11,590 research outputs found

    Network Psychometrics

    Full text link
    This chapter provides a general introduction of network modeling in psychometrics. The chapter starts with an introduction to the statistical model formulation of pairwise Markov random fields (PMRF), followed by an introduction of the PMRF suitable for binary data: the Ising model. The Ising model is a model used in ferromagnetism to explain phase transitions in a field of particles. Following the description of the Ising model in statistical physics, the chapter continues to show that the Ising model is closely related to models used in psychometrics. The Ising model can be shown to be equivalent to certain kinds of logistic regression models, loglinear models and multi-dimensional item response theory (MIRT) models. The equivalence between the Ising model and the MIRT model puts standard psychometrics in a new light and leads to a strikingly different interpretation of well-known latent variable models. The chapter gives an overview of methods that can be used to estimate the Ising model, and concludes with a discussion on the interpretation of latent variables given the equivalence between the Ising model and MIRT.Comment: In Irwing, P., Hughes, D., and Booth, T. (2018). The Wiley Handbook of Psychometric Testing, 2 Volume Set: A Multidisciplinary Reference on Survey, Scale and Test Development. New York: Wile

    An Importance Sampling Algorithm for the Ising Model with Strong Couplings

    Full text link
    We consider the problem of estimating the partition function of the ferromagnetic Ising model in a consistent external magnetic field. The estimation is done via importance sampling in the dual of the Forney factor graph representing the model. Emphasis is on models at low temperature (corresponding to models with strong couplings) and on models with a mixture of strong and weak coupling parameters.Comment: Proc. 2016 Int. Zurich Seminar on Communications (IZS), Zurich, Switzerland, March 2-4, 2016, pp. 180-18

    The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods

    Full text link
    The inverse Ising problem consists in inferring the coupling constants of an Ising model given the correlation matrix. The fastest methods for solving this problem are based on mean-field approximations, but which one performs better in the general case is still not completely clear. In the first part of this work, I summarize the formulas for several mean- field approximations and I derive new analytical expressions for the Bethe approximation, which allow to solve the inverse Ising problem without running the Susceptibility Propagation algorithm (thus avoiding the lack of convergence). In the second part, I compare the accuracy of different mean field approximations on several models (diluted ferromagnets and spin glasses) defined on random graphs and regular lattices, showing which one is in general more effective. A simple improvement over these approximations is proposed. Also a fundamental limitation is found in using methods based on TAP and Bethe approximations in presence of an external field.Comment: v3: strongly revised version with new methods and results, 25 pages, 21 figure

    High-dimensional Ising model selection using 1{\ell_1}-regularized logistic regression

    Full text link
    We consider the problem of estimating the graph associated with a binary Ising Markov random field. We describe a method based on 1\ell_1-regularized logistic regression, in which the neighborhood of any given node is estimated by performing logistic regression subject to an 1\ell_1-constraint. The method is analyzed under high-dimensional scaling in which both the number of nodes pp and maximum neighborhood size dd are allowed to grow as a function of the number of observations nn. Our main results provide sufficient conditions on the triple (n,p,d)(n,p,d) and the model parameters for the method to succeed in consistently estimating the neighborhood of every node in the graph simultaneously. With coherence conditions imposed on the population Fisher information matrix, we prove that consistent neighborhood selection can be obtained for sample sizes n=Ω(d3logp)n=\Omega(d^3\log p) with exponentially decaying error. When these same conditions are imposed directly on the sample matrices, we show that a reduced sample size of n=Ω(d2logp)n=\Omega(d^2\log p) suffices for the method to estimate neighborhoods consistently. Although this paper focuses on the binary graphical models, we indicate how a generalization of the method of the paper would apply to general discrete Markov random fields.Comment: Published in at http://dx.doi.org/10.1214/09-AOS691 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore