to be done to determine the analyte
concentration Ca,0 in the system of interest, for example a measurement
at the initial value finit and a measurement at the final value fend, as
indicated in the graph.

By sequentially applying cycles with open condition and closed
condition, discrete samples with a limited volume are serially measured
and result in time-dependent data that relate to the different samples
supplied to the sensor. Each former measurement causes a varying
nonzero initial fractional occupancy finit in the next measurement.
The values of finit and Ca,0 determine whether depletion or repletion
occurs during the incubation phase. In case of depletion, a higher
analyte concentration Ca,0 yields a larger, positive change of fractional
occupancy ∆ f = fend − finit since more analyte molecules are captured
from solution, while for repletion a higher Ca,0 yields a smaller, negative
change of fractional occupancy ∆ f since less analyte molecules are
repleted from the sensor surface into solution. An important property of
the sensor is that the interactions between binder and analyte molecules
are reversible. This gives the advantage that the limited-volume assay
with time-controlled analyte exchange can be used over an endless time
span.

4.3 results and discussion

4.3.1 Timescales of the limited-volume assay

Figure 4.3 shows simulation results of the time-to-equilibrium of the
limited-volume assay, for sensor designs with different measurement
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Figure 4.2: concept of the sensing methodology for the rapid monitoring of low

analyte concentrations . (a) Time profile of the sensor response for low analyte concentration
(Ca,0 ≪ Kd), for two conditions: infinite-volume and limited-volume assays. Measuring in an infinite
volume results in an excess of analyte molecules compared to binder molecules (Ca,0 ≫ Cb,0), causing
the time-to-equilibrium τ to be determined by koff. The limited-volume condition is defined as a
condition where binder molecules are in excess compared to analyte molecules (Cb,0 ≫ Ca,0, with
Cb,0 = Γb/H) and in excess compared to the equilibrium dissociation constant (Cb,0 ≫ Kd). This
causes τ to be determined by the effective binder concentration (i. e., measurement chamber height
H and binder density Γb), which is much shorter than 1/koff. (b) Biomolecular monitoring using a
limited-volume assay involves repeated cycles with two phases. In phase 1, analyte molecules are
exchanged effectively between the system of interest and the measurement chamber. In phase 2, the
time-dependent signal is recorded during incubation in a limited volume (i. e., in the middle of the
measurement chamber at distance L/2 from the entrance), which reveals the analyte concentration.
Inside the measurement chamber, the limited-volume condition gives a time-dependence of the
analyte concentration: a decrease over time (depletion) or an increase over time (repletion), depending
on the analyte concentration Ca,0 in the system of interest and the initial fractional occupancy finit
of binder molecules by analyte molecules. The analyte concentration Ca,0 in the system of interest is
derived from the measured time-dependent fractional occupancy f (t).

chamber heights, different binder densities, and different flow rates,
assuming standard parameter values as listed in Table 4.1. Figure 4.3a
shows how the time-to-equilibrium τ depends on the measurement
chamber height H, for a sensor with instantaneous analyte exchange
(see Supplementary note 4.6.6 for the influence of analyte exchange
on the sensor performance). The arrow on the x-axis indicates the
height as listed in Table 4.1. The data show that the time-to-equilibrium
increases with the measurement chamber height. At small H, this
increase is caused by a decrease of the effective volumetric binder
concentration, while at large H, this increase is caused by diffusive
transport limitations. The inset shows the same data, plotted as a
function of the Damköhler number (Da = τD/τR,LV = konΓb H/D, see
Table 4.1); low Da means that the kinetics are limited by the reaction,
high Da means that the kinetics are limited by diffusion. To achieve a
fast time-to-equilibrium, the sensor should be designed with a large
Cb,0, so a small H.

Figure 4.3b shows how the time-to-equilibrium depends on the
binder density Γb, for a sensor with instantaneous analyte exchange.
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The arrow indicates the density as listed in Table 4.1. For small Γb,
the time-to-equilibrium is long and determined by the dissociation
rate constant (τ ∼= 1/koff). For Γb > HKd

∼= 20 µm-2, the time-to-
equilibrium decreases, until it stabilizes due to diffusive transport
limitations (τ ∼= τD = H2/D). The inset shows the same data plotted
as a function of Da. To achieve a fast time-to-equilibrium, the sensor
should be designed with a large Cb,0, so a large Γb.

table 4 .1 : Standard parameter values used in the finite-element simulations. Details on the simula-
tions are described in Supplementary note 4.6.4. Additional standard parameter values are given in
Table 4.2 (see Supplementary note 4.6.1).
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 10-10 m2 s-1 
Diffusion coefficient of the analyte 
molecule 

Γ  10-9 mol m-2 (600 µm-2) Binder density 

off  10-4 s-1 Dissociation rate constant 
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= 2/  400 s Characteristic diffusion time 

, =
1

on ,0
=

onΓ
 200 s 

Characteristic reaction time for limited-
volume assay with ,0 ≫ ,0 and ,0 ≫

 

,0 = Γ /  5 nM 
Effective volumetric binder 
concentration 

= off / on   100 pM Equilibrium dissociation constant 

=
Γ

= ,0/  50 

Acceleration factor: reduction factor of 
the time-to-equilibrium of a limited-
volume assay with ( , Γ ), compared to 
an infinite-volume assay with ( off ). 

= / , = onΓ /  2 Damköhler number 

Figure 4.3c shows how analyte exchange by advection contributes to
the time-to-equilibrium per measurement cycle. The exchange phase
involves a temporary flow of fluid into the measurement chamber,
with flow rate Q and duration texch (see Supplementary note 4.6.6 for
the influence of analyte exchange on the sensor performance). In the
simulations, texch was chosen to be equal to the characteristic advection
time τA = HLW/Q (see Table 4.1), which means that a total fluid
volume equal to the volume of the measurement chamber is displaced.
The time-to-equilibrium τ, which now includes a contribution texch
related to the exchange, is shown as a function of flow rate, for several
values of the chamber aspect ratio λ = L/H. The arrow indicates the
flow rate as listed in Table 4.1. For small Q the observed τ is limited by



99

texch, i. e., the advective transport of analyte molecules from the inlet
toward the point of sensing at a distance L/2 from the inlet, as sketched
in Figure 4.2b. For increasing λ, i. e., increasing L with a fixed H, the
time-to-equilibrium increases since τA (and thus also texch) increases.
For increasing Q, the time-to-equilibrium decreases, until it stabilizes at
a level where the reaction and diffusion times determine the observed
τ. The inset shows the same data (Da = 2), supplemented with Da =
0.2 (reaction-limited) and Da = 20 (diffusion-limited), plotted as a
function of the longitudinal Péclet number (PeL = τD/τA = Q

λDW ,
see Table 4.1); low PeL means that the analyte exchange is limited
by advection, high PeL means that the analyte exchange is limited by
diffusion. A low PeL causes a long time-to-equilibrium due to slow
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Figure 4.3: time-to-equilibrium of a limited-volume assay for a sensor design with

different heights , binder densities , and flow rates of analyte exchange . (a) Time-
to-equilibrium τ as a function of measurement chamber height H (orange line) for an instantaneous
analyte exchange. For small H, the observed τ is reaction-dominated (τ ∼= τR = 1/(τ−1

R,LV + koff),
black dotted line), while for increasing H the observed τ becomes diffusion-dominated. The inset
shows the same data, where τ is normalized to τR and plotted as a function of Damköhler number
Da. The sketch above the graph visualizes a measurement chamber with an increasing H. (b) Time-
to-equilibrium τ as a function of the binder density Γb (orange line) for an instantaneous analyte
exchange. For low Γb , the observed τ is reaction-dominated (τ ∼= τR , black dotted line), while for
increasing Γb the observed τ becomes diffusion-dominated. The inset shows the same data, where
τ is normalized to the characteristic diffusion time τD and plotted as a function of Da. For low Da,
τ is limited by 1/koff, while at high Da, τ is limited by τD . The sketch above the graph visualizes a
measurement chamber with an increasing Γb . (c) Time-to-equilibrium τ as a function of flow rate Q
for three aspect ratios λ = L/H, for time-controlled analyte exchange by advection where the flow
duration texch equals the characteristic advection time τA . For small Q, the observed τ is limited by
the advective transport of analyte molecules from the inlet toward the point of sensing at distance
L/2 from the inlet. For increasing Q, this transport process becomes faster causing the observed τ
to be dominated by reaction and/or diffusion at high flow rates. The inset shows the same data
(Da = 2) supplemented with Da = 0.2 (reaction-limited) and Da = 20 (diffusion-limited), where τ is
normalized to τR and plotted as a function of the longitudinal Péclet number PeL . The dotted lines
show the τ/τR value at high Q and are equal to the values found in panel a. The sketch above the
graph visualizes a measurement chamber with an increasing Q. In all panels, the black arrows on the
x-axis indicate the standard parameter values for H, Γb , and Q as listed in Table 4.1.
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mass transport by advection. Increasing PeL results in a decrease of
the time-to-equilibrium due to rapid filling of the chamber, until it
stabilizes at a τ value equal to the value indicated in Figures 4.3a,b for
standard parameter values. In the following sections, exchange with
a high PeL is assumed, i. e., rapid filling of the measurement chamber
without influence of the flow rate on the time-to-equilibrium.

4.3.2 Limited-volume assay with time-controlled analyte exchange

Figures 4.4 and 4.5 show simulation results for a limited-volume as-
say with time-controlled analyte exchange. The analyte exchange is
assumed to be instantaneous and the incubation phase includes mass
transport by diffusion and reaction kinetics within the measurement
chamber itself, but no analyte exchange between the system of interest
and the measurement chamber. Figure 4.4 shows data for repeated
incubations with Ca,0 = 0.1 pM. The analyte concentration Ca in the
measurement chamber (brown line) and the fractional occupancy f
of the binders by analyte molecules (orange line) are plotted as a
function of time, for conditions of analyte depletion (left) and analyte
repletion (right). The time-to-equilibrium τ of each incubation equals
approximately 340 s (see Figure 4.3), having contributions from reaction
(τR = 200 s) and diffusion (τD = 400 s). The contribution from the
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Figure 4.4: simulated response of the biomolecular monitoring system using time-
controlled analyte exchange for a repeating concentration addition. (a) Analyte
concentration Ca in the measurement chamber (brown line) and the fractional occupancy f of binder
molecules by analyte molecules (orange line) as a function of time, for low finit and depletion of
analyte in solution (left), and for high finit and repletion of analyte in solution (right). The dashed
lines and black arrows indicate time points where instantaneous analyte exchange occurs, where the
bulk analyte concentration was set to Ca = Ca,0 = 0.1 pM after each period of approximately 50 min.
The insets highlight the kinetics of the first cycles, showing a time-to-equilibrium of τ = 340 s. For
many cycles (n → ∞) both curves would approach feq,IV = Ca,0/(Ca,0 + Kd) = 10 · 10−4, which equals
the equilibrium value when an infinite volume is supplied (see Table 4.2).
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reaction to the time-to-equilibrium is much smaller than 1/koff = 104 s,
the value that would have been observed in case of an infinite-volume
assay. In absence of diffusion limitations, the acceleration of the reac-
tion that can be achieved with a limited-volume assay compared to
an infinite-volume assay equals α = 1/koff

τR,LV
= konΓb

Hkoff
= Cb,0/Kd, which

clarifies how the speed of the assay is directly related to the ratio be-
tween effective volumetric binder concentration and the equilibrium
dissociation constant.

Figure 4.5 shows the simulated response of a limited-volume assay
with time-controlled analyte exchange for an analyte concentration that
varies in time. As an example, the sensor is incubated with a time series
of analyte concentrations that alternate around 0.1 pM (orange line):
the analyte concentration is alternatingly Ca,0 = 0.05 pM or Ca,0 = 0.15
pM. The infinite-volume equilibrium fractional occupancy feq,IV is
given for Ca,0 = 0.05 pM and Ca,0 = 0.15 pM by the dashed black
lines. The panels on the right show zoom-ins of the sensor response at
three different time periods (starting at t = 0 h, 12 h, and 42 h). In all
cases the time-to-equilibrium is τ = 340 s ∼= 5.7 min. Incubation with
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Figure 4.5: simulated response of the biomolecular monitoring system using time-
controlled analyte exchange for an alternating concentration addition. Frac-
tional occupancy f as a function of time where cycles of analyte exchange and incubation are
applied every 15 min with alternatingly Ca,0= 0.15 pM and Ca,0 = 0.05 pM. The curve saturates at
feq,IV = 10 · 10−4, which equals the infinite-volume equilibrium value for the average concentration
value Ca,0 = 0.1 pM (see Table 4.2). Dashed lines: continuous supply of Ca,0 = 0.05 pM yields
feq,IV = 5 · 10−4 and Ca,0 = 0.15 pM yields feq,IV = 15 · 10−4 (see Table 4.2). The right panel shows
zoom-ins of three sections of the solid curve, each representing four cycles of instantaneous analyte
exchange and subsequent incubations of 15 minutes. In zoom-in 1 (t = 0-1 h) all curve segments show
depletion behavior. In zoom-ins 2 (t = 12-13 h) and 3 (t = 42-43 h), depletion is seen for Ca,0 = 0.15
pM, since finit < feq,IV (Ca,0 = 0.15 pM), and repletion is seen for Ca,0 = 0.05 pM, since finit > feq,IV
(Ca,0 = 0.05 pM). For all curve segments, the time-to-equilibrium τ = 340 s. The vertical scale bars
indicate ∆ f = 10−4.
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Ca,0 = 0.15 pM gives depletion behavior at all times (since finit < feq,IV,
top black line); for Ca,0 = 0.05 pM, depletion behavior is seen at t < 10
h and repletion at t > 10 h (when finit > feq,IV, bottom black line).

Figures 4.6 and 4.7 shows an experimental study on how the time-
to-equilibrium in a limited-volume assay depends on the total binder
concentration in the measurement chamber. Here, the total binder con-
centration has two contributions, namely a contribution from surface-
bound binders and a contribution from binders supplemented in so-
lution. For detection we made use of biosensing by particle mobil-
ity (BPM), which is a biomolecular monitoring principle with single-
molecule resolution. In the BPM sensor, the particles are transduc-
ers that record the binding of analyte molecules to specific binder
molecules on the particle (see Supplementary note 4.6.7). Figure 4.6
shows a schematic representation of a measurement chamber with
binder molecules present in the two forms: immobilized and nonim-
mobilized. Immobilized binder molecules are present with an effective
volumetric concentration Cb,0. Binder molecules supplemented free
in solution have concentration Cb,suppl. In absence of supplemented
binder molecules (top), the total binder concentration in the mea-
surement chamber equals Cb,tot = Cb,0 = Γb/H. In presence of sup-
plemented binder molecules (bottom), the total binder concentration
equals Cb,tot = Γb/H + Cb,suppl. Since the time-to-equilibrium of the re-
action scales according to τR,LV ∝ 1/Cb,tot (see Table 4.1), an increasing
supplemented binder concentration Cb,suppl results in a smaller τ.

Figure 4.6: sketch of the experimen-
tal study of a limited-volume as-
say with varying binder concentra-
tions using biosensing by particle

mobility (bpm). Sketch of the measure-
ment chamber in a BPM measurement (see
Supplementary note 4.6.7) without (top) and
with (bottom) supplemented binders with
concentration Cb,suppl. For simplicity the par-
ticles of the BPM sensor are not shown in
the sketch. In the absence of supplemented
binders, the total binder concentration Cb,tot
equals Cb,tot = Γb/H; in the presence of sup-
plemented binders, the total binder concen-
tration Cb,tot equals Cb,tot = Γb/H + Cb,suppl.
Supplemented binders give a shorter time-
to-equilibrium since the time-to-equilibrium
scales according to τR,LV ∝ 1/Cb,tot (see Table
4.1).

Cb,tot = Γb/H + Cb,suppl
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Figure 4.7 shows the measured time-to-equilibrium τ (left) and the
signal change ∆S (right) as a function of Cb,suppl, for an analyte concen-
tration of 200 pM (see Material and methods 4.5). The data show that
the time-to-equilibrium decreases for increasing Cb,suppl. The measured
signal change decreases with increasing supplemented binder concen-
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tration because only surface-captured analyte molecules generate a
measurable signal. The dashed lines in Figure 4.7 represent model fits
(see the figure caption), demonstrating a good correspondence between
model and experimental results. We conclude that the experimental
results in Figure 4.7 prove the basic concept of the sensing methodology
proposed in this chapter, namely, that a limited-volume design with
time-controlled analyte exchange allows one to control the response
time by tuning the concentration of binder molecules in the measure-
ment chamber. Once the optimal binder concentration is known, the
sensor can be made with binders immobilized in the measurement
chamber. This will be a topic for future research.
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Figure 4.7: experimental study of a limited-volume assay with varying binder

concentrations using biosensing by particle mobility (bpm). Experimentally observed
time-to-equilibrium τ (left) and normalized signal change ∆S (right) as a function of supplemented
binder concentration Cb,suppl in a BPM measurement with DNA-DNA hybridization reaction for an
analyte concentration of 200 pM (see Supplementary note 4.6.7). Left: the dashed line shows the fitted
curve τ = p1/(p2 + Cb,suppl) + p3, where p1 = 1/kon (kon is assumed to be equal for all binders),
p2 = Γb/H, and p3 is the delay contributed by diffusion (see τD , dashed black line, cf. Figure 4.3b)
and experimental handling steps (see Material and methods 4.5). Assuming H = 200 µm (see Table
4.1), the fit gives Γb = (3 ± 1) · 10−10 mol m-2, which is comparable to the standard parameter value as
listed in Table 4.1. The fitted association rate constant is kon = (1.5 ± 0.4) · 105 M-1 s-1, which is in the
range of values reported in literature for comparable DNA-DNA hybridization reactions.27,28 Right:
the BPM sensor signal results from analyte molecules captured by immobilized binders. Therefore,
supplementing binders in solution gives a lower signal change, because analyte molecules captured
in solution do not generate signal on the sensor surface. In the depletion condition ( finit < feq,IV) the
fractional occupancy scales according to f ∝ 1/Cb,tot = Ca,0/(Cb,0 + Cb,suppl). The dashed line shows
the fitted curve ∆S = p1/(p2 + Cb,suppl), where p1 scales the change in fractional occupancy to signal
change and p2 = Γb/H. For H = 200 µm, it was found that Γb = (7 ± 4) · 10−10 mol m-2, which is
comparable to the previously found value for Γb and the standard parameter value as listed in Table
4.1. The insets show the same data on linear-logarithmic scales. The errors reported in the figure
(smaller than the symbol size) and the caption are fitting errors based on a 68% confidence interval.

4.3.3 Analytical performance of the limited-volume assay

Figures 4.8-4.10 show how the analytical performance of the limited-
volume assay depends on sensor design parameters. The results are
based on numerical simulations with parameters as listed in Table
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4.1. The analyte exchange is assumed to be instantaneous and the
incubation phase includes mass transport by diffusion and reaction
kinetics within the measurement chamber only. All panels show curves
for different values of the initial fractional occupancy finit of the binder
molecules.

Figure 4.8a shows the fractional occupancy of binders by analyte
molecules at the end of the incubation ( fend) as a function of the analyte
concentration Ca,0. For finit = 0 (dashed black line), fend scales linearly
with the analyte concentration, which makes the sensor suitable for
analyte quantification. For larger values of finit the curves start with a
rather flat segment, from which one might erroneously conclude that
under those conditions low analyte concentrations cannot be deter-
mined. Interestingly, the limited-volume assay has a linear dependence
on concentration by focusing not on the absolute value of fend but
rather on the change of fractional occupancy ∆ f (see Supplementary
note 4.6.2):

∆ f = fend − finit ∼=
H
Γb

(Ca,0 − Kd finit) (4.1)

This equation shows that ∆ f depends linearly on Ca,0, independent
of the value of finit. This fact is also illustrated by the simulation
results in Figure 4.8b. The response scales linearly with concentration
Ca,0 and are down-shifted for increasing values of finit, in agreement
with Equation 4.1 (note that the steep increase of the curves relates
to the logarithmic x-axis). Positive values of ∆ f relate to depletion
behavior and negative values to repletion. The curves cross the x-axis
(∆ f = 0) when finit corresponds to the equilibrium condition, i. e., when
there is no net association or dissociation during incubation because
finit is equal to the equilibrium fractional occupancy of the infinite-
volume case: finit = feq,IV =

Ca,0
Ca,0+Kd

∼= Ca,0
Kd

. For example, the curve for

finit = 10−3 crosses ∆ f = 0 at Ca,0 = finitKd = 0.1 pM, as is highlighted
(black arrow) in the inset of Figure 4.8b.

Figure 4.9 shows the precision of the concentration output of the
sensor, i. e., the precision with which the analyte concentration in an
unknown sample can be determined for a signal collection area As of 1
mm2 (see Table 4.2). The precision is calculated based on Poisson noise,
which gives the fundamental limit of the precision that is achievable
with a molecular biosensor due to stochastic fluctuations in the number
of analyte molecules (see Supplementary notes 4.6.3 and 4.6.8).29 To
calculate the precision, a sensor with initial fractional occupancy finit is
provided with a sample with analyte concentration Ca,0, resulting in
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Figure 4.8: dose-response curves of the limited-volume assay, derived from simula-
tions of a single measurement cycle . (a) Fractional occupancy at the end of the incubation
fend as a function of analyte concentration Ca,0 for different initial fractional occupancies finit. The
right y-axis indicates the number of surface-bound analyte molecules at the end of the cycle γend

ab . (b)
Absolute change of fractional occupancy ∆ f as a function of Ca,0 for various finit. The right y-axis
indicates ∆γab . A positive ∆ f and ∆γab indicate depletion; negative values indicate repletion. The
inset shows the same data on a linear-linear scale.

a ∆ f with variability σ∆ f , which via the slope of the calibration curve,
given in Figure 4.8b, leads to a variability σC in the concentration output
of the sensor (see Supplementary note 4.6.3). The precision is indicated
as the concentration-based coefficient of variation CVC = σC/µC, with
σC the variability and µC the mean of the concentration output. Fig-
ure 4.9 shows how the concentration precision depends on the analyte
concentration and the initial fractional occupancy finit. For finit = 0
(dashed line), the CVC scales as 1/

√
Ca,0, in agreement with number

fluctuations in a Poisson process (see Supplementary note 4.6.3). For
higher finit, a stronger dependency is observed (CVC ∝ 1/Ca,0) caused
by the smaller relative change of the fractional occupancy (see Supple-
mentary note 4.6.3). The graph indicates the 10% precision level that
is used to define the limit of quantification (LoQ) of the sensor. The
results show that analyte concentrations in the sub-picomolar range
can be measured with a precision better than 10%, even for high initial
fractional occupancies.

Figure 4.10a shows the precision of the concentration output of the
sensor as a function of two design parameters, namely the measurement
chamber height H (top panel) and the binder density Γb (bottom panel),
at an analyte concentration Ca,0 = 0.1 pM, for an initial fractional
occupancy finit between 0 and 0.01. The arrows indicate the height and
density as listed in Table 4.1. For an increasing H, a decrease of CVC is
observed, caused by an increase in the number of analyte molecules
present in the measurement chamber. The CVC is smallest for finit = 0
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Figure 4.9: analytical performance

of the limited-volume assay as a

function of concentration, derived

from simulations of a single mea-
surement cycle . The coefficient of vari-
ation CVC with which the analyte concen-
tration Ca,0 can be determined as a function
of analyte concentration Ca,0 for various ini-
tial fractional occupancies finit. CVC scales
as 1/

√
Ca,0 for low finit and high Ca,0; CVC

scales as 1/Ca,0 for high finit and low Ca,0.
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Number of cyclesand increases for increasing finit since the absolute change of fractional
occupancy decreases. The CVC decreases for increasing Γb caused by
an increase in the number of analyte molecules captured from solution.
The CVC reaches a plateau for finit = 0 due to a limited number of
analyte molecules in the measurement chamber. For larger finit, the
absolute change of fractional occupancy decreases and causes a less
precise concentration determination; this effect is in particular visible
at high Γb where the absolute number of analyte-binder complexes
increases due to finit.

The tradeoff between precision and time-to-equilibrium is illustrated
in Figure 4.10b, for sensors with different heights of the measurement
chamber (left) and different binder densities (right). The arrows indicate
the time-to-equilibrium that results from the height and density as
listed in Table 4.1. The left panel shows that an increase of H gives
on the one hand a slower sensor response (due to a larger diffusion
distance) but on the other hand a lower CVC due to a larger number
of analyte molecules present in the measurement chamber. At low H,
the CVC strongly depends on finit due to the low number of analyte
molecules in the solution. The right panel shows again that the CVC
decreases for a slower sensor response, now controlled by decreasing
the binder density Γb. At high Γb the time-to-equilibrium is diffusion-
limited (resulting in τ = 130 s, cf. Figure 4.3b). At low Γb the time-
to-equilibrium is reaction-limited with τ = 1/koff = 104. At high
Γb, the CVC increases for increasing finit due to the larger amount of
analyte molecules on the sensor surface. At low Γb, the CVC strongly
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increases due to the low number of captured molecules caused by
analyte dissociation over the long incubation timescale.
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Figure 4.10: analytical performance of the limited-volume assay as a function of

design parameters , derived from simulations of a single measurement cycle . (a)
CVC as a function of measurement chamber height H (top) and binder density Γb (bottom) for various
initial fractional occupancies finit and Ca,0 = 0.1 pM. The arrows on the x-axes indicate the standard
parameter values for H and Γb which as listed in Table 4.1. (b) CVC as a function of the observed
time-to-equilibrium τ when varying the measurement chamber height H (left) or binder density
Γb (right) for various initial fractional occupancies finit and Ca,0 = 0.1 pM. The sketches above the
graphs visualize a measurement chamber with an increasing height or a decreasing binder density.
The arrows on the x-axes indicate the obtained time-to-equilibrium using the standard parameter
values for H and Γb as listed in Table 4.1.

4.4 conclusion

We have presented a sensing methodology suitable for monitoring
low-concentration biomolecules with high precision, with small time
delays and short time intervals, over an endless time span. The sensing
methodology is based on a limited-volume assay, using high-affinity
binders, a fully reversible detection principle, and time-controlled an-
alyte exchange. We studied by simulations how the kinetics of the
sensor depend on mass transport and on the surface reaction in the
measurement chamber, and how time-controlled analyte exchange de-
termines the system response and enables precise measurements of
analyte concentration. Experimental results show the ability to control
the sensor response time by tuning the total binder concentration in
the measurement chamber. Finally, simulations show that the sensing
principle allows picomolar and sub-picomolar concentrations to be
monitored with a high precision over long time spans.

Approaches described in literature for measuring low-concentration
biomolecules have focused primarily on assays in which every concen-
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tration determination involves consumption of reagents.17–20,30,31 When
numbers of assays become high, due to frequent measurements over
long time spans, then reagent consuming approaches are complex and
costly. The sensing methodology described in this chapter is based on a
fully reversible assay principle, without consuming reagents with each
newly recorded concentration datapoint, enabling measurements with
high frequency over an endless time span. The described assay princi-
ple can be implemented on several sensing platforms, e. g., based on
optical, electrical, or acoustical transduction methods, where especially
sensing platforms with single-molecule resolution seem suitable since
these allow digital measurements with very high precision, limited
only by the number of observed molecular interactions. The sensing
method is suited for the monitoring of a wide variety of analytes,
including small molecules, proteins, and viral particles (see Supple-
mentary note 4.6.9). Furthermore, the sensing methodology can be
combined with various sampling methods, including remote advection-
based sampling through a sampling line or a catheter, and proximal
diffusion-based sampling methods for on-body and in-body monitoring
devices. The presented sensing principle warrants further experimen-
tal studies, e. g., to investigate tradeoffs between time characteristics
and precision, for various transduction methods, sampling methods,
measurement chamber geometries, binder types and the influence of
complex biological matrices. Due to its generalizability and unique
and tunable sensing performance, we believe that the limited-volume
assay with time-controlled analyte exchange will enable research on
time-dependencies of low-concentration biomolecules and novel appli-
cations in the fields of dynamic biological systems, patient monitoring,
and biotechnological process control.

4.5 material and methods

finite-element analysis : Finite-element simulations were per-
formed by solving diffusion, advection and reaction equations simulta-
neously using COMSOL (COMSOL Multiphysics 5.5) and MATLAB
(MATLAB R2019a, COMSOL Multiphysics LiveLink for MATLAB)
(see Supplementary note 4.6.4). From the simulations, the time-to-
equilibrium τ was determined by calculating the time at which the
analyte-binder complex density γab is at 63% of the difference between
the starting level and the equilibrium level of γab. The time-controlled
analyte exchange (see Figures 4.4 and 4.5) was simulated by instanta-
neously increasing/decreasing the analyte concentration throughout
the measurement chamber Ca to Ca,0, with which a new measurement
cycle starts. The density of analyte-binder complexes γstart

ab at the start
of a cycle was set to be equal to the density of analyte-binder complexes
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γend
ab at the end of the preceding cycle. Sensor signals are reported at

distance L/2 in the measurement chamber (see Figure 4.2b). Precisions
are reported at a distance L/2 in the measurement chamber, where the
signal is collected over a signal collection area As of 1 mm2 (Figures
4.9 and 4.10).

fluid cell assembly : Glass slides (25 x 75 mm, #5, Menzel-Gläser)
were cleaned by 40 minutes sonication in isopropanol (VWR, absolute)
and twice by 10 minutes sonication in Milli-Q (Thermo Fisher Scientific,
Pacific AFT 20). Subsequently, the glass slides were dried under ni-
trogen flow. A polymer mixture of PLL(20)-g[3.5]-PEG(2) (SuSoS) and
PLL(15)-g[3.5]-PEG(2)-N3 (Nanosoft Polymers) was prepared at a final
concentration of 0.45 mg mL-1 and 0.05 mg mL-1 in Milli-Q respectively.
The glass slides were treated by oxygen plasma (Plasmatreat GmbH)
for 1 minute. A custom-made fluid cell sticker (Grace Biolabs), with
an approximate volume of 20 µL, was attached to the glass slide and
immediately filled with the polymer mixture. After 2 hour incubation,
the polymer mixture was removed and the fluid cell was immediately
filled with 0.5 nM dsDNA tether solution (221 bp, with DBCO at one
end and biotin at the other end) in 0.5 M NaCl in PBS.32 After overnight
incubation, the solution in the fluid cell was exchanged by 2 µM DBCO-
functionalized dsDNA solution32 in 0.5 M NaCl in PBS and incubated
for several days until use.

particle functionalization : 2 µL streptavidin-functionalized
particles (10 mg mL-1, Dynabeads MyOne Streptavidin C1, Thermo
Fisher Scientific) were incubated with 1 µL biotinylated ssDNA binder
molecules (10 µM, IDT, HPLC purification) and 4 µL PBS for 70 minutes.
The particles were magnetically washed in 0.05 vol.-% Tween-20 (Sigma-
Aldrich) in PBS and resuspended in 0.5 M NaCl in PBS to a final
concentration of 0.1 mg mL-1 and sonicated using an ultrasonic probe
(Hielscher).

bpm assay : 25 µL particle solution was added to the fluid cell
and incubated for 10 minutes. After incubation, the fluid cell was
reversed causing unbound particles to sediment. After washing with
40 µL 0.5 M NaCl in PBS, 40 µL mPEG-biotin (500 µM, PG1-BN-1k,
Nanocs) in 0.5 M NaCl in PBS was added to the fluid cell. After
15 minutes incubation, the fluid cell was washed twice with 40 µL
PBS. A mixture of ssDNA analyte molecules (IDT, standard desalting)
and free binder molecules in PBS was added to the flow cell at the
required concentration, immediately after preparation. The sample
was observed under a white light source using a microscope (Leica
DMI5000M) with a dark field illumination setup at a total magnification
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of 10× (Leica objective, N plan EPI 10×/0.25 BD). A field of view of
approximately 1100 × 700 µm2 with a few thousand particles was
imaged using a CMOS camera (FLIR, Grasshopper3, GS3-U3-23S6M-C)
with an integration time of 5 ms and a sampling frequency of 30 Hz.
The particles were tracked by applying a phasor-based localization
method.33 The particle activity was determined from the x- and y-
trajectories of all particles, by applying a maximum-likelihood multiple-
windows change point detection algorithm.34 The particle activity at
equilibrium and the time-to-equilibrium were extracted by fitting the
measured particle activity over time using the equation given in Box
4.1.

4.6 supplementary notes

4.6.1 Standard parameter values

Standard parameter values used throughout the chapter are listed in
Table 4.2.

4.6.2 Analytical expression of the dose-response curve

In a limited-volume sensor with time-controlled analyte exchange, a
limited number of analyte molecules interact with binder molecules
present in a measurement volume. The analyte concentration Ca,0 can
be derived from the time-evolution of the density of surface-bound
analyte-binder complexes γab. It is assumed that all binder molecules
are immobilized on a surface, with effective volumetric concentration
Cb,0 = Γb/H where Γb is the density of surface binders and H the height
of the measurement chamber. It is assumed that binder molecules are
in excess compared to analyte molecules (Cb,0 ≫ Ca,0) and are in
excess compared to the equilibrium dissociation constant (Cb,0 ≫ Kd).
Furthermore, it is assumed that no significant mass transport through
the chamber inlet or outlet occurs during incubation, i. e., the inlet and
outlet areas are smaller than the total sensor area. Assuming first-order
Langmuir kinetics, with reversible 1:1 interactions between binder
molecules and analyte molecules, the change in effective volumetric
analyte-binder complex concentration per unit time can be described
by:

dCab(t)
dt

= kon (Ca,0 − Cab(t) + finitCb,0)Cb,0 − koffCab(t) (4.2)

with dCab(t)
dt being the time-derivative of the (spatial-dependent) ef-

fective volumetric analyte-binder complex concentration Cab, kon the
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table 4 .2 : Standard parameter values used in the finite-element simulations. Details about the
simulations are described in Supplementary note 4.6.4.

Parameter Value Description 

In
pu

t p
ar

am
et

er
 

 200 µm Measurement chamber height 

L 1 cm Measurement chamber length 

 2 mm Measurement chamber width 

 10-10 m2 s-1 
Diffusion coefficient of the analyte 
molecule 

 100 µL min-1 Flow rate during analyte exchange 

Γ  10-9 mol m-2 (600 µm-2) Binder surface density 

off  10-4 s-1 Dissociation rate constant 

on  106 M-1 s-1 Association rate constant 

,0 0.1 pM Analyte concentration 

 1 mm2 Signal collection area 

D
er

iv
ed

 p
ar

am
et

er
 

= /  50 Aspect ratio of measurement chamber 

= 2/  400 s Characteristic diffusion time 

= /   2.4 s Characteristic advection time 

, =
onΓ

 200 s 
Characteristic reaction time for limited-
volume assay with ,0 ≫ ,0 and 

,0 ≫  

,0 = Γ /  5 nM 
Effective volumetric binder 
concentration 

= off / on   0.1 nM Equilibrium dissociation constant 

=
Γ

= ,0/  50 

Acceleration factor: reduction factor of 
the time-to-equilibrium of a limited-
volume biosensor (with ( , Γ )) 
compared to an infinite-volume 
biosensor (with ( off )). 

= / , = onΓ /  2 Damköhler number 

= =
 

 167 Longitudinal Péclet number 

, = ,0

,0 +
 10-3 

Equilibrium value of the fractional 
occupancy in an infinite-volume assay 

association rate constant, Ca,0 the analyte concentration, finit the initial
fractional occupancy of the binder by an analyte molecule, Cb,0 the total
effective binder concentration, and koff the dissociation rate constant.
Using Cab(t) = γab(t)/H, where γab is the density of analyte-binder
complexes, Equation 4.2 can be rewritten as a surface reaction rate:

dγab(t)
dt

= kon

(
Ca,0 + finit

Γb
H

)
Γb − kon

(
Γb
H

+ Kd

)
γab(t) (4.3)

with dγab(t)
dt being the time-derivative of the density γab of analyte-

binder complexes, Γb the binder density, and Kd the equilibrium disso-
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ciation constant. To calculate the time-dependent response of the sensor,
we solve in Box 4.1 the differential equation given in Equation 4.3 and
obtain the general solution for the time-evolution of the density γab of
analyte-binder complexes after instantaneous analyte exchange when
no mass transport effects are considered.

box 4 .1 : Derivation of the analytical expression for the time-evolution of the density of

analyte-binder complexes after instantaneous analyte exchange.

dγab(t)
dt = kon

(
Ca,0 + finit

Γb
H

)
Γb − Aγab(t) with A = kon

(
Γb
H + Kd

)
dγab(t)

dt + C1γab(t) = C2 → γab(t) =
C2
C1

+ C3 exp (−At)

γab(t = 0) = finitΓb = Γb
Γb/H+Kd

(
Ca,0 + finit

Γb
H

)
+ C3

→ C3 = finitΓb − Γb
Γb/H+Kd

(
Ca,0 + finit

Γb
H

)
γab(t) = α

α+1 (HCa,0 + finitΓb) + β exp (−t/τR)

with α = Γb/(HKd) being the acceleration factor (see Table 4.2), β =

finitΓb − α
α+1 (HCa,0 + finitΓb), and τR =

(
kon

(
Γb
H + Kd

))−1
the char-

acteristic time-to-equilibrium of the reaction. When the γab reaches
equilibrium (i. e., t → ∞), then γab = γend

ab = α
α+1 (HCa,0 + finitΓb). For

a limited-volume sensor with Cb,0 ≫ Ca,0 and Cb,0 ≫ Kd in the equi-
librium condition, nearly all analyte molecules are bound ( fbound =

α
α+1

∼= 1) and only a small fraction of analyte molecules is unbound
( funbound = 1

α+1 ). Therefore τR can be simplified to τR = H/(konΓb).
In the equation of the time-evolution of the density of analyte-binder
complexes in Box 4.1, the depletion and repletion regimes can be recog-
nized. When finit < Ca,0/Kd, then β < 0, so the sensor shows depletion
behavior. Conversely, if finit > Ca,0/Kd, then β > 0 and the sensor
shows repletion behavior. Rewriting the time-evolution of the density
of analyte-binder complexes using the fractional occupancy f = γab/Γb
and t → ∞, yields the dose-response relationship as visualized in
Figure 4.8a:

fend =
α

α + 1

(
H
Γb

Ca,0 + finit

)
∼=

H
Γb

Ca,0 + finit (4.4)

Therefore, fend depends linearly on Ca,0, independent of the value of
finit. The change of fractional occupancy ∆ f yields the dose-response
relation as visualized in Figure 4.8b:
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∆ f = fend − finit =
α

α + 1

(
H
Γb

Ca,0 + finit

)
− finit

=
1

α + 1

(
Ca,0

Kd
− finit

)
∼=

H
Γb

(Ca,0 − Kd finit)

(4.5)

where ∆ f depends linearly on Ca,0, independent of the value of finit.

4.6.3 Precision of the concentration output

The precision of the concentration output of the sensor, is the precision
with which the analyte concentration in an unknown sample can be
determined using the limited-volume assay. Under the assumption
that the measured signal change ∆S = Sinit − Send scales linearly with
the change in fractional occupancy ∆ f , i. e., ∆S ∝ ∆ f , the precision
of Ca,0 is calculated using the precision with which Sinit and Send can
be determined. Therefore, no accumulation of errors from previously
performed measurements occurs. We assume a measurement with
variabilities which are dominated by Poisson noise in the number of
bound analyte molecules. Other factors contributing to variability are
not taken into account, but are discussed in another publication29 and
in Chapter 3. An analytical expression is derived for the precision of
the analyte concentration Ca,0 in Box 4.2 of which the results are given
in Figures 4.9 and 4.10.
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box 4 .2 : Derivation of the analytical expression for the precision of the analyte concen-

tration based on Poisson noise only.

The error of the signal change σ∆S can be estimated by:

σNend
ab

=
√

Nend
ab and σNinit

ab
=
√

Ninit
ab

where Nend
ab and Ninit

ab are the total number of analyte molecules
bound to binder molecules that contribute to the signal of the sensor,
at the end and start of a measurement respectively.

The measurement signal change equals ∆S = Send − Sinit. Thus the
squared signal change error is equal to the sum of the squared errors
of the two terms:

σ2
∆S = σ2

Send
+ σ2

Sinit
=

(
Send√
Nend

ab

)2

+

(
Sinit√
Ninit

ab

)2

The concentration of the analyte is the output of the sensor.
The output precision can be determined using the signal change
error and the slope of the calibration curve, i. e., the slope of the
dose-response curve: σC =

δCa,0
δ∆S σ∆S with δ∆S

δCa,0
the concentration-

derivative of the signal change. This gives the following expression
for the error of the concentration determination using a sensor with
Poisson-limited precision:

σC =
δCa,0
δ∆S

√√√√( Send√
Nend

ab

)2

+

(
Sinit√
Ninit

ab

)2

The derivation in Box 4.2 gives the following analytical expression
for the precision of the sensor output, i. e., the error of the concentration
σC:

σC =
δCa,0

δ∆S

√√√√√
 Send√

Nend
ab

2 Sinit√
Ninit

ab

2

(4.6)

Equation 4.6 shows that σC decreases (i. e., the precision increases)
for an increasing number of analyte molecules Nend

ab for a given signal
collection area (see Table 4.2), for instance by increasing the height of
the measurement chamber or the binder density (see Box 4.1). Since
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Send and thus Nend
ab scale linearly with the analyte concentration (see

Equation 4.4), we can derive:

σC ∝
√

Ca,0 → CVC =
σC

Ca,0
∝

√
Ca,0

Ca,0
=

1√
Ca,0

(4.7)

which results in a 1:2 slope (CVC : Ca,0) in Figure 4.9 for low finit. How-
ever, if finit is close to or higher than HCa,0/Γb, then the contribution of
finit to the fractional occupancy fend at the end of a measurement cycle
is relatively large, which results in a rather flat region in the fend-Ca,0
curve as visualized in Figure 4.8a. Since fend ~ finit, σC is largely deter-
mined by finit, then Equation 4.7 converts to CVC = σC/Ca,0 ∝ 1/Ca,0,
resulting in a 1:1 slope (CVC : Ca,0) in Figure 4.9 for high finit.

4.6.4 Nondimensionalization

The simulation study of the time-dependent behavior of the biochemi-
cal assay was performed using dimensionless parameters for all mass
transport processes and reaction rates.35 The nondimensionalized pa-
rameters for mass transport by diffusion and advection are given in
Table 4.3.

table 4 .3 : Dimensionless parameters used in the finite-element analysis for modeling mass transport
by diffusion and advection.

Dimensionless parameter Symbol Expression 

Analyte concentration ̃ ̃ = / ,0 

Longitudinal distance ̃  ̃ = /  

Transversal distance ̃  ̃ = /  

Time ̃ = 2/ → ̃ =  / 2 

For all finite-element analyses, the time was nondimensionalized us-
ing the diffusion time τD (e. g., Figure 4.3b) and thereafter recalculated
to normalize with respect to other time scales (e. g., τR in Figures 4.3a
and c). When advective flow is included, the used analytical expression
of the advective flow is given by:

v⃗ (y) =
6Q

WH3 y (H − y) e⃗x (4.8)

with v⃗(y) being the flow speed as a function of the height y inside the
measurement chamber, Q the flow rate, W the width of the measure-
ment chamber, and H the height of the measurement chamber. The
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general equation used in the simulation to describe mass transport by
advection and diffusion is given by:

δCa

δt
= D∇2Ca − v⃗(y) · ∇Ca (4.9)

with δCa
δt being the time-derivative of the (spatial-dependent) analyte

concentration Ca and D the diffusion coefficient. The dimensionless
form of Equation 4.9 is derived in Box 4.3.

box 4 .3 : Derivation of the dimensionless advection-diffusion equation.

δ(c̃Ca,0)

δ
(

t̃H2
D

) = D δ2(c̃Ca.0)

δ(x̃L)2 + D δ2(c̃Ca,0)

δ(ỹH)2 − 6Q
WH3 ỹH (H − ỹH)

δ(c̃Ca,0)
δ(x̃L)

δc̃
δt̃

= H2

D
1
L2 D δ2 c̃

δx̃2 +
H2

D
1

H2 D δ2 c̃
δỹ2 − H2

D
6Q

WH3
1
L ỹH2 (1 − ỹ) δc̃

δx̃

δc̃
δt̃

= H2

L2
δ2 c̃
δx̃2 +

δ2 c̃
δỹ2 − 6QH

LDW ỹ (1 − ỹ) δc̃
δx̃

Using the derivation given in Box 4.3, measurement chamber aspect
ratio λ = L/H, and longitudinal Péclet number PeL = Q

λDW (see Table
4.2), the simplified dimensionless advection-diffusion equation is given
by:

δc̃
δt̃

=
1

λ2
δ2 c̃
δx̃2 +

δ2 c̃
δỹ2 − 6PeLỹ (1 − ỹ)

δc̃
δx̃

(4.10)

The nondimensionalized parameters for the reaction rate are given
in Table 4.4.

table 4 .4 : Dimensionless parameters used in the finite-element analysis for modeling the reaction
at the sensor surface.

Dimensionless parameter Symbol Expression 

Analyte concentration at the sensor surface ̃ ∗ ̃ ∗ = ∗/ ,0 

Density of analyte-binder complexes ̃  ̃ = /( ,0 )  

Time ̃ ̃ =  / 2 

The general equation used in the simulation to model the reaction at
the sensor surface is given by:

δγab(t)
δt

= konC∗
a
(
Γb − γab(t)

)
− koffγab(t) (4.11)
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with δγab
δt being the time-derivative of the (spatial-dependent) density

γab of analyte-binder complexes and C∗
a the analyte concentration at

the sensor surface, which is known by solving Equation 4.10. The
dimensionless form of Equation 4.11 is derived in Box 4.4.

box 4 .4 : Derivation of the dimensionless reaction rate equation

δ(γ̃Ca,0 H)

δ
(

t̃H2
D

) = kon c̃∗Ca,0 (Γb − γ̃Ca,0H)− koffγ̃Ca,0H

δγ̃

δt̃
= H2

D
kon c̃∗

H (Γb − γ̃Ca,0H)− H2

D koffγ̃

δγ̃

δt̃
= konΓb H

D c̃∗ − kon H
D c̃∗γ̃Ca,0H − H2

D koffγ̃

δγ̃

δt̃
=

Ca,0 H
Γb

konΓb H
D

[
c̃∗
(

Γb
Ca,0 H − γ̃

)
− Kd

Ca,0
γ̃
]

Using the derivation given in Box 4.4 and Damköhler number Da =
konΓb H

D (see Table 4.2), the simplified dimensionless reaction rate equa-
tion is given by:

δγ̃

δt̃
=

Ca,0H
Γb

Da
[

c̃∗
(

Γb
Ca,0H

− γ̃

)
− Kd

Ca,0
γ̃

]
(4.12)

4.6.5 Time-controlled analyte exchange

Time-controlled analyte exchange in a limited-volume assay refers to
the switching between the exchange phase and the incubation phase
(see Figure 4.2b). In the analyte exchange phase, mass transport exists
between the system of interest and the measurement chamber, e. g., by
diffusion and/or advection. In the incubation phase, mass transport
between the system of interest and the measurement chamber is limited,
e. g., by stopping flow and/or diffusion.

Figures 4.11 and 4.12 show how time-controlled analyte exchange
influences the performance of the sensor, for two analyte exchange
principles, namely remote advection-based sampling and proximal
diffusion-based sampling (see Figure 4.11). In Supplementary note 4.6.6,
the influence of time-controlled analyte exchange on the performance
of the sensor is quantified by simulating the time-to-equilibrium τ and
the coefficient of variation of the concentration CVC as a function of
the duration of analyte exchange.
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Figure 4.11: time-controlled ana-
lyte exchange by advection- and

diffusion-based sampling . Concepts
of analyte exchange by advection (top) and
by diffusion (bottom) between a system of
interest and a measurement chamber, using
flow rate Q and molar flux Ja through a
semi-permeable membrane respectively.

inlet outlet
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Figure 4.11 schematically visualizes time-controlled analyte exchange
by advection (top) and by diffusion (bottom), where the analyte ex-
change process has a characteristic time τexch and a duration texch
(see Figure 4.12). The duration of the analyte exchange is controlled
by adjusting the flow rate Q or the molar flux Ja (by controlling the
membrane permeability P)36 in time. For advection-based sampling,
τexch equals the characteristic advection time τA, while for diffusion-
based sampling, τexch equals the characteristic diffusion time τD (see
Table 4.2). In texch, analyte molecules are transported over a character-
istic length LA = texchQ/(HW) by advection and LD =

√
texchD by

diffusion.

Three regimes can be identified regarding the analyte exchange.
First, texch < τexch implies that LA or LD is shorter than the length
L of the measurement chamber or the height H of the measurement
chamber for advection-based sampling and diffusion-based sampling
respectively. Second, if texch equals τexch, the transport distance equals
L or H for advection-based sampling and diffusion-based sampling
respectively; this condition is used in Figure 4.3c for analyte exchange
by advection, since here the exchanged volume equals the volume of
the measurement chamber. Third, texch > τexch implies that LA or LD is
longer than L or H for advection-based sampling and diffusion-based
sampling respectively.

In the simulations presented in this work, we made the following
assumptions. First, analyte exchange between the system of interest and
the measurement chamber only occurs during the analyte exchange



119

Ja

LD < H LD = H LD > H

Q

texch < τexch

LA < L

texch = τexch

LA = L

texch > τexch

LA > L

Fl
ow

 ra
te

 Q

Time

texch

Ja Ja

Q Q

Time

M
em

br
an

e
pe

rm
ea

bi
lit

y 
P texch

 τexch = τA = HWL/Q

 τexch = τD = H2/D

Time-controlled
analyte exchange

ad
ve

ct
io

n
di

ffu
si

on

LA LA LA 

LD

LD LD

Figure 4.12: time-controlled analyte exchange by advection and diffusion. Schematic
visualizations of time-controlled analyte exchange by controlling the flow rate Q (top) and the molar
flux Ja (by controlling the membrane permeability P, bottom) in time. The time-controlled analyte
exchange process has a characteristic time τexch, which equals τA for advection-based analyte exchange,
and τD for diffusion-based analyte exchange, and a duration of texch in which analyte molecules
travel characteristic length LA or LD . Three regimes are identified: (1) texch < τexch where LA < L or
LD < H; (2) texch = τexch where LA = L or LD = H; and (3) texch > τexch where LA > L or LD > H.

phase. For advection-based analyte exchange, this implies that the flow
rate Q is high in phase 1 (the analyte exchange phase) and zero in
phase 2 (the incubation phase). For diffusion-based analyte exchange,
the membrane permeability P is high in phase 1, and zero in phase
2. The second assumption is that diffusive mass transport within the
measurement chamber itself is always present.

Analyte exchange can be controlled by controlling the characteristic
analyte exchange time τexch (by design parameters Q and P) and by
controlling the analyte exchange duration texch. In Supplementary
note 4.6.6 we study the performance as a function of Q and texch for
advection-based exchange. For diffusion-based exchange, we study the
performance as a function of texch, assuming P → ∞.

4.6.6 The influence of time-controlled analyte exchange on the sensor perfor-
mance

The influence of flow rate Q on the observed time-to-equilibrium τ
and the precision of the concentration determination CVC is quantified
in Figure 4.13 for a sensor with diffusion-based sampling and with
standard parameter values as listed in Table 4.2. Figure 4.13a shows
the time-to-equilibrium τ as a function of longitudinal Péclet number
PeL, by varying the flow rate Q, for three values of texch/ τA. For small
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PeL, mass transport by advection is slow compared to mass transport
by diffusion, and thus τ is advection-limited and scales according
to τ ∝ 1/Q (see Box 4.5). Besides, increasing the analyte exchange
duration texch causes the observed time-to-equilibrium τ to be longer.
The plateau value (dashed line) is reached when mass transport by
advection is fast compared to mass transport by diffusion, i. e., at high
flow rates, which corresponds to the τ found in Figure 4.3c for an
equal sensor height. In this regime, the sensor can be assumed to be
incubated with a concentration Ca,0 instantaneously. For PeL → ∞, a τ
is observed equal to τ found for instantaneous analyte exchange (see
Figures 4.13a,b).

box 4 .5 : The influence of analyte exchange by advection on the time-to-equilibrium.

When the time-to-equilibrium is advection-limited, this results in
τ = texch:

τ = texch → τ = HLW
Q

texch
τA

= λDW
Q

HL
λD

texch
τA

= 1
PeL

H2

D
texch
τA

τ ∝ 1
PeL

→ τ : PeL = 1 : 1

Figure 4.13b shows the precision of the concentration determination
as a function of the longitudinal Péclet number PeL and flow rate Q on
the secondary x-axis. Again, roughly two regimes can be identified: for
small PeL, CVC depends on PeL since the analyte molecules entering the
measurement chamber bind to the binders on the surface, which results
in longitudinal depletion. This results in a positional dependency of
the density γab of analyte-binder complexes and thus the precision.
For large PeL, the analyte exchange by advection is much faster than
analyte exchange by diffusion causing almost instantaneous exchange
of material, which results in lateral depletion, making the precision
independent of PeL. For PeL → ∞, a CVC is observed equal to the CVC
found for instantaneous analyte exchange (see Figure 4.10).

Figure 4.14 shows the influence of diffusion-based analyte exchange
on the observed time-to-equilibrium, by comparing instantaneous ana-
lyte exchange to diffusion-based analyte exchange, where texch/τD = 1.
Figure 4.14a shows the time-to-equilibrium τ as a function of Damköh-
ler number Da by varying the height H of the measurement chamber,
for diffusion-based analyte exchange (dark orange) and for instanta-
neous analyte exchange (light orange, same data as Figure 4.3a). At low
Da (i. e., at small measurement chamber height H), for both exchange
methods, the observed time-to-equilibrium is reaction-limited since
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Figure 4.13: influence of advection-based analyte exchange on the performance of

the biomolecular monitoring system using time-controlled analyte exchange

by advection. (a) Time-to-equilibrium τ as a function of the longitudinal Péclet number PeL , with
the flow rate Q on the secondary x-axis (see Table 4.2), for three values of texch/τA (see Figure 4.12).
For small PeL , τ depends on PeL where τ ∝ 1/PeL (see Box 4.5). τ decreases for increasing PeL
since the analyte exchange process is faster (higher flow rate Q), but τ increases for increasing
texch/τA since the duration of the analyte exchange process is longer. For large PeL , τ is independent
of PeL ; the PeL value where τ becomes independent of PeL , depends on texch/τA . (b) Precision of
the measured concentration CVC as a function of the longitudinal Péclet number PeL at an analyte
concentration Ca,0 = 0.1 pM, with the flow rate Q on the secondary x-axis (see Table 4.2), for three
values of texch/τA . For small PeL , a longitudinal depletion zone appears where (almost) all analyte
molecules are captured from solution by binder molecules directly after entering the measurement
chamber, causing a positional dependency of the density of analyte-binder complexes, and a lower
CVC (i. e., a higher precision) at the point of sensing. For texch/τA = 100 this effect is largest since
analyte exchange has a short duration. By increasing texch/τA , the CVC decreases since more analyte
molecules are exchanged. For large PeL , a lateral depletion zone appears where the analyte exchange
can be assumed to be instantaneous (see Figure 4.3); here CVC is independent of PeL and no positional
dependency of the density of analyte-binder complexes exists. (c) Schematic visualizations of the
measurement chamber cross-section show the spatial distribution of the concentration Ca , where red
equals high Ca (Ca = Ca,0) and blue equals low Ca (Ca = 0).

the diffusion time scale is fast compared to the reaction time scale.
However, for increasing Da, the time-to-equilibrium increases faster for
diffusion-based exchange since the characteristic length scale LD over
which the molecules have to diffuse is larger (LD = H) as compared to
instantaneous analyte exchange (on average LD ∼= H/2).

Figure 4.14b shows the time-to-equilibrium τ as a function of Da by
varying the binder density Γb, for diffusion-based analyte exchange
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(dark orange) and for instantaneous analyte exchange (light orange,
same data as Figure 4.3b). At low Da (i. e., at low surface binder density
Γb), for both exchange methods, the observed time-to-equilibrium is
reaction-limited since the reaction time scale is short (τR = 1/koff)
compared to the diffusion time scale. However, at high Da where the
time-to-equilibrium τ is determined by the diffusion time scale, τ is
larger for diffusion-based exchange since the characteristic length scale
LD over which the molecules have to diffuse is larger.
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Figure 4.14: influence of diffusion-based analyte exchange on the observed time-
to-equilibrium . (a) Time-to-equilibrium τ, normalized to the characteristic reaction time τR as a
function of Damköhler number Da, with the measurement chamber height H on the secondary y-axis,
for diffusion-based (orange) and instantaneous analyte exchange (light orange). For small Da, no
difference in τ/τR exists since the observed reaction is reaction-limited. For large Da, diffusion-based
analyte exchange results in a slower observed reaction since the characteristic distance LD is larger. (b)
Time-to-equilibrium τ normalized to the characteristic diffusion time τD as a function of Damköhler
number Da, with the binder density Γb on the secondary y-axis. A difference in τ/τD exists caused
by a longer LD . For large Da, the observed reaction is diffusion-limited. In these simulations it was
assumed that texch/τD = 1. In both panels, the black arrows on the x-axis indicate the standard
parameter value for Da (using H and Γb) which is given in Table 4.2.

Figure 4.15 shows the influence of the time-controlled analyte ex-
change process on the time-to-equilibrium and the precision of the
sensor for two monitoring geometries as presented in Figure 4.12 and
using the standard parameter values given in Table 4.2. Figure 4.15a
sketches the time-evolution of the fractional occupancy (solid orange
line) and the analyte exchange process (dashed light orange line) of
advection (by controlling flow rate Q) or diffusion (by controlling mem-
brane permeability P). Three regimes are given here: (1) τ > texch,
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where τ is determined by the mass transport by diffusion within the
measurement chamber; (2) τ ~ texch, where τ is determined by the
duration of the analyte exchange process; and (3) τ < texch, where τ is
determined by the dissociation rate constant koff. Note that for a short
texch, the fractional occupancy when equilibrium is reached, is lower,
since less molecules have been exchanged between the measurement
chamber and the system of interest.

Figure 4.15b shows the simulated results of the time-to-equilibrium τ
normalized to the diffusion time scale τD as a function of the duration
of analyte exchange texch normalized to the diffusion time scale τD
(left) and the coefficient of variation of the concentration CVC as a
function of texch/τD (right). The three regimes shown in panel a are
observed in both graphs. For a small texch/τD, the observed time-to-
equilibrium τ is diffusion-limited, since texch is much smaller than
τD. However, CVC is high (i. e., precision is low) since the number of
exchanged analyte molecules is small. Here, CVC scales according to
CVC ∝ 1/ 4

√
texch/τD (see Box 4.6). For a large texch/τD, the observed

time-to-equilibrium τ is reaction-limited, since the assay converts into
an infinite-volume assay. However, CVC is low (i. e., precision is high)
since the number of exchanged analyte molecules is large (i. e., there
is an infinite supply of analyte molecules). Now the precision is inde-
pendent of the analyte-exchange process, since the reaction reaches an
equilibrium under infinite supply of analyte molecules. When τ ~ texch,
the time-to-equilibrium is mainly determined by the duration of the
analyte-exchange process since the assay can be regarded as neither
a limited-volume assay nor an infinite-volume assay; here, CVC scales
roughly according to CVC ∝ 1/

√
texch/τD (see Box 4.6).
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box 4 .6 : The mathematical derivation of the dependency of precision on analyte ex-

change by diffusion.

Fick’s First Law gives JD
a = −D∇Ca, where JD

a is the diffusion flux
of analyte molecules, which translates into JD

a = −D δCa
δy assuming

one-dimensional transversal diffusion. The maximum density γmax
ab

of analyte-binder complexes that can be reached, is calculated by
γmax

ab = JD
a texch. The mean length LD over which analyte molecules

diffuse during texch equals δy = LD =
√

H2 texch
τD

for LD < H and
δy = H for LD ≥ H.

LD < H, gives γmax
ab = HCa

√
texch
τD

and LD ≥ H, gives

γmax
ab = HCa

texch
τD

. The maximum coefficient of variation can
be calculated by CVC = 1√

γmax
ab As

, where As is the signal collection
area.

For LD < H, CVC ∝ 1
4
√

texch
τD

and for LD ≥ H, CVC ∝ 1√
texch

τD

.

Figure 4.15c shows the simulated results of the time-to-equilibrium τ,
normalized to the advection time scale τA, as a function of the duration
of analyte exchange texch, normalized to the advection time scale τA
(left), and the coefficient of variation of the concentration CVC as a func-
tion of texch/τA (right). Again, the three regimes in panel a are observed
in both graphs. The behavior is similar to panel b: for a small texch/τA,
the observed time-to-equilibrium τ is diffusion-limited, but CVC is high
(i. e., precision is low) since the number of exchanged analyte molecules
is small. No values are shown for texch/τA < 1 due to the development
of positional dependency of γab when the volume of the measurement
chamber is not fully exchanged (see Figure 4.13b). At low texch/τA, the
precision is roughly independent of texch/τA due to the development
of a lateral depletion zone (see Figure 4.13b). For a large texch/τA, the
observed time-to-equilibrium τ is reaction-limited and CVC is low (i. e.,
precision is high) since the number of exchanged analyte molecules
is large (i. e., there is an infinite supply of analyte molecules). When τ
~ texch, the time-to-equilibrium is mainly determined by the duration of
the analyte exchange and CVC scales roughly as CVC ∝ 1/

√
texch/τA

(see Box 4.7). However, this CVC derived from the number of analyte
molecules (see black dashed line, left bottom corner), is lower than the
observed CVC (see also panel b), since in the case of analyte exchange
by advection, analyte molecules can be lost through the outlet without
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contributing to the precision of the sensor. Therefore the maximum
density γmax

ab can only be reached in diffusion-based analyte exchange.

box 4 .7 : The mathematical derivation of the dependency of precision on analyte ex-

change by advection.

The advective flux of analyte molecules JA
a can be described by JA

a =
QCa,0. The maximum analyte-binder surface density γmax

ab can be

calculated by γmax
ab = JA

a
WL texch → γmax

ab = HCa,0
texch
τA

, assuming LA ≥ L
with lateral depletion. The maximum coefficient of variation can be
calculated by CVC = 1√

γmax
ab As

, where As is the signal collection area.

For LA ≥ L, CVC ∝ 1√
texch

τA

.

4.6.7 Biosensing by particle mobility

In this chapter, the concept of rapid monitoring of low-concentration
biomolecules by time-controlled analyte exchange is experimentally
demonstrated using biosensing by particle mobility (BPM), a biosensing
method with both single-particle and single-molecule resolution.37–39

The molecular design and measurement principle are sketched in
Figure 4.16, illustrated with a sandwich assay format. Figure 4.16a
shows a particle that is tethered to a substrate by a dsDNA tether and
functionalized with ssDNA binder molecules, and a surface that is
functionalized with secondary binder molecules.

Figure 4.16b illustrates the sensing functionality of the BPM sys-
tem. The secondary binder molecules can transiently bind to analyte
molecules captured from solution by the binder molecules on the parti-
cle. The transient binding affects the mobility of the particle, because an
unbound particle has a larger in-plane motional freedom than a bound
particle. Two mobility time traces are sketched in Figure 4.16c, at a high
(left) and low (right) analyte concentration. The switching frequency
of the particle, i. e., the activity, depends on the analyte concentration,
because the unbound state lifetime of a particle decreases when the
number of captured analyte molecules increases.

To demonstrate the rapid monitoring methodology for low-concen-
tration biomolecules using BPM, we used ssDNA analyte molecules
that bind with a 20nt interaction to the ssDNA binder molecules on the
particle. The particles are functionalized with a high binder density29

and have a high-affinity interaction with the analyte (characteristic life-
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Figure 4.15: influence of the analyte exchange process on the performance of

the biomolecular monitoring system using time-controlled analyte exchange .
(a) Sketches of the time-evolution of the fractional occupancy upon analyte exchange by advection
(by controlling flow rate Q) or diffusion (by controlling membrane permeability P). Three regimes
are identified: (1) τ > texch where τ is determined by the mass transport by diffusion within the
measurement chamber itself; (2) τ ~ τexch where τ is determined by the duration of the analyte
exchange process; and (3) τ < τexch where τ is determined by the dissociation rate constant koff.
(b) Performance using time-controlled analyte exchange by diffusion for a sensor with parameters
described in Table 4.2. Left: τ/τD as a function of texch/τD . For small texch/τD (where τ > texch), τ is
independent of the exchange time since τ is limited by the mass transport after analyte exchange
within the measurement chamber (reaction and diffusion, see Figures 4.13a,b and Figure 4.14). For
large texch/τD (where τ < texch), τ is independent of the exchange time since the assay can be
considered as an infinite-volume assay. When τ ~ texch, τ is strongly determined by the duration of
the analyte exchange texch. The dashed black line represents τ = texch. Right: CVC as a function of
texch/τD . For small texch/τD (where τ > texch), CVC depends on the amount of exchanged analyte
molecules where an increasing texch results in a decreasing CVC where CVC ∝ 4√texch (dashed black
line, see Box 4.6). For large texch/τD (where τ < texch), CVC is independent of texch since the assay
can be considered as an infinite-volume assay. When τ ~ texch, CVC depends more strongly on texch
due to an increased molar flux Ja , where CVC ∝

√
texch (dashed black line, see Box 4.6). The black

arrows on the x-axis indicate the value for texch/τD = 1 used in Figure 4.14. (c) Performance using
time-controlled analyte exchange by advection with τ/τA and CVC as a function of texch/τA . Left:
τ/τA as a function of texch/τA . The shape of the graph is similar to panel b, left, though shifted to
higher values of texch/τA which depends on the flow rate used for analyte exchange. Besides, small
texch/τA yield τ/τA ̸= 1 due to an additional diffusion time penalty caused by the mass transport
within the measurement chamber, during and after analyte exchange. The dashed black line represents
τ = texch. Right: For small texch/τA (where τ > texch), CVC is roughly independent of texch since the
analyte exchange by advection includes an outlet where analyte molecules are lost, in contrast to
analyte exchange by diffusion. Therefore the minimum CVC which can be reached theoretically by
analyte exchange by advection (dashed black line, see Box 4.7) is much lower than the observed CVC .
For large texch/τA (where τ < texch), CVC is independent of texch since the assay can be considered as
an infinite-volume assay. No values for texch/τA < 0 are shown for analyte exchange by advection,
since in this regime positional dependency strongly influences τ and CVC . The black arrows on the
x-axis indicate the value for texch/τA = 1 used in Figure 4.13 and Figure 4.3c

time of several hours27,28), which implies that Cb,0 > Ca,0 and Cb,0 > Kd,
and therefore the effective volumetric binder concentration dominates
the time-to-equilibrium of the reaction.
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Figure 4.16: measurement principle of biosensing by particle mobility (bpm). (a)
Micrometer-sized particles (yellow) are tethered to a substrate using a dsDNA stem (black). The
particle is functionalized with ssDNA binder molecules (brown) and the planar surface with ssDNA
secondary binder molecules (light brown). Both binders can reversibly bind to single ssDNA analyte
molecules (orange) present in solution. (b) Analyte molecules binding to the binder molecules on the
particle and subsequently the secondary binder molecules on the planar surface cause the particle
to exhibit distinct Brownian motion patterns, i. e., the projection of the center of the particle onto
the xy-plane, corresponding to an unbound state (high mobility) or a bound state (low mobility). (c)
Digital binding and unbinding events are identified by following the mobility of the particles over
time. The time between two events corresponds to either the unbound state lifetime, or the bound
state lifetime. For a high or low target concentration in solution, the microparticle shows a high or a
low switching frequency respectively.

4.6.8 Precision of biosensing by particle mobility with time-controlled analyte
exchange

The results of BPM measurements with time-controlled analyte ex-
change are given in Figure 4.17. Figure 4.17a shows the measured
activity per measurement block of 5 minutes as a function of time for
multiple consecutive measurement cycles (bottom). At the start of each
cycle (see vertical gray lines), the measurement chamber was filled with
a solution containing analyte concentration Ca,0 = 200 pM (middle) and
a varying supplemented binder concentration Cb,suppl (top). The data
show that the time-to-equilibrium is shorter in a condition with high
supplemented binder concentration. Values for the time-to-equilibrium
τ and for the signal change ∆S were obtained from fits to the data in
Figure 4.17a. The fitted values for τ and ∆S are plotted in Figure 4.7b
and discussed in this chapter.

In the remainder of this section we focus on the question to what
extent the precision of the BPM sensor is limited by Poisson statistics
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(cf. Figures 4.9-4.10). We quantify the total variation observed in a
measurement and calculate the variation induced by the measurement
itself. Using this approach, we can estimate the variation caused by
other sources than the measurement and compare this to the variation
caused by the discrete number of analyte-binder complexes on the
particles, i. e., the Poisson-limited variation.

Figure 4.17b shows a zoom-in of the measurement cycle where
Cb,suppl = 10 nM (top) and the distribution of the observed activity
when the reaction is in equilibrium (bottom). The activity as a function
of time is shown with a moving average, with a time window Tw of 1
s, of which the observed variation of the activity equals σobs = 3 mHz.
The activity as a function of time is fitted by a single exponential of
the form given in Box 4.1 (top, dashed line), from which the time-to-
equilibrium τ and ∆S were extracted (see Figure 4.7b). The distribution
of the observed activity is fitted with a normal distribution from which
the mean activity µA and σobs are extracted.

Figure 4.17c shows σobs as a function of Tw for the first cycle (Cb,suppl =
50 nM, brown) and the second cycle (Cb,suppl = 10 nM, orange). Increas-
ing the time window Tw, results in a smaller σobs since the calculated
activity is averaged over more time data points. The observed variation
in the activity depends on the variation induced by the measurement
and by other sources of variation:

σ2
obs = σ2

meas + σ2
other (4.13)

where σ2
meas = σref/

√
Tw, with σmeas being the measurement induced

variation, σref a reference variation which is taken as the measurement
induced variation at Tw = 1 s, Tw the time window of the moving
average of the activity as a function of time, and σother the variation from
a different source than the measurement itself, e. g., a discrete number
of analyte-binder complexes or variations in surface chemistry. If the
precision of a sensor is Poisson-limited, σother equals σPoisson, where
σPoisson is the variation caused by the discrete number of observed
analyte-binder complexes within the signal collection area. For a BPM
measurement, the number of observed analyte-binder complexes can
be calculated by:

Nobs
ab = γeff

ab Asϵobs
p (4.14)

with γeff
ab being the effective analyte-binder complex density, As the
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signal collection area and ϵobs
p the observed fraction of the particle area.

In a BPM measurement with 1 µm particles, only approximately 2% of
the particle surface contributes to the observed signal,29 which results
in ϵobs

p = 0.02. γeff
ab can be calculated by:

γeff
ab = f eff

a fendΓb (4.15)

with f eff
a = Γb/(HCb,suppl + Γb) being the effective fraction of the total

analyte molecules captured by the binders on the surface, and fend the
fractional occupancy of all binder molecules by analyte molecules at the
end of a measurement cycle for a given analyte concentration Ca,0. Note
that f eff

a can be larger than 1 when multiple consecutive cycles have
been measured: for the first cycle, f eff

a = Γb/(HCb,suppl,1 + Γb), while for
the second cycle, f eff

a = Γb/(HCb,suppl,1 + Γb) + Γb/(HCb,suppl,2 + Γb).
Using standard parameter values from Table 4.2, fend = 10−2 (extrapo-
lated from Figure 4.8a at Ca,0 = 200 pM), and a signal collection area of

As = 1 mm2, it can be found that σ∗
Poisson =

√
Nobs

ab = 1.0 · 102 for the

first cycle (where Cb,suppl = 50 nM) and that σ∗
Poisson = 2.3 · 102 for the

second cycle (where Cb,suppl = 10 nM). Assuming a Poisson-limited sen-
sor, the variation in the observed activity equals σPoisson = CVPoissonµA
where CVPoisson = σ∗

Poisson/Nobs
ab is the coefficient of variation in the ob-

served number of analyte-binder complexes and µA the mean observed
activity at equilibrium (see panel a). This gives CVPoisson = 9.6 · 10−3

and therefore σPoisson = 0.18 mHz for the first incubation cycle (where
Cb,suppl = 50 nM), and CVPoisson = 4.4 · 10−3 and therefore σPoisson =
0.18 mHz for the second incubation cycle (where Cb,suppl = 10 nM).

The dashed lines in Figure 4.17c represent fits according to Equa-
tion 4.13. By taking the limit Tw → ∞, σobs equals σother. At the
first cycle with Cb,suppl = 50 nM, σother was found to be equal to
σother = 0.09 ± 0.02 mHz, while at the second cycle with Cb,suppl = 10
nM, σother = 0.21 ± 0.03 mHz. Comparing these values to the previ-
ously quantified σPoisson, one can conclude that σother

∼= σPoisson, which
indicates that the precision in the BPM measurement is Poisson-limited.
Therefore, the precision of the BPM measurements is determined by the
fundamental limit of stochastic fluctuations in the number of analyte-
binder complexes, and can be compared to the results given in Figures
4.8-4.10.
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Figure 4.17: precision of biosensing by particle mobility (bpm) measurements with

time-controlled analyte exchange . (a) Response of a BPM sensor with time-controlled
analyte exchange. Activity per measurement of 5 minutes as a function of time for multiple consecutive
measurement cycles (orange). At the start of each cycle (vertical lines), Ca,0 was set to 200 pM
(light brown) and a varying supplemented binder concentration Cb,suppl was added (dark brown).
(b) Top: zoom-in of the activity as a function of time calculated by a moving average with time
window Tw = 1 s, for Cb,suppl = 10 nM (see panel a). The dashed line shows a single-exponential
fit (Sinit + ∆S · exp (−t/τ), see Supplementary note 4.6.2), from which the time-to-equilibrium τ =
474 ± 2 s and the signal change ∆S = 19.02 ± 0.05 mHz could be determined (see Figure 4.7). Bottom:
distribution of the observed activity at equilibrium (t > 45 min). The dashed line is a fitted normal
distribution with a mean activity µA and an observed variation σobs. (c) Observed variation σobs as
a function of Tw for the first cycle (Cb,suppl = 50 nM, brown) and second cycle (Cb,suppl = 10 nM,
orange). The dashed lines give the fit of the data according to Equation 4.13. For Tw → ∞, the
observed variation σobs approaches the variation induced by other sources than the measurement
itself σother, which equals σother = 0.09 ± 0.02 mHz for Cb,suppl = 50 nM and σobs = 0.21 ± 0.03 mHz
for Cb,suppl = 10 nM. The inset shows the same data, with the coefficient of variation CVobs as a
function of Tw . For Tw → ∞, it was found that CVobs = (7 ± 2) · 10−3 for Cb,suppl = 50 nM and
CVobs = (9 ± 1) · 10−3 for Cb,suppl = 10 nM. The errors reported in panel a are stochastic errors
(smaller than the symbol size). The reported errors in panel c and the caption of panel c, are fitting
errors based on a 68% confidence interval (smaller than the symbol size).

4.6.9 The influence of the analyte size on the sensor performance

Consider a sensor with standard parameter values given in Table 4.2,
then Cb,0

Ca,0
= Γb/(HCa,0) = 5 · 104, indicating a condition of binder-

excess. Here, we consider three analyte exchange methods: instanta-
neous exchange, analyte exchange by longitudinal advection, analyte
exchange by transverse diffusion. We compare two analyte sizes: small
analyte molecules, such as ions and small molecules (~0.1-1 nm, MW
up to ~1 kDa) and large analyte molecules, such as antibodies and
virions (~10-100 nm, MW between 100 kDa and 100 MDa).

Instantaneous analyte exchange (as in Figures 4.3a,b):

For small analyte molecules with D = 10−9 m2 s-1, Da = 0.2, the
kinetics are reaction-limited (τ/τR ~ 1) and the time-to-equilibrium
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equals τ = 200 s (3 min). For large analyte molecules with D = 10−11

m2 s-1, Da = 20, the kinetics are diffusion-limited (τ/τR ~ 8) and the
time-to-equilibrium equals τ = 1, 600 s (30 min).

Analyte exchange by longitudinal advection (as in Figure 4.3c):

Preferably the sensor is designed with an analyte exchange process
that hardly contributes to the time-to-equilibrium. For small analyte
molecules with Da = 0.2, no influence is observed at PeL > 100 → Q >
10 µL min-1. For large analyte molecules with Da = 20, no influence is
observed at PeL > 101 → Q > 1 µL min-1.

Analyte exchange by transverse diffusion (as in Figure 4.14):

According to Figure 4.14, for small analyte molecules the analyte ex-
change process does not influence the time-to-equilibrium for τ/τR
~ 1 → τ = 200 s (3 min) while for large molecular complexes τ/τR
~ 20 → τ = 4, 000 s (60 min). Large analyte molecules cause a longer
time-to-equilibrium due to diffusion limitations (see Figures 4.3a,b
and 4.14). The kinetics can be improved by decreasing the measure-
ment chamber height (see Figure 4.3a). With H = 20 µm, large analyte
molecules give τD = 40 s, achieving a 100 times improvement in kinet-
ics.

Precision of the concentration reading using instantaneous analyte exchange
(as in Figure 4.10):

Assume a sensor with a small height H = 20 µm. The height decrease
from 200 µm to 20 µm gives an improvement in kinetics, but also a
decrease in precision (Figure 4.10a and Figure 4.10b, left). For small
analyte molecules, the sensor with small height would result in CVC =
1% and for large analyte molecules CVC = 3% where the precision
strongly depends on finit. For finit = 10−3, CVC = 10% and CVC =
100% for small and large analyte molecules respectively. The precision
can be improved by decreasing the binder density Γb (see Figure 4.10b,
right), but this will also cause an increase in the time-to-equilibrium.
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D Y N A M I C R E S P O N S E L I M I T S O F A F F I N I T Y- B A S E D
S E N S O R S

abstract : Sensors for the monitoring of biomolecular dynamics in
biological systems and biotechnological processes in real time, need to
accurately and precisely reconstruct concentration-time profiles. This
requirement becomes challenging when transport processes and bio-
chemical kinetics are important, as is typically the case for biomarkers
at low concentrations. Here, we present a comprehensive methodology
to study the concentration-time profiles generated by affinity-based
sensors that continuously interact with a biological system of interest.
Simulations are performed for sensors with diffusion-based sampling
(e. g., a sensor patch on the skin) and advection-based sampling (e. g.,
a sensor connected to a catheter). The simulations clarify how trans-
port processes and molecular binding kinetics result in concentration
gradients and time delays in the sensor system. Using these simula-
tions, measured and true concentration-time profiles of insulin were
compared as a function of sensor design parameters. The results lead
to guidelines how biomolecular monitoring sensors can be designed
for optimal bioanalytical performance in terms of concentration and
time properties.

Parts of this chapter have been published as: Lubken, R. M. et al. Real Time Monitoring of Biomolecules:
Dynamic Response Limits of Affinity-Based Sensors. ACS Sensors. Accepted for publication (2021).
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5.1 introduction

Biological systems and biotechnological processes exhibit time-de-
pendencies that are imposed by dynamic changes of constituting
biomolecules, such as nutrients, hormones, proteins, and nucleic acids.
To study dynamic processes in real time, monitoring sensors that can
reveal biomolecular concentration-time profiles are needed, in order to
support fundamental research,1–7 patient monitoring,8–14 and closed-
loop control applications.15–21 Such monitoring sensors should be able
to reconstruct concentration-time profiles accurately and precisely, both
in concentration and in time, and the sensors should be suitable for
measuring a wide variety of molecular markers.

The developments in biomolecular monitoring have mainly been
focused on measuring high-concentration metabolites, such as glucose
and lactate.8,12,13 Due to their small size and high concentrations, the
transport and detection of these biomolecules is fast. However, in case
of biomolecular markers at lower concentrations, less molecules are
available and transport limitations become important.22 Furthermore,
biochemical reactions are slow at low concentrations,23 generating
time delays in the sensors and time-related errors in the concentration
results.

To understand and predict how real time monitoring of biomolecules
is limited by dynamic processes, we present a comprehensive method-
ology for studying affinity-based sensors that continuously interact
with a time-dependent system of interest. Here, concentration changes,
which are present in a system of interest, propagate into a monitoring
sensor by diffusion-based sampling or advection-based sampling. We
focus on sensing by biochemical affinity between binder molecules and
analyte molecules, since this is a very generic molecular mechanism for
achieving specific and sensitive measurements. Frequency-dependent
simulations are presented in order to clarify how concentration gra-
dients and time delays are caused by mass transport processes and
molecular binding kinetics. The results lead to relationships between
on the one hand sensor design parameters and on the other hand
measurable concentration change rates, time delays and concentration
errors. This will help researchers to design biomolecular sensors for
optimal bioanalytical performance in terms of concentration and time
properties.
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5.2 biomolecular monitoring with continuous analyte

exchange

The conceptual layout of the monitoring arrangement is sketched in
Figure 5.1 with continuous analyte exchange between a biological or
biotechnological system of interest and a measurement chamber. The
system of interest exhibits dynamic changes of analyte concentration
where the sensing aim is to achieve minimal differences between the
true concentration-time profile Ca,0(t) and the measured concentration-
time profile Cm

a,0(t). The basic modelling approach is to study analyte
concentrations that vary with a sinusoidal time dependence around a
mean concentration value:

C(t) = C +
∆C
2

sin (2π f t + ϕ) (5.1)

with C(t) being the oscillating concentration-time profile, C the mean
concentration, ∆C the top-to-top amplitude of concentration change,
f the oscillation frequency, and ϕ the phase. In the analysis, the con-
centration change ∆C is a small perturbation on the mean value C (a
few percent). The advantage of studying sinusoidal functions is that
concentration-time profiles of arbitrary shape can be reconstructed by
frequency decomposition, as will be discussed later in this chapter. Con-
centration symbols with subscript ‘a’ refer to analyte concentrations: the
analyte concentration-time profile in the system of interest is denoted
by Ca,0(t), at the sensor surface by Ca(t), and the measured analyte
concentration-time profile by Cm

a,0(t). From the simulations in this chap-
ter, it will become apparent that the response of the monitoring system
resembles a low-pass filter: at low frequencies, the measured and true
concentration-time profiles are close to each other; however, at frequen-
cies higher than a cutoff frequency fc, the measured concentration-time
profile deviates from the true concentration-time profile, visible in the
concentration change ∆C and in the lag time ∆t that follows from to
the phase lag ϕ.

The measurement chamber is assumed to be rectangular with height
H, width W, and length L (see Figure 5.2a). The bottom surface of
the measurement chamber is a sensor surface with affinity binder
molecules (brown), where association and dissociation of the analyte
molecules (orange) occur. The association and dissociation rates depend
on the association rate constant kon, the dissociation rate constant koff,
the binder surface density Γb, the analyte concentration-time profile
Ca(t) at the sensor surface, and the surface density of analyte-binder
complexes γab. Analyte molecules binding to binder molecules on the
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Figure 5.1: conceptual layout

of a biomolecular monitoring

system with continuous ana-
lyte exchange . Biomolecular mon-
itoring system with continuous ana-
lyte exchange between a system of
interest and a measurement cham-
ber, where the system of interest ex-
hibits a dynamic concentration-time
profile Ca,0(t) (gray line) which re-
sults in a measured concentration-
time profile Cm

a,0(t) (orange line). Ide-
ally, the measured concentration-time
profile closely resembles the true
concentration-time profile (dashed line
vs. solid line). The monitoring sys-
tem can be mimicked by a low-
pass filter with a cutoff frequency
fc . The system of interest supplies
an oscillating concentration-time pro-
file Ca,0(t) with concentration change
∆Ca,0, which leads to a measured con-
centration Cm

a,0(t) with concentration
change ∆Cm

a,0. A comparison of the
true and measured concentration-time
profiles (dashed line vs. solid line)
gives the system response in terms of
the concentration change ratios and
lag time ∆t. Time
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sensor surface, cause γab to change as a function of time, resulting
in a time-dependent signal which relates to the oscillating analyte
concentration Ca,0(t) in the system of interest (see Supplementary note
5.6.1).

We study two modes of continuous analyte exchange, namely, analyte
exchange by diffusion only (top sketch) and analyte exchange by ad-
vection as well as diffusion (bottom sketch). Diffusion-based sampling
applies to a sensor that is worn on the skin or that is fully embedded
in a bioreactor, for example.8–10 Advection-based sampling applies to a
sensor that is connected to a patient via a catheter or that is connected
to a bioreactor via a sampling line.19–21 In case of diffusion-based sam-
pling, a net molecular flux Ja is caused by a concentration difference
(orange gradient), facilitating mass transport between the system of
interest and the measurement chamber. In case of advection-based
sampling, a laminar flow with flow rate Q facilitates mass transport
between the system of interest and the measurement chamber. In the
simulations, it is assumed that diffusion occurs in both the longitu-
dinal (x-direction) and the lateral direction (y-direction) and scales
with the diffusion coefficient D. In case of advective exchange, the
diffusive transport is superposed onto the advective transport caused
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by a flow, of which the transport scales with the mean flow velocity vm,
and thus the flow rate Q. In this chapter, different design parameters
will be studied which lead to different monitoring performances, as
exemplified in Figure 5.2b.
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Figure 5.2: transport and reaction processes influencing monitoring performance

of a biomolecular monitoring system . (a) Geometry of the measurement chamber with
height H, width W, and length L. The signal of the sensor is generated by an affinity reaction at the
sensor surface, where analyte molecules (orange) associate with and dissociate from binder molecules
(brown), of which the reaction rates are described by the association rate constant kon, the dissociation
rate constant koff, the binder density Γb , the concentration-time profile Ca(t) at the sensor surface,
and the analyte-binder complex density γab . Two modes of continuous analyte exchange are studied:
analyte exchange by diffusion (top) and by advection (bottom). In the measurement chamber, mass
transport by diffusion occurs in both x- and y-direction, caused by a concentration gradient (orange
gradient) that results in a net molecular flux Ja which scales with the diffusion coefficient D. Mass
transport by advection occurs in the x-direction only, caused by a flow with mean flow velocity vm
and flow rate Q. (b) Examples of how the monitoring performance can differ for different sensor
design parameter sets.

Biomolecular monitoring applications differ widely in the analyte
molecules that need to be measured, their concentrations, and their
concentration change rates. Figure 5.3 sketches an overview of ana-
lyte concentrations in blood (in M) and typical concentration change
rates (CCRs, in M h-1) for biomedical monitoring applications such as
diabetes (glucose and insulin),12,13 organ failure (e. g., creatinine)24,25

and inflammation (e. g., CRP, PCT, cytokines).1–3,26,27 The CCRs were
calculated by estimating characteristic concentration changes ∆Ca,0 and
typical fluctuation times tfluc (see Supplementary note 5.6.2). For exam-
ple, blood glucose concentrations vary between 4 and 8 mM in healthy
persons, while for diabetic patients the glucose level can increase to
10-15 mM and higher within a period of tfluc ~ 30 min. This results in
a typical maximum CCR of about 20 mM h-1. At the low end of the
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concentration scale, cytokine biomarker interleukin-6 (IL-6) is indicated.
Physiological IL-6 concentrations are below 0.5 pM, while for patients
with acute inflammatory stress, e. g., due to sepsis or due to cytokine
release syndrome, the IL-6 concentration can increase to 10-100 pM
and higher within a period of a few hours (tfluc ~ 2 hours). This results
in a typical maximum CCR of about 30 pM h-1.

Figure 5.3: typical concentration

change rates (ccrs) and mean

analyte concentrations Ca ,0 for

various analyte molecules in

blood plasma . CCRs were calculated
by estimating a characteristic concen-
tration change ∆Ca,0 and a correspond-
ing characteristic fluctuation time tfluc
(see Supplementary note 5.6.2), based
on reported concentration-time profiles
in blood plasma. Abbreviations: IL-6
(interleukin-6), PCT (procalcitonin), and
CRP (C-reactive protein). The black arrow
indicates the standard parameter value
for the mean analyte concentration Ca,0
as listed in Table 5.1.
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In this chapter, the dynamic response of sensors with different de-
signs is characterized by two parameters: first, the lag time ∆t of the
sensor signal with respect to the input concentration (see Figure 5.1),
and second, the rate sensitivity, i. e., the minimum CCR that can be
measured with an error of 10% (see Supplementary note 5.6.5). We refer
to this minimum CCR as the limit of quantification of CCR (LoCCR).
In the next sections, we study how design parameters influence the lag
time and rate sensitivity using standard parameter values as listed in
Table 5.1. The sensor signal and its time characteristics are quantified by
finite-element simulations in order to investigate the consequences of
mass transport and reactions at the sensor surface. The rate sensitivity
is quantified by calculating the stochastic variabilities in the number of
analyte-binder complexes, for concentration-time profiles with varying
concentration levels and CCRs.

5.3 results and discussion

5.3.1 Response of a monitoring system with diffusion-based sampling

First we consider the case where the transport of analyte molecules
between a system of interest and a sensor measurement chamber is
governed by diffusion only. Figures 5.4 and 5.5 show how the analyte
concentration at the sensor surface and the analyte-binder complex
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table 5 .1 : Standard parameter values used in the finite-element simulations. Details on the simula-
tions are described in Supplementary note 5.6.1.

Parameter Value Description 
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 100 µm Measurement chamber height 

L 1 cm Measurement chamber length 

 2 mm Measurement chamber width 

 10-10 m2 s-1 Diffusion coefficient of the analyte molecule 

 120 µL min-1 Flow rate 

off  10-2 s-1 Dissociation rate constant 

on  106 M-1 s-1 Association rate constant 

,0 10 nM 
Mean analyte concentration in the system of 
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= /  100 Aspect ratio of measurement chamber 

= 2/  100 s Characteristic diffusion time 

= /   1 s Characteristic advection time 

= ( on ,0 + off )
−1 50 s Characteristic reaction time 

= off / on   10 nM Equilibrium dissociation constant 

Δ ,0/  0.05 (5%) Concentration change 

= =
( on ,0 + off ) 2

 2 Damköhler number 

= =
 

 100 Longitudinal Péclet number 

density respond to an oscillating concentration Ca,0(t) in the system
of interest with concentration change ∆Ca,0, for various oscillation fre-
quencies. Figure 5.4a shows how diffusive mass transport influences
the concentration profile Ca(t) at the sensor surface, by quantifying
the concentration change ∆Ca at the sensor surface (top, orange line,
normalized to ∆Ca,0), and the lag time ∆t (bottom, orange line, nor-
malized to the diffusion time τD), given as a function of f (normalized
to the diffusion time τD). In the top graph, for small f , the concen-
tration change ratio ∆Ca/∆Ca,0 is close to unity indicating that the
concentration change at the sensor surface is approximately equal to
the concentration change in the system of interest. Since the oscillation
time 1/ f is larger than τD, the analyte molecules are evenly distributed
throughout the measurement chamber, i. e., there is no concentration
gradient. For large f , ∆Ca/∆Ca,0 decreases for increasing f , which
means that the concentration change at the sensor surface is smaller
than the concentration change in the system of interest. Since 1/ f is now
smaller than τD, a concentration gradient is present in the measurement
chamber in the direction of H (see top sketch). This gradient results
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in dispersion of analyte molecules, which effectively reduces ∆Ca. A
characteristic parameter to describe this decrease in ∆Ca/∆Ca,0 is the
cutoff frequency fc, which is the frequency at which ∆Ca/∆Ca,0 = 0.5
(horizontal dotted black line). In this case the diffusion-induced cut-
off frequency f D

c is equal to f D
c τD ∼= 0.65 (vertical dotted black line).

The bottom graph shows that for f smaller than f D
c , the observed

lag time ∆t is independent of f , since within a period of 1/ f analyte
molecules can be transported throughout the measurement chamber
by diffusion. This results in a homogeneous analyte concentration in
the measurement chamber where ∆t is only determined by diffusion
(∆t ~ τD). For f larger than f D

c , a concentration gradient is present in
the measurement chamber in the direction of H (see top sketch). Now
∆t decreases according to ∆t ∝ 1/

√
f (dashed black line, see Supple-

mentary note 5.6.3), concomitant with a reduction in ∆Ca (top graph).
The inset shows the phase lag ∆ϕ as a function of f . For increasing
f , the absolute phase lag increases (∆ϕ becomes more negative) due
to the time needed for transport of analyte molecules from the top
of the measurement chamber to the sensor surface. For large f , the
concentration at the sensor surface can lag multiple cycles (∆ϕ > 2π)
with respect to the concentration in the system of interest (not shown
here).

Figure 5.4b shows how association and dissociation of analyte mole-
cules to binder molecules influence the measured signal. Mass transport
effects are neglected and the concentration profile Ca(t) at the sensor
surface oscillates with a frequency f . The top graph shows the change
in analyte-binder complex density ∆γab, normalized to the expected
analyte-binder complex density change ∆γ

exp
ab based on the concentra-

tion profile Ca(t) at the sensor surface (see Supplementary note 5.6.4).
The bottom graph shows the lag time ∆t as a function of the frequency
f (normalized to the reaction time τR). For small f , ∆γab/∆γ

exp
ab is

close to unity, indicating that the affinity reaction reaches equilibrium,
since the oscillation time 1/ f is larger than the reaction time τR (see
Table 5.1). For large f , ∆γab/∆γ

exp
ab decreases indicating that less an-

alyte molecules bind to binder molecules on the sensor surface than
expected based on Ca(t) under equilibrium conditions. This results in
a reaction-induced cutoff frequency f R

c , at f R
c τR ∼= 0.27 (vertical dotted

black line). For f smaller than f R
c , ∆t is largely independent of f . Now

equilibrium is reached, causing the lag time to be determined by the
time to equilibrium, i. e., ∆t is reaction-limited (∆t ~ τR). For f larger
than f R

c , ∆t depends on f as ∆t ∝ 1/ f (dashed black line, see Supple-
mentary note 5.6.3). The inset shows the phase lag ∆ϕ as a function
of f . For increasing f , the absolute phase lag increases (∆ϕ becomes
more negative) since less analyte-binder complexes are formed within
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a time 1/ f . For large f , the phase lag reaches a minimum value of
∆ϕ = −π/2 (horizontal black dotted line) with respect to γ

exp
ab since

the reaction rates are directly related to the analyte concentration Ca at
the sensor surface and therefore the phase lag cannot be more negative
(see Supplementary note 5.6.3).
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Figure 5.4: frequency response of a biomolecular monitoring system with continu-
ous analyte exchange by diffusion-based sampling . (a) Frequency response when only
diffusion is considered. Top graph: concentration change ∆Ca at the sensor surface (normalized to the
concentration change ∆Ca,0 in the system of interest) as a function of the frequency f (normalized
to the diffusion time τD). The diffusion-induced cutoff frequency f D

c (horizontal dotted black line),
is f D

c τD ∼= 0.65 (vertical dotted black line). Bottom graph: lag time ∆t (normalized to the diffusion
time τD) as a function of f (normalized to the diffusion time τD). For large f , ∆t scales as ∆t ∝ 1/

√
f

(dashed black line, see Supplementary note 5.6.3). The inset shows the phase lag ∆ϕ as a function
of f . The sketch above the graphs visualizes a measurement chamber with a concentration flux Ja
caused by a concentration gradient (orange gradient). (b) Frequency response when only the surface
reaction is considered. Top graph: analyte-binder complex density change ∆γab (normalized to the
expected analyte-binder complex density change ∆γ

exp
ab , see Supplementary note 5.6.4), as a function

of f (normalized to the reaction time τR). The reaction-induced cutoff frequency f R
c is f R

c τD ∼= 0.27
(vertical dotted black line). Bottom graph: lag time ∆t (normalized to the reaction time τR) as a
function of f (normalized to the reaction time τR). For large f , ∆t scales according to ∆t ∝ 1/ f
(dashed black line, see Supplementary note 5.6.3). The inset shows the phase lag ∆ϕ as a function of
f , where ∆ϕ reaches a maximum negative value (see Supplementary note 5.6.3). The sketch above
the graphs visualizes a measurement chamber with an oscillating concentration Ca(t) at the sensor
surface and a resulting oscillating analyte-binder complex density γab .

Figure 5.5 shows the cutoff frequency fc as a function of the measure-
ment chamber height H (panel a) and the mean analyte concentration
Ca,0 in the system of interest (panel b, normalized to the equilibrium
dissociation constant Kd) when both diffusion and reaction processes
are considered. Standard values for the chamber height H and mean
concentration Ca,0 are indicated by the black arrows (see Table 5.1).
For small H, the diffusion time τD is short since analyte molecules
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only need to travel a short distance from the top of the measurement
chamber to the sensor surface. This causes the observed cutoff fre-
quency fc to be reaction-limited where fc = f R

c ~ 1/τR. For large H,
analyte molecules need to travel a long distance which causes fc to be
diffusion-limited where fc = f D

c ~ 1/τD. For small Ca,0, the reaction is
slow since the reaction time τR is determined by the dissociation rate,
causing fc to be reaction-limited. For large Ca,0, τR is short since the
reaction time τR is determined by the association rate, causing fc to
be diffusion-limited. The insets show fc (normalized to the reaction
time τR) as a function of the Damköhler number Da (see Table 5.1). Da
is a dimensionless parameter describing the relative contribution of
reaction and diffusion to the observed time scale (for Da ≫ 1 diffusion
is slow relative to reaction, for Da ≪ 1 reaction is slow relative to
diffusion). For high Da, the cutoff frequency is diffusion-limited, while
for low Da, the cutoff frequency is reaction-limited.
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Figure 5.5: cutoff frequency of a biomolecular monitoring system with continuous

analyte exchange by diffusion-based sampling . Cutoff frequency fc as a function of
measurement chamber height H and mean analyte concentration Ca,0 in the system of interest. (a) For
small H, fc is reaction-limited where fc = f R

c ~ 1/τR , while for large H, fc is diffusion-limited with
fc = f D

c ~ 1/τD . The inset shows fc , normalized to the reaction time τR , as a function of Damköhler
number Da, with fc = f D

c = α1/τD and α1 ∼= 0.65 (dashed black line, cf. panel Figure 5.4a). (b) For
low Ca,0, fc is reaction-limited and fc = f R

c ~ 1/τR , while for high Ca,0, fc is diffusion-limited with
fc = f D

c ~ 1/τD . The inset shows fc , normalized to the diffusion time τD , as a function of Da with
fc = f R

c = α2/τD and α2 ∼= 0.27 (dashed black line, cf. panel Figure 5.4b). Note that using standard
parameter values as listed in Table 5.1, the full range of Da cannot be reached by only changing Ca,0
because τR becomes dissociation rate-limited when Ca,0 ≪ Kd ; therefore koff was varied instead. The
black arrows indicate standard parameter values as listed in Table 5.1.

5.3.2 Response of a monitoring system with advection-based sampling

Figures 5.6 and 5.7 show how dynamic concentration changes gener-
ate signals in a monitoring sensor based on advective sampling, i. e.,
sampling dominated by flow. Figure 5.6a visualizes how diffusion and
advection jointly influence the concentration profile Ca(t) at the sensor
surface. The concentration change ∆Ca at the sensor surface (top, or-
ange line, normalized to concentration change ∆Ca,0 in the system of
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interest) and the lag time ∆t (bottom, orange line, normalized to the
advection time τA) are given as a function of the oscillation frequency
f (normalized to τA) of the analyte concentration Ca,0 in the system
of interest. Here, a longitudinal Péclet number PeL = τD/τA = 100
was assumed (see Table 5.1), where PeL describes the relative contribu-
tion of diffusion and advection to the transport process (for PeL ≫ 1
diffusion is slow relative to advection, for PeL ≪ 1 advection is slow
relative to diffusion). In the top graph, for small f , ∆Ca/∆Ca,0 equals
unity indicating that the concentration is evenly distributed throughout
the measurement chamber. For large f , ∆Ca/∆Ca,0 decreases which
indicates for a concentration gradient in the measurement chamber
perpendicular to the velocity profile. This results in an advection-
induced cutoff frequency f A

c (horizontal dotted black line) which can
be found at f A

c τA ∼= 0.39 (vertical dotted black line). Note that the
advection-induced cutoff frequency roughly equals f A

c = 100 · f D
c since

PeL = 100, where f D
c is the cutoff frequency for a monitoring system

with diffusion-based sampling (cf. Figure 5.5). In the bottom graph, for
small f , the observed lag time ∆t of the concentration at the sensor sur-
face compared to the concentration in the system of interest, is largely
independent of f since the analyte concentration is homogeneous in
the measurement chamber, causing the lag time to be advection-limited
(∆t ~ τA). For f larger than f A

c , a concentration gradient is present in
the measurement chamber, causing a loss in ∆Ca due to dispersion
of the analyte molecules. Here, ∆t depends less on the frequency f
(∆t ∝ 1/ 3

√
f , dashed black line) compared to Figure 5.4, since the ob-

served time lag is caused by both advection and diffusion, where the
contribution of advection is independent of f (see Supplementary note
5.6.3). Furthermore, diffusion occurs on a length scale smaller than
H, reducing its contribution to the frequency-dependency. The inset
shows the same data visualized as the phase lag ∆ϕ as a function of f .
For increasing f , the absolute phase lag increases (∆ϕ becomes more
negative) due to the time needed to transport analyte molecules from
the bulk of the measurement chamber to the sensor surface. For large
f , Ca(t) can lag for multiple cycles with respect to Ca,0(t) (not shown
here), though ∆Ca decreases sharply due to dispersion for f > f A

c (see
top graph).

Figure 5.6b visualizes the cutoff frequency fc as a function of the
flow rate Q measured at two positions, namely in the bulk of the mea-
surement chamber (position 1, dark brown line) and at the surface of
the measurement chamber (position 2, orange line). The black arrow
indicates the standard parameter value for Q as listed in Table 5.1. The
inset shows the same data with fc (normalized to τA) as a function of
PeL. For small Q, there is a concentration gradient in the longitudinal
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direction since the distance over which molecules need to diffuse to
the sensor surface is smaller compared to the situation in Figures 5.4
and 5.5. This results in an advection-limiting process at PeL < 1 with a
constant fc. For increasing Q, the observed fc becomes different when
measuring in the bulk or at the sensor surface. For measuring in the
bulk, an increased Q results in a change of the shape of the concentra-
tion gradient, namely perpendicular to the velocity profile (top sketch,
dashed black profile) instead of in the longitudinal direction. The flow
rate where fc becomes advection-limited depends on the measurement
chamber geometry: for a small L, fc is advection-limited at small flow
rates since the distance over which molecules need to be transported
is small. For measuring at the sensor surface, the stationary layer be-
comes smaller for increasing Q effectively decreasing the distance over
which the molecules need to diffuse to the sensor surface. This effect
results in fc scaling with the advection time less than 1/τA (see main
graph, dashed black lines) and that the normalized cutoff frequency fc
decreases (see inset).

Figure 5.7 visualizes the cutoff frequency fc as a function of the
flow rate Q (panel a) and the mean analyte concentration Ca,0 in the
system of interest (panel b), where diffusion, advection and reaction
are included. Standard values for the flow rate Q and mean concentra-
tion Ca,0 are indicated by the black arrows (see Table 5.1). In the top
graph, for a low Q, the cutoff frequency is advection-limited, where
fc = f A

c ~ 1/τA. For large Q, the cutoff frequency is limited by a
combination of diffusion and reaction. The inset shows the same data
with fc (normalized to the advection time τA) as a function of PeL.
In the bottom graph, for low Ca,0, the reaction is slow which causes
the observed cutoff frequency fc to be dissociation rate-limited where
fc = f R

c ~ koff. For large Ca,0, the reaction is association rate-limited
where fc = f R

c ~ konCa,0. The inset shows the same data with fc (nor-
malized to the diffusion time τD) as a function of Damköhler number
Da. For small Da, the cutoff frequency is reaction-limited (dashed black
line). For large Da, the cutoff frequency becomes diffusion-limited.

5.3.3 Continuous biomolecular monitoring for arbitrary concentration pro-
files

The measured concentration profile of a monitoring sensor should
resemble as closely as possible the true concentration profile of the
analyte. While Figures 5.4-5.7 discussed the effects of diffusion, advec-
tion and reaction on the cutoff frequency and lag time, the question
remains how these processes influence an actual concentration profile
and the differences between the measured and the true concentration
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Figure 5.6: frequency response of a biomolecular monitoring system with con-
tinuous analyte exchange by advection-based sampling . (a) Frequency response when
only diffusion and advection are considered, for an advection dominated sensor geometry with
PeL = 100 (see Table 5.1). Top graph: concentration change ∆Ca at the sensor surface, normalized to
the concentration change ∆Ca,0 in the system of interest, as a function of the frequency f (normalized
to the advection time τA), measured at the sensor surface at distance L/2 from the inlet (see also
the sketch in panel b). The diffusion-induced cutoff frequency f D

c is taken from Figure 5.4a, and
the advection-induced cutoff frequency f A

c is found to be f A
c τA ∼= 0.39 (vertical dotted black line)

and roughly equals f A
c = 100 · f D

c . Bottom graph: lag time ∆t, normalized to τA , as a function of the
frequency f , normalized to τA . For large f , ∆t scales according to ∆t ∝ 1/ 3

√
f (black dashed line).

(b) Cutoff frequency as a function of flow rate Q when only diffusion and advection are taken into
account, measuring in the middle in the bulk of the measurement chamber at height H/2 (dark
brown line) and at the sensor surface of the measurement chamber (orange line) both at distance
L/2 from the inlet. For increasing Q, measuring in the bulk results in an advection-limited cutoff
frequency (dashed black lines). The inset shows the same data with the observed cutoff frequency fc ,
normalized to the advection time τA , as a function of the longitudinal Péclet number PeL . For small
PeL , fc for both bulk and surface measurements are comparable with = f D

c . For increasing PeL , fc
increases due to a higher flow rate, until the system becomes advection-limited. Measuring at the
sensor surface results in a weaker dependency on τA than 1/τA .

profiles. Here, we study an insulin concentration profile with standard
parameter values listed in Table 5.1 as an example (see Supplementary
note 5.6.6). In this chapter, the rate sensitivity is quantified as the Limit
of quantification of CCR (LoCCR), i. e., the smallest CCR that can be
measured with an error of 10% (see Supplementary note 5.6.5). The
LoCCR is calculated assuming a sensor with noise that is dominated
by Poisson statistics, with a signal collection area As = 1 mm2, and a
binder density Γb = 10−9 mol m-2. Poisson noise represents the funda-
mental limit of the precision that can be achieved in a biosensor due to
stochastic fluctuations in the number of detected analyte molecules.28,29

Figures 5.8-5.10 show the collective influence of diffusion, advection,
and reaction on the LoCCR and the measured concentration profile, for
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Figure 5.7: cutoff frequency of a biomolecular monitoring system with continuous

analyte exchange by advection-based sampling . Cutoff frequency fc as a function of
the chamber height H with a fixed chamber length L and mean analyte concentration Ca,0 in the
system of interest for a sensor when diffusion, advection and reaction are taken into account. (a)
For small H, fc is reaction-limited where fc = f R

c ~ 1/τR , while for large H, fc is diffusion-limited
with fc = f D

c ~ 1/τD . The inset shows the same data with the cutoff frequency fc , normalized to the
reaction time τR , as a function of Damköhler number. (b) For H = 100 µm (see Table 5.1), the cutoff
frequency is reaction-limited. Therefore, for low Ca,0, fc is dissociation rate-limited and fc = f R

c ~ koff,
while for high Ca,0, fc is association rate-limited with fc = f R

c ~ konCa,0. The inset shows the same
data with the cutoff frequency fc , normalized to the diffusion time τD , as a function of Damköhler
number. fc becomes diffusion limited at Da ≫ 1 and reaches a plateau level larger than fcτD = 1 (cf.
Figure 5.5) since τD = H2/D, while actual distance over which molecules decreases for increasing Q.
Note that using the standard parameter values in Table 5.1 the full range of Da cannot be reached by
only changing Ca,0 because τR becomes dissociation rate-limited when Ca,0 ≪ Kd ; therefore the koff
was varied instead. The black arrows indicate standard parameter values as listed in Table 5.1.

different measurement chamber heights H (in case of diffusion-based
analyte exchange) and for different flow rates Q (in case of advection-
based analyte exchange). Figure 5.8 shows the LoCCR as a function
of frequency f using standard parameter values as listen in Table 5.1,
for diffusion-based sampling (panel a) and advection-based sampling
(panel b). Figure 5.8a shows results for measurement chamber heights
H = 200 µm (dark brown) and H = 800 µm (orange). For low f , the
LoCCR equals the value found for Poisson noise only (dashed black
line, see also Supplementary note 5.6.5), which is due to the fact that
the sensor reaches equilibrium and no dispersion occurs (cf. Figures
5.4 and 5.5). For increasing f , the results depend on the measurement
chamber height because a small H gives a larger cutoff frequency
(cf. Figure 5.5). Here, both lines deviate from the Poisson-limit, since
equilibrium is not reached within a time equal to 1/ f , resulting in
fewer analyte-binder complexes. The inset shows the same data with
the minimum concentration change ∆Ca,0 that can be quantified with an
error of less than 10% as a function of frequency f . Figure 5.8b shows
advection-based sampling with flow rates Q = 10 µL min-1 (dark
brown) and Q = 0.1 µL min-1 (orange).30–32 Here, the lines deviate
from the Poisson-limit at higher frequencies compared to diffusion-
based sampling, since the cutoff frequency is higher in advection-based
sampling compared to diffusion-based sampling (see Figures 5.5 and
5.7). The inset shows the same data with the minimum concentration
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change ∆Ca,0 that can be quantified with an error of less than 10% as a
function of frequency f .
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Q = 0.1 µL/minFigure 5.8: limit of quantification of ccr (loccr) of the monitoring system using

two modes of continuous analyte exchange . LoCCR as a function of frequency f in a
monitoring system with continuous analyte exchange by diffusion-based sampling (panel a) and by
advection-based sampling (panel b). The insets show the same data with the concentration change
∆Ca,0 as a function of f . For low f , the precision of the CCR is limited by Poisson noise (dashed
black line). For increasing f , the lines start to deviate since the frequencies become higher than the
corresponding cutoff frequencies.

Figure 5.9a shows a typical insulin profile (dotted black line) and
corresponding measured insulin profiles, using diffusion-based analyte
exchange and the standard parameter values listed in Table 5.1. The
bottom graphs show the frequency spectrum of the true and measured
insulin profiles plotted as CCR components (see Supplementary note
5.6.2). For H = 200 µm (brown line), the measured concentration
profile is almost identical to the true concentration profile, since the
cutoff frequency fc = 9 · 10−4 Hz (see Figure 5.5a) is higher than the
frequencies present in the true insulin profile (see bottom graphs, left).
For H = 800 µm (orange line), the true concentration profile cannot
be accurately reconstructed, only the general up-and-down trend at
a 6-hour interval, since the cutoff frequency fc = 1 · 10−4 Hz (see
Figure 5.5a) is close to the frequencies in the insulin profile (see bottom
graphs, right). Also, the average lag time ∆t of the measured signal is
smaller for H = 200 µm than for H = 800 µm, since a smaller distance
requires less time for diffusion.

Figure 5.9b shows the results for advection-based analyte exchange,
for flow rates Q = 10 µL min-1 (dark brown) and Q = 0.1 µL min-1

(orange). In both cases the measured insulin profile is similar to the
true insulin profile, since the cutoff frequencies are fc = 7 · 10−3 Hz and
fc = 8 · 10−4 Hz respectively (see Figure 5.7a). The strong similarities
are also visible in the frequency spectrum (bottom panel).
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Figure 5.9: measuring concentration-time profiles using two modes of continuous

analyte exchange . (a) Concentration-time profiles for a measurement chamber height H = 200
µm (brown line) and H = 800 µm (orange line), and the true analyte concentration (black dotted line),
for diffusion-based analyte exchange. The bottom graphs show the frequency spectrum with the CCR
component as a function of frequency. For small H, the concentration profile closely resembles the
true concentration profile. However, for large H, the similarity is only visible at low frequencies; at
high frequencies, the measured CCR is close to 0, indicating that sinusoidal components with these
frequencies are not present in the measured signal. (b) Concentration-time profiles for a measurement
chamber with flow rate Q = 10 µL min-1 (brown line) and Q = 0.1 µL min-1 (orange line), and the
true analyte concentration (black dotted line, behind the brown line), for advection-based analyte
exchange. The bottom shows the frequency spectrum. For both flow rates, the concentration profile
closely resembles the true concentration profile.

Figure 5.10 investigates the limits of dynamic monitoring when affin-
ity binders with very high affinity are used, i. e., binders with a very low
dissociation rate constant (koff = 10−3 s-1), which is relevant to study
when low-concentration analytes need to be measured. Figure 5.10a
shows simulation results for diffusion-based sampling. The data show
that the lower dissociation rate constant causes a lower cutoff frequency,
a longer lag time, and a higher LoCCR (see Supplementary note 5.6.5).
The reversibility of the sensor is worse, particularly for a large measure-
ment chamber height (H = 800 µm) because the large volume of the
measurement chamber contains many analyte molecules. Figure 5.10b
shows results for advection-based sampling. The flow rate increases
the rate of exchange of the large volume above the sensor surface. A
flow rate as low as 0.1 µL min-1 already significantly improves the
dynamic performance of the sensor. A flow rate of 10 µL min-1 gives
small differences between the measured and real concentrations with a
lag time that is very close to 1/koff = 1/(10−3 s-1) = 17 min.
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Figure 5.10: measuring concentration profiles with high-affinity binders using

two modes of continuous analyte exchange . LoCCR as a function of f and corresponding
concentration profiles for diffusion-based analyte exchange (panel a) and advection-based analyte
exchange (panel b), where koff = 10−3 s-1 (compared to koff = 10−2 s-1. Due to higher cutoff frequencies,
the similarity of the measured concentration profiles is less compared to Figure 5.9.

5.4 conclusion

To measure in real time the dynamic changes of biomolecular concen-
trations in biological systems or biotechnological processes, monitoring
sensors are required that reveal reliable concentration-time profiles. We
have studied the influence of sensor design parameters on the differ-
ences between the true and the measured concentration-time profile,
focusing on the lag time of the sensor signal with respect to the input
concentration, and on the rate sensitivity. To quantify a rate sensitivity,
we introduced the concept of concentration change rate (CCR), which
is expressed in the units molar per second. The CCR that needs to be
resolved differs strongly between different biomolecular monitoring
applications, due to their respective concentration changes and fluc-
tuation times (see Figure 5.3). The limit of the measurable CCR was
evaluated as the limit of quantification of the CCR (LoCCR), i. e., the
lowest CCR that can be quantified with a precision of 10%.

In this chapter, we have presented a comprehensive methodology to
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study the properties and limitations of dynamic measurements using
affinity-based sensors, as these represent a very generic and broad
class of bioanalytical measurement techniques. Analyte exchange was
considered between the system of interest and the sensor by diffusive
as well as advective sampling. Finite-element simulations were used
to describe the spatial and temporal dependency of analyte concentra-
tion within the measurement chamber. Sinusoidal concentration-time
profiles were studied as well as arbitrary concentration-time profiles by
frequency decomposition. Using this approach, the effects were studied
of mass transport and biochemical kinetics on the speed of concen-
tration change, time delays, and concentration errors in the sensing
system.

The study of sensor performance was exemplified for insulin moni-
toring. The results show that diffusion-based sampling performs equal
to advection-based sampling in reconstructing the concentration-time
profile for small heights of the measurement chamber (< 200 µm).
However, for larger heights, diffusion-based sampling causes an in-
creased lag time and decreased rate sensitivity. A monitoring system
with advection-based sampling performs similarly with respect to the
rate sensitivity for flow rates down to ~0.1 µL min-1, while the lag time
is larger for low flow rates.

For low-concentration biomolecules, less molecules are available for
detection and therefore continuous monitoring sensors with a single-
molecule resolution are useful, because these sensors can have Poisson-
limited noise levels and therefore a high detection sensitivity. In case
of binder molecules with a high affinity (koff = 10−3 s-1), the analytical
performance deteriorates for diffusion-based sampling, but not for
advection-based sampling with flow rates of 10 µL min-1 and higher,
allowing the measurement of all CCR components present in an insulin
concentration-time profile.

The results and learnings presented in this chapter can assist re-
searchers to identify the most important processes influencing the per-
formance of continuous monitoring sensors. Insight in the individual
and combined influence of analyte diffusivity, analyte concentration,
binder affinity, sampling method, measurement chamber geometry,
and flow speed on the observed lag time and rate sensitivity of the
measured concentration-time profile, will help researchers to develop
monitoring systems with desirable sensor characteristics for a diverse
range of biomarkers and applications.
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5.5 methods

finite-element analysis : Finite-element simulations were per-
formed by solving diffusion, advection and reaction equations simulta-
neously using COMSOL (COMSOL Multiphysics 5.5) and MATLAB
(MATLAB R2019a, COMSOL Multiphysics LiveLink for MATLAB) (see
Supplementary note 5.6.1). The LoCCRs were reported at a distance
L/2 in the measurement chamber (Figure 5.2a), where the signal was
collected over a signal collection area As = 1 mm2 with a binder
molecule density Γb = 10−9 mol m-2 (see Supplementary note 5.6.5).

frequency analysis : The amplitude and the phase lag of the
concentration at the sensor surface (Figures 5.4a and 5.6a) and analyte-
binder complex density (Figures 5.4b, 5.5 and 5.7) were calculated
using the Fourier transform of its density profile. The calculated values
were compared to the amplitude and the phase (i. e., ϕ = 0) of the
input concentration profile. The cutoff frequency was determined at
the frequency where the observed amplitude was 50% of the input
amplitude. The LoCCR was determined according to Supplementary
notes 5.6.2 and 5.6.5.

5.6 supplementary notes

5.6.1 Finite-element simulations

The simulation study of the time-dependent behavior of the biochemical
assay was performed using dimensionless parameters for all mass
transport processes and reaction rates.22,29 The nondimensionalized
parameters for mass transport by diffusion and advection are given in
Table 5.2.

table 5 .2 : Dimensionless parameters used in the finite-element analysis for modeling mass transport
by diffusion and advection.

Dimensionless parameter Symbol Expression 

Analyte concentration ̃ ̃ = / ,0 

Longitudinal distance ̃  ̃ = /  

Transversal distance ̃  ̃ = /  

Time ̃ = 2/ → ̃ =  / 2 

For all finite-element analyses, the time was nondimensionalized
using the diffusion time τD (e. g., Figures 5.4a and 5.5) and thereafter
recalculated to normalize with respect to other time scales (e. g., τR
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in Figures 5.4b and 5.5a). When advective flow is included, the used
analytical expression of the advective flow is given by:

v⃗ (y) =
6Q

WH3 y (H − y) e⃗x (5.2)

with v⃗(y) being the flow speed as a function of the height y inside the
measurement chamber, Q the flow rate, W the width of the measure-
ment chamber, and H the height of the measurement chamber. The
general equation used in the simulation to describe mass transport by
advection and diffusion is given by:

δCa

δt
= D∇2Ca − v⃗(y) · ∇Ca (5.3)

with δCa
δt being the time-derivative of the (spatial-dependent) analyte

concentration Ca and D the diffusion coefficient. The dimensionless
form of Equation 5.3 is derived in Box 5.1.

box 5 .1 : Derivation of the dimensionless advection-diffusion equation.

δ(c̃Ca,0)

δ
(

t̃H2
D

) = D δ2(c̃Ca.0)

δ(x̃L)2 + D δ2(c̃Ca,0)

δ(ỹH)2 − 6Q
WH3 ỹH (H − ỹH)

δ(c̃Ca,0)
δ(x̃L)

δc̃
δt̃

= H2

D
1
L2 D δ2 c̃

δx̃2 +
H2

D
1

H2 D δ2 c̃
δỹ2 − H2

D
6Q

WH3
1
L ỹH2 (1 − ỹ) δc̃

δx̃

δc̃
δt̃

= H2

L2
δ2 c̃
δx̃2 +

δ2 c̃
δỹ2 − 6QH

LDW ỹ (1 − ỹ) δc̃
δx̃

Using the derivation given in Box 5.1, measurement chamber aspect
ratio λ = L/H, and longitudinal Péclet number PeL = Q

λDW (see Table
5.1), the simplified dimensionless advection-diffusion equation is given
by:

δc̃
δt̃

=
1

λ2
δ2 c̃
δx̃2 +

δ2 c̃
δỹ2 − 6PeLỹ (1 − ỹ)

δc̃
δx̃

(5.4)

The nondimensionalized parameters for the reaction rate are given
in Table 5.3.

The general equation used in the simulation to model the reaction at
the sensor surface is given by:
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table 5 .3 : Dimensionless parameters used in the finite-element analysis for modeling the reaction
at the sensor surface.

Dimensionless parameter Symbol Expression 

Analyte concentration at the sensor surface ̃ ∗ ̃ ∗ = ∗/ ,0 

Density of analyte-binder complexes ̃  ̃ = /( ,0 )  

Time ̃ ̃ =  / 2 

δγab
δt

= konC∗
a
(
Γb − γab

)
− koffγab (5.5)

with δγab
δt being the time-derivative of the (spatial-dependent) density

γab of analyte-binder complexes and C∗
a the analyte concentration

at the sensor surface, which is known by solving Equation 5.3. The
dimensionless form of Equation 5.5 is derived in Box 5.2.

box 5 .2 : Derivation of the dimensionless reaction rate equation.

δ(γ̃Ca,0 H)

δ
(

t̃H2
D

) = kon c̃∗Ca,0 (Γb − γ̃Ca,0H)− koffγ̃Ca,0H

δγ̃

δt̃
= H2

D
kon c̃∗

H (Γb − γ̃Ca,0H)− H2

D koffγ̃

δγ̃

δt̃
= konΓb H

D c̃∗ − kon H
D c̃∗γ̃Ca,0H − H2

D koffγ̃

δγ̃

δt̃
=

Ca,0 H
Γb

konΓb H
D

[
c̃∗
(

Γb
Ca,0 H − γ̃

)
− Kd

Ca,0
γ̃
]

Using the derivation given in Box 5.2 and Damköhler number Da =
konΓb H

D (see Table 5.1), the simplified dimensionless reaction rate equa-
tion is given by:

δγ̃

δt̃
=

Ca,0H
Γb

Da
[

c̃∗
(

Γb
Ca,0H

− γ̃

)
− Kd

Ca,0
γ̃

]
(5.6)

The nondimensionalized parameters for the oscillating concentration
are given in Table 5.4.

The general equation used in the simulation to describe the oscillating
concentration in the system of interest Ca,0 is given by:

Ca,0 (t) = Ca,0 +
∆Ca,0

2
sin (2π f t + ϕ) (5.7)
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table 5 .4 : Dimensionless parameters used in the finite-element analysis for modeling the oscillating
concentration input.

Dimensionless parameter Symbol Expression 

Analyte concentration in the system of interest ̃ ,0  ̃ ,0 = ,0( )/ ,0 

Mean analyte concentration in the system of 
interest 

− 
1 = ,0/ ,0 

Concentration change Δ ̃ ,0 Δ ̃ ,0 = Δ ,0/ ,0 

Time ̃ ̃ =  / 2 

Frequency ̃ ̃ = 2/  

with Ca,0 being the mean concentration in the system of interest, ∆Ca,0
the concentration change, f the frequency, and ϕ the phase. The out-
come of Equation 5.7 forms the boundary condition at the inlet of the
measurement chamber when solving Equations 5.4 and 5.6 simulta-
neously. The dimensionless form of Equation 5.7 is derived in Box
5.3.

box 5 .3 : Derivation of the dimensionless oscillating concentration input.

c̃a,0Ca,0 = Ca,0 +
∆C̃a,0Ca,0

2 sin
(

2π f̃ D
H2 t̃ H2

D + ϕ
)

c̃a,0 = 1 + ∆C̃a,0
2 sin

(
2π f̃ t̃ + ϕ

)
c̃a,0 = 1 + ∆C̃a,0

2 sin
(

2π f̃ t̃ + ϕ
)

5.6.2 Concentration change rate

The concentration change rate (CCR) is the change (increase or decrease)
in concentration per unit time. From a concentration profile, the CCR
can be estimated using a characteristic concentration change ∆Ca,0,
i. e., the difference between a minimum and a maximum concentration
value, and a characteristic fluctuation time tfluc, i. e., the time required
to increase from the minimum and maximum concentration value or
vice versa (see Figure 5.11):

CCR =
∆Ca,0

tfluc
(5.8)

From a sinusoidal concentration profile with amplitude ∆Ca,0/2 and
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frequency f , the CCR can be calculated using the concentration change
∆Ca,0 and the frequency f , where f = 1/(2 · tfluc) (see Figure 5.11b):

CCR = 4
∆Ca,0

2
f = 2∆Ca,0 f (5.9)
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Figure 5.11: insulin concentration profile and a sinusoidal function with a typi-
cal concentration change and a typical fluctuation time . (a) Insulin concentration
profile (brown) with a typical concentration change ∆Ca,0 and a typical fluctuation time tfluc. The con-
centration change rate (CCR) can be estimated by CCR ~ ∆Ca,0/tfluc (red dashed line). (b) Sinusoidal
concentration profile with amplitude ∆Ca,0/2 and frequency f . The CCR can be calculated by CCR
= ∆Ca,0/tfluc = 2∆Ca,0 f (red dashed line).

The typical CCR for insulin as visualized in Figure 5.3 is higher
than can be found in the Fourier spectra in Figure 5.9. The difference
here can be explained by the fact that in Figure 5.9, the observed CCR
comprises multiple sinusoidal components, which results in a summed
observed CCR, and thus a smaller CCR per sinusoidal concentration
profile.

5.6.3 Frequency-dominated lag time

In Box 5.4 a mathematical derivation is given for the observed lag time
∆t of the concentration Ca(t) at the sensor surface using diffusion-based
sampling, when ∆t is frequency-dominated, for a given oscillating con-
centration Ca,0(t) in the system of interest. For f > f D

c , a concentration
gradient in the lateral direction develops with a concentration wave-
length λD

C .
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box 5 .4 : Mathematical derivation of the frequency-dominated lag time ∆t for the con-

centration Ca(t) at the sensor surface using diffusion-based sampling.

When the observed lag time ∆t is frequency-dominated, a concen-
tration gradient in the lateral direction exists with a characteristic
length scale equal to the concentration wavelength λD

C due to diffu-
sion: λD

C =
√

D/ f , where D is the diffusion coefficient and f the
frequency. The phase lag ∆ϕD of the observed concentration at the
sensor surface compared to the concentration at the inlet of the mea-
surement chamber, can be calculated by ∆ϕD = 2πH/λD

c , while the

corresponding lag time ∆τ can be calculated by ∆tD = ∆ϕD

2π f = H
f λD

C
.

This yields ∆tD = H/
√

D f . By normalizing ∆t and f using the dif-
fusion time scale τD = H2/D, we obtain ∆tD/τD = 1/

√
f τD, which

results in ∆tD ∝ 1/
√

f (see Figure 5.4a).

In Box 5.5 a mathematical derivation is given for the observed lag
time ∆t of the density γab of analyte-binder complexes, when ∆t is
frequency-dominated, for a given concentration Ca(t) at the sensor
surface. For f > f R

c , no equilibrium can be reached resulting in a
quasi-equilibrium that is determined by f . When a concentration Ca(t)
at the sensor surface is supplied with a high frequency, the observed
phase lag ∆ϕ equals −π/2 (see Figure 5.4b). The density γab of analyte-
binder complexes cannot lag more than this with respect to the expected
density γ

exp
ab since the association and dissociation rates directly depend

on the concentration Ca(t) at the sensor surface and γab(t):

ra = konCa(t) (Γb − γab) and rd = konγab(t) (5.10)

with ra being the association rate, kon the association rate constant, Γb
the binder density, rd the dissociation rate, and koff the dissociation
rate constant. From Equation 5.10 can be concluded that ra directly
responds to a change in Ca(t), while rd only responds after analyte-
binder complexes are formed in the association reaction.
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box 5 .5 : Mathematical derivation of the frequency-dominated lag time ∆t for the density

γab of analyte-binder complexes.

In contrast to diffusion, the phase lag ∆ϕR of the observed density
γab of analyte-binder complexes with respect to the expected density
γ

exp
ab of analyte-binder complexes, is independent of frequency for

f > f R
C since ∆ϕR = −π

2 since the association and the dissociation
rates depend on the concentration Ca(t) at the sensor surface. The

lag time can be calculated by ∆tR = ∆ϕR

2π f . This yields ∆tR = 1
4 f . By

normalizing ∆t and f using the reaction time τR = 1
konCa+koff

, we

obtain ∆tR/τR = 1
4 f τR

, which results in ∆tR ∝ 1/ f (see Figure 5.4b).

In Box 5.6 a mathematical derivation is given for the observed lag
time ∆t of the concentration Ca(t) at the sensor surface using advection-
based sampling, when ∆t is frequency-dominated, for a given concen-
tration Ca,0(t) in the system of interest. For f > f A

c , a concentration
gradient perpendicular to the velocity profile with a concentration
wavelength λA

C .

box 5 .6 : Mathematical derivation of the frequency-dominated lag time ∆t for the con-

centration Ca(t) at the sensor surface using advection-base sampling.

When the observed lag time ∆t is frequency-dominated, an oscillating
concentration gradient exists with a characteristic length scale equal
to the concentration wavelength λA

C due to advection: λA
C = Q

HW f ,
where D is the diffusion coefficient and f the frequency.

The phase lag ∆ϕA of the observed concentration at the sensor
surface compared to the concentration at the inlet of the measure-
ment chamber, can be calculated by ∆ϕA = 2πL/λA

C , while the

corresponding lag time ∆τ can be calculated by ∆tA = ∆ϕA

2π f = HLW
f λD

C
.

This yields ∆tA = HLW
Q which equals the characteristic advection

time. The frequency-dependency is caused by diffusion to the
sensor surface, where the characteristic diffusion length is much
smaller than measurement chamber height H which results in a less
strong dependency of the lag time ∆t on the frequency f (compare
Figure 5.4a and Figure 5.6a).
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5.6.4 Expected analyte-binder complex density change

The expected analyte-binder complex density γ
exp
ab can be calculated

for a given analyte concentration Ca(t) at the sensor surface. For this
we use the following equation:

γ
exp
ab = Γb

Ca(t)
Ca(t) + Kd

(5.11)

with Γb being the total binder density (assumed to be 10−9 mol m-2,
i. e., 600 µm-2), Ca(t) the analyte concentration at the sensor surface,
and Kd the dissociation constant. When Ca(t) oscillates with a concen-
tration change ∆Ca around a mean concentration Ca, this will result
in an oscillating γ

exp
ab with a density change ∆γ

exp
ab . For this we use the

following equation:

∆γ
exp
ab = Γb

Ca + ∆Ca/2
Ca + ∆Ca/2 + Kd

− Γb
Ca − ∆Ca/2

Ca − ∆Ca/2 + Kd
(5.12)

Under the assumption that Ca ≪ Kd, ∆γ
exp
ab can be calculated by:

∆γ
exp
ab

∼= Γb
∆Ca

Kd
(5.13)

5.6.5 Precision of concentration change rate

To calculate the precision of the monitoring system, we defined a rate
sensitivity which is the smallest CCR that can be quantified with an
error of 10%. We refer to this minimum CCR as the limit of quantifi-
cation of CCR (LoCCR). In this chapter, we assume that two concen-
trations need to be distinguished from each other within a given time
span based on a sinusoidal oscillating concentration Ca,0(t) with mean
concentration Ca,0, concentration change ∆Ca,0, and frequency f . A
mathematical derivation of the LoCCR is given in Box 5.7.
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box 5 .7 : Mathematical derivation of the sensitivity of the concentration change rate in a

biomolecular monitoring system.

The CCR can be calculated by CCR= 2∆Ca,0 f assuming an oscillating
concentration with concentration change ∆Ca,0 and frequency f .
For a given frequency f , the minimum CCR that can be deter-
mined precisely is when the coefficient of variation CVCCR of the
concentration change rate is smaller than or equal to 10%, i. e.,
CVCCR = CV∆Ca,0 =

σ∆Ca,0
∆Ca,0

≤ 10%. The error of the concentration
change σ∆Ca,0 can be calculated by:

σ2
∆Ca,0

=
(
σmax

C
)2

+
(
σmin

C
)2 → σ∆Ca,0

∼=
√

2σC

with σmax
C and σmin

C being the errors of the maximum and
minimum of the oscillating concentration profile respectively. For
simplicity, we assume that σmax

C
∼= σmin

C = σC which is true if the
precision of the sensor is Poisson-limited and ∆Ca,0 is small. The
error of the concentration σC can be determined using the error of
the signal σS and the slope of the dose-response curve: σC =

δCa,0
δS σS

with δS
δCa,0

the concentration-derivative of the signal. The error of the
signal σS can be determined using the statistical variation σNab in the
number of analyte-binder complexes:

σNab =
√

Nab → σS = S√
Nab

with Nab being the total number of analyte molecules bound
to binder molecules that contribute to the signal of the sensor and S
is the measured signal. Combining all derivations given above, gives
the following expression for the minimum concentration change that
can be determined precisely:

∆Ca,0 ≥ 10 · σ∆Ca,0 → ∆Ca,0 ≥ 10
√

2 δCa,0
δS

S√
Nab

and the LoCCR for a given frequency f using Equation 5.9:

LoCCR= 20 f
√

2 δCa,0
δS

S√
Nab

The results of the mathematical derivation of the LoCCR given in
Box 5.7, are visualized in Figures 5.12 and 5.13, where the monitoring
system was assumed to be in equilibrium ( f → 0), and limited by
Poisson noise only.28 Figure 5.12a shows the normalized signal S as a
function of concentration Ca,0, which directly scales with the fractional
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occupancy f of binder molecules by analyte molecules. The normalized
signal can be calculated using the following equation, assuming first-
order Langmuir kinetics:

S = AB + (1 − AB)
Ca,0

Ca,0 + Kd
(5.14)

with S being the measured signal, AB the background signal, Ca,0
the concentration in the system of interest, and Kd the dissociation
constant. Here it was assumed that there is no background signal. The
error of the signal is determined by the number of observed analyte-
binder complexes on the sensor surface within a signal collection area
of As = 1 mm2 with a binder molecule density Γb = 10−9 mol m-2

(600 µm-2). This error of the signal σS is determined by the number of
observed analyte-binder complexes (see Box 5.7) and therefore increases
with an increasing Ca,0 until saturation is reached where no more
surface binders are available for binding analyte molecules (see inset,
top). However, the relative error, indicated by the coefficient of variation
of the measured signal CVS = σS/S (see inset, bottom), decreases for
increasing Ca,0 which results in a more precise signal measurement
when high concentrations are supplied to the sensor.

Figure 5.12b shows the coefficient of variation of the measured con-
centration CVC = σC/Ca,0 as a function of Ca,0. The inset shows the
precision of the concentration σC that can be calculated from σS (see Box

a b
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Figure 5.12: precision of the signal and concentration in a monitoring system . (a)
Normalized signal S as function of concentration Ca,0. The insets show the signal error σS (top) and
the coefficient of variation of the signal CVS (bottom) as a function of concentration Ca,0. For low Ca,0,
the signal error is limited by the number of analyte-binder complexes. For high Ca,0 the signal error is
limited by the number of binder molecules. (b) Coefficient of variation of the concentration CVC as
a function of mean concentration Ca,0. The inset shows the concentration error σC as a function of
concentration. For low Ca , CVC is determined Poisson noise (black dashed line). For high Ca,0, the
precision of the concentration is decreasing by saturation of binder molecules by analyte molecules.
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5.7). For low concentrations, the precision is Poisson-limited (dashed
black line). However, for increasing concentrations, the precision starts
to deviate with an increasing CVC. This effect is caused by saturation
effects of the binder molecules on the sensor surface decreasing the
precision (i. e., increasing CVC) of the concentration determination.

Figure 5.13 shows the minimum concentration change ∆Ca,0 that can
be determined as a function of concentration Ca,0. The inset shows the
corresponding LoCCR (using Equation 5.9) as a function of frequency f ,
for a given concentration Ca,0 = Kd. The dashed black arrow indicates
the concentration as listed in Table 5.1. Here it can be seen that a small
∆Ca,0 can be measured at low concentrations since here the absolute
σC is small. At high concentrations, ∆Ca,0 starts to increase steeply due
to saturation effects (cf. Figure 5.12b). A small CCR can be measured at
low frequencies since CCR scales according to CCR = 2 f ∆Ca,0.
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Figure 5.13: precision of the ccr in a

monitoring system . Minimum concen-
tration change ∆Ca,0 that can be determined
as a function of mean concentration Ca,0. For
low Ca,0, the minimum ∆Ca,0 is determined
by Poisson noise (black dashed line). At high
Ca,0, the minimum ∆Ca,0 is increasing by the
saturation of binder molecules by analyte
molecules. The inset shows the LoCCR as a
function of frequency f at a given concentra-
tion Ca,0 = Kd .

From simulated data we obtain surface densities, which directly
scale with signal, instead of measured concentrations. Therefore, in
Figure 5.14 the minimum observed signal change ∆S is visualized as
a function of the mean concentration Ca,0 with three signal changes
∆Ca,0/Kd = 50%, 5%, and 0.5%. The minimum ∆S that can be measured
assuming a Poisson-limited sensor, can be estimated by the following
equation (cf. Box 5.7):

∆S ≥ 10
√

2
S√
Nab

(5.15)

By determining the intersection (black arrows) of the dashed black
line (Poisson-limit) and the orange curves that show the observed signal
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change ∆S as a function of the mean concentration Ca,0 of the oscillating
concentration Ca,0(t) for a given concentration change ∆Ca,0, we can
estimate the minimum concentration change that can be determined
at a given Ca,0. When the frequencies are low ( f ~ hours, left) the
minimum concentration change ∆Ca,0 is small at low concentration,
but for high frequencies ( f ~ minutes, right), only a higher ∆Ca,0 can
be determined precisely at that same concentration. This results in the
LoCCR as visualized in Figures 5.8 and 5.10 using Equation 5.9.
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Figure 5.14: minimum quantifiable concentration change at a given frequency

and mean concentration of the oscillating input concentration. Signal change ∆S
as a function the mean concentration Ca,0 of an concentration profile Ca,0(t) at a low frequency f
( f ~ hours, panel a) and at a high f ( f ~ minutes, panel b), for an example monitoring system with
three concentration changes ∆Ca,0 (orange). The dashed black lines shows the minimum signal change
∆S as determined by Equation 5.15. The intersection (black arrows) gives the minimum concentration
change ∆Ca,0 which can be determined for a given frequency f and mean concentration Ca,0.

5.6.6 Example calculations of insulin monitoring

Continuous glucose monitoring devices help diabetes patients to con-
trol their blood glucose levels.12,13 Advanced closed-loop systems are
available that automatically regulate insulin delivery based on glucose
monitoring data.15 Even better regulations may be enabled by also
including continuous monitoring data of blood insulin levels. A typical
CCR for insulin is CCR ~ 600 pM h-1 with an insulin concentration
ranging from 20 to 800 pM (see Figure 5.3). To reconstruct insulin con-
centration profiles as closely as possible, the LoCCR should be much
smaller than 600 pM h-1. Ideally, a monitoring system can measure
CCRs over a range of a few decades, for instance CCR ~ 0.6-600 pM
h-1. Assuming a sinusoidal concentration profile, CCR = 2∆Ca,0 f and
f = 1/(2 · tfluc) ~ 2.8 · 10−4 mHz (see Supplementary note 5.6.2), typical
concentration changes ∆Ca,0 that need to be distinguished are 0.3-300
pM, which corresponds to concentration changes of a few percent of
the mean insulin concentration.
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We consider the standard parameter values as listed in Table 5.1
with a mean insulin concentration of 100 pM. Here we estimate the
fastest fluctuation of insulin concentration profile for which the mea-
sured concentration profile still closely resembles the true concentration
profile.

diffusion-based sampling (see figures 5 .4 and 5 .5): We
consider a small measurement chamber height H = 200 µm and a large
measurement chamber height H = 800 µm. The diffusion coefficient
of insulin is approximately D = 10−10 m2 s-1. For small H (200 µm),
τD = 100 s and Da ~ 1 (neither reaction-limited nor diffusion-limited).
From Figure 5.5 we obtain a cutoff frequency of fc = 2 · 10−3 Hz.
Therefore for H = 200 µm, insulin monitoring is reliable for a frequency
f < fc, resulting in tfluc > 5 min. For large H (800 µm), τD = 6400 s
and Da ~ 64 (diffusion-limited). From Figure 5.5 we obtain a cutoff
frequency of fc = 1 · 10−4 Hz. In this case, insulin monitoring is reliable
if tfluc > 80 min.

advection-based sampling (see figures 5 .6 and 5 .7): Here
we consider a high flow rate Q = 120 µL min-1 and a low flow rate
Q = 0.1 µL min-1. For high Q (120 µL min-1), τA = 1 s and PeL = 100
(mass transport process is diffusion-limited). From Figure 5.7 we obtain
a cutoff frequency fc = 1 · 10−2 Hz. Accurate insulin monitoring is
reliable for f < fc, which results in tfluc > 1 min. For low Q (0.1
µL min-1), τA = 1200 s and PeL = 0.08 (mass transport process is
advection-limited). From Figure 5.7 we obtain a cutoff frequency fc =
8 · 10−4 Hz. Now accurate insulin monitoring is reliable for f < fc,
which corresponds to tfluc > 10 min.
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6C O N C L U S I O N

The goal of this thesis was to study bioanalytical functionalities that
can be achieved with continuous affinity-based biomolecular sensors
using single-molecule resolution. For this, the thesis focused on two
main topics, namely, (1) new applications of single-molecule resolution
in continuous monitoring sensors, and (2) speed, sensitivity, and pre-
cision functionalities of continuous biosensing with single-molecule
resolution. The first topic was discussed in chapters two and three, and
the second topic was discussed in chapters four and five. In this chapter,
the main conclusions of this thesis are summarized and discussed, and
an outlook is presented.
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6.1 summary of main results

In Chapter 2 we demonstrated a new application of single-molecule
detection in continuous monitoring applications, namely, multiplexing
by means of single-molecule kinetic identification of single particles.
We presented a sensor design with an encoded binary nanoswitch,
which enabled continuous sensing of multiple target molecules si-
multaneously, at picomolar concentrations in human blood plasma.
Multiplexing by single-molecule kinetic encoding is interesting for real
time biomolecular monitoring applications, since it does not require
any reagents in contrast to other multiplexing solutions. Moreover,
kinetic encoding can be supplemented with orthogonal identification
approaches, such as optical identification and identification by surface
area imaging, enabling a high degree of multiplexing. The sensors
open the perspective to gain accurate real time insights into live bi-
ological systems by continuous monitoring of biomolecules with a
high level of multiplexing, high sensitivity, and high specificity using
single-molecule information.

In Chapter 3 we presented a framework to study the influence of het-
erogeneities on the reactivity variability of biofunctionalized particles
for targeted nanomedicine and particle-based biosensing applications.
To quantify the reactivity variability, we have studied three variability
contributors, namely stochastic heterogeneity, interparticle heterogene-
ity, and intraparticle heterogeneity, jointly referred to as superpositional
heterogeneities. These three types of heterogeneity cause biofunctional-
ized particles to have variable reactivities, where reactivity was defined
as the number of particle-coupled targeting moieties that are available
for interaction toward a countersurface. We have experimentally quan-
tified targeting moiety number variabilities using microscopy methods
with single-molecule resolution, namely, qPAINT and DNA-PAINT,
using DNA-functionalized silica particles as a model system. We found
that the interparticle heterogeneity originates from particle size dis-
persion and targeting moiety density fluctuations, and intraparticle
heterogeneity is caused by nonuniform functionalization. The reactivity
variability was studied by experiments and simulations for a particle-
based biosensing technique with single-particle and single-molecule
resolution (biosensing by particle mobility, BPM). The results show that
the reactivity variability strongly depends on the size of the interaction
area, which dictates the relative contributions of stochastic and inter-
and intraparticle heterogeneity to the observed reactivity variability. By
extrapolating the results toward the fields of targeted nanomedicine
and particle-based biosensing in general, it was shown that large fluctu-
ations (tens of percent) in the reactivity can be expected when targeting
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effects at a biological site of interest or at a sensor surface are de-
termined by interactions from small particles, low targeting moiety
density, small interaction area, and a limited number of particles. The
use of the developed framework to quantify and model the influence of
superpositional heterogeneities on the reactivity variability will enable
researchers to engineer particles for biomedical applications with high
precision, guided by a thorough understanding of heterogeneities and
their collective consequences.

In Chapter 4 we presented a sensing methodology that enables rapid
monitoring of low-concentration biomolecules with high precision,
with small time delays and short time intervals, over an endless time
span. The sensing methodology is based on a limited-volume assay,
using high-affinity binders, a fully reversible detection principle, and
time-controlled analyte exchange. Using simulations, we studied how
the kinetics of the sensor depend on mass transport and on the sur-
face reaction in the measurement chamber, and how time-controlled
analyte exchange determines the system response and enables precise
measurements of analyte concentration. Experimental results show the
ability to control the sensor response time by tuning the total binder
concentration in the measurement chamber. Finally, simulations show
that the sensing principle allows picomolar and sub-picomolar concen-
trations to be monitored with a high precision over long time spans.
Approaches described in literature for measuring low-concentration
biomolecules have focused primarily on assays in which every con-
centration determination involves consumption of reagents, which is
complex and costly for monitoring applications. In contrast, the sensing
methodology described in this chapter is based on a fully reversible
assay principle, without consuming reagents with each newly recorded
concentration datapoint, enabling measurements with high frequency
over an endless time span. Due to its generalizability and unique and
tunable sensing performance, we believe that the limited-volume assay
with time-controlled analyte exchange will enable studies on time-
dependencies of low-concentration biomolecules, for novel applications
in the fields of dynamic biological systems, patient monitoring, and
biotechnological process control.

In Chapter 5 we investigated continuous biomolecular analyte ex-
change between a dynamic system of interest and the measurement
chamber of a monitoring sensor. We have studied the influence of
sensor design parameters on the differences between the true and the
measured concentration-time profile, focusing particularly on the lag
time of the sensor signal with respect to the input concentration, and
the sensitivity to concentration changes over time. To quantify the latter,
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we introduced the concentration change rate (CCR) parameter, which
is expressed in unit molar per second. The limit of the measurable
CCR was evaluated as the limit of quantification of CCR (LoCCR).
In this chapter, we have presented a comprehensive methodology to
study the properties and limitations of dynamic measurements using
affinity-based sensors with diffusive as well as advective sampling.
Finite-element simulations were used to study the spatial and tem-
poral dependence of analyte concentration within the measurement
chamber. The analyte was supplied into the measurement chamber
with sinusoidal concentration-time profiles, which later allowed the
study of arbitrary concentration-time profiles by frequency decompo-
sition. Using this approach, we could study how mass transport and
biochemical kinetics determine the speed of concentration change, time
delays, and concentration errors in the sensing system. The study is
especially relevant for low-concentration biomolecules, which are most
suitably measured using sensors with single-molecule resolution and
Poisson-limited noise levels. The results and learnings presented in this
chapter can assist researchers to identify the most important processes
influencing the performance of continuous monitoring sensors. Insight
in the individual and combined influence of analyte diffusivity, analyte
concentration, binder affinity, sampling method, measurement chamber
geometry, and flow speed on the observed lag time and rate sensitivity
of the measured concentration-time profile, will help researchers to
develop monitoring systems with desirable sensor characteristics for a
diverse range of biomarkers and applications.

6.2 discussion and outlook

This thesis has explored bioanalytical functionalities of continuous
monitoring sensors with single-molecule resolution, with the specific
focus on a new sensing methodology called biosensing by particle
mobility (BPM). Single-molecule resolution allows detection with low
noise levels (Poisson-limited) and allows one to resolve heterogeneities
that are averaged out in ensemble-based approaches.

The ability to measure heterogeneities and distributions based on
single-molecule information provides insights in time-dependent pro-
cesses, such as the lifetimes of association and dissociation events that
continuously occur at the molecular level. However, the use of kinetic
identification for multiplexing functionality (Chapter 2) requires narrow
lifetime distributions, which can be achieved by a sensor with single
stem probe, but that design comes at a cost of sensitivity due to the
limited surface area (Chapter 3). We think that the sensor with single
stem probe is suited for detailed characterizations of single-molecule
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affinity interactions and for studies to deepen the understanding of
specific and nonspecific interactions.

The work in this thesis showed the benefits of single-molecule charac-
terization techniques for comparing sources of variability, by quantify-
ing individual contributions as well as their collective effect. However,
this work merely lays a groundwork for future experimental research;
many conditions can be investigated that influence the particle reactiv-
ity variability such as biofunctionalization strategies, particle materials,
sizes, and geometries of particles, different targeting moiety types,
and the influence of complex biological matrices (e. g., protein corona).
The measured distributions and heterogeneity simulations can then
be related to the precision of particle-based targeting effects. More-
over, heterogeneities should also be studied as a function of time to
understand sensor stability, which is required for long-term monitoring
applications.

For the monitoring of low-concentration biomarkers where only a
limited number of molecules are present for detection, counting single
molecules becomes important. The sensor simulations in this thesis
(Chapters 4 and 5) assumed that the noise on the signal was dominated
by Poisson statistics. Future experiments should focus on the effect of
other variability contributors as well, such as background, variability
in receptor functionality, nonspecific interactions, and time-dependent
sensor degradation. In addition, the ability to precisely quantify time-
dependent concentration profiles depends on tradeoffs between the
speed of the concentration determination and the number of observed
molecules that generate the signal. Preliminary experimental work on
this topic (Chapter 4) showed the control over the speed. Further studies
could focus on gains of speed versus loss of sensitivity, on implementa-
tions in a variety of sensing platforms, and on sensor performance in
complex biological systems.

We believe that the learnings of this thesis will expand monitoring
functionalities into previously inaccessible classes of low-concentration
biomolecules. This creates the potential to open a broad range of
applications, such as the monitoring of dynamic processes in lab-on-a-
chip and organ-on-a-chip devices, the monitoring of patients for health
care applications, the monitoring and control of industrial processes,
e. g., food production in bioreactors and fermentors, and the monitoring
of environmental conditions, e. g., water quality control.
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