32,241 research outputs found

    Integrating electricity markets: Impacts of increasing trade on prices and emissions in the western United States

    Get PDF
    This paper presents empirically-estimated average hourly relationships between regional electricity trade in the United States and prices, emissions, and generation from 2015 through 2018. Consistent with economic theory, the analysis finds a negative relationship between electricity prices in California and regional trade, conditional on local demand. Each 1 gigawatt-hour increase in California electricity imports is associated with an average $0.15 per megawatt-hour decrease in the California Independent System Operator's wholesale electricity price. There is a net-negative short term relationship between carbon dioxide emissions in California and electricity imports that is partially offset by positive emissions from exporting neighbors. Specifically, each 1 GWh increase in regional trade is associated with a net 70-ton average decrease in CO2 emissions across the western U.S., conditional on demand levels. The results provide evidence that electricity imports mostly displace natural gas generation on the margin in the California electricity market. A small positive relationship is observed between short-run SO2 and NOx emissions in neighboring regions and California electricity imports. The magnitude of the SO2 and NOx results suggest an average increase of 0.1 MWh from neighboring coal plants is associated with a 1 MWh increase in imports to California

    Distributional Impacts of a U.S. Greenhouse Gas Policy: A General Equilibrium Analysis of Carbon Pricing

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We develop a new model of the U.S., the U.S. Regional Energy Policy (USREP) model that is resolved for large states and regions of the U.S. and by income class and apply the model to investigate a $15 per ton CO2 equivalent price on greenhouse gas emissions. Previous estimates of distributional impacts of carbon pricing have been done outside of the model simulation and have been based on energy expenditure patterns of households in different regions and of different income levels. By estimating distributional effects within the economic model, we include the effects of changes in capital returns and wages on distribution and find that the effects are significant and work against the expenditure effects. We find the following: First, while results based only on energy expenditure have shown carbon pricing to be regressive we find the full distributional effect to be neutral or slightly progressive. This demonstrates the importance of tracing through all economic impacts and not just focusing on spending side impacts. Second, the ultimate impact of such a policy on households depends on how allowances, or the revenue raised from auctioning them, is used. Free distribution to firms would be highly regressive, benefiting higher income households and forcing lower income households to bear the full cost of the policy and what amounts to a transfer of wealth to higher income households. Lump sum distribution through equal-sized household rebates would make lower income households absolutely better off while shifting the costs to higher income households. Schemes that would cut taxes are generally slightly regressive but improve somewhat the overall efficiency of the program. Third, proposed legislation would distribute allowances to local distribution companies (electricity and natural gas distributors) and public utility commissions would then determine how the value of those allowances was used. A significant risk in such a plan is that distribution to households might be perceived as lowering utility rates That reduced the efficiency of the policy we examined by 40 percent. Finally, the states on the coasts bear little cost or can benefit because of the distribution of allowance revenue while mid-America and southern states bear the highest costs. This regional pattern reflects energy consumption and energy production difference among states. Use of allowance revenue to cut taxes generally exacerbates these regional differences because coastal states are also generally higher income states, and those with higher incomes benefit more from tax cuts.MIT Joint Program on the Science and Policy of Global Change through a combination of government, industry, and foundation funding, the MIT Energy Initiative, and additional support for this work from a coalition of industrial sponsors

    Relying on storage or ICT? How to maintain low voltage grids' stability with an increasing feed-in of fluctuating renewable energy sources

    Get PDF
    Since the beginning of the new century our electricity system is changing rapidly. Distributed energy resources, such as wind or solar energies are becoming more and more important. These energies are producing fluctuating electricity, which is fed into low voltage distribution grids. The resulting volatility complicates the exact balancing of demand and supply. These changes can lead to distribution grid instabilities, damages of electronic devices or even power outages and might therefore end in deadweight losses affecting all electricity users. A concept to tackle this challenge is matching demand with supply in real-time, which is known as smart grids. In this study, we focus on two smart grids' key components: decentralized electricity storages and smart meters. The aim of this study is to provide new insights concerning the low diffusion of smart meters and decentralized electricity storages and to examine whether we are facing situations of positive externalities. During our study we conducted eight in-depth expert interviews. Our findings show that the diffusion of smart meters as well as decentralized electricity storages is widely seen as beneficial to society. This study identifies the most important stakeholders and various related private costs and benefits. As private benefits are numerous but widely distributed among distinct players, we argue that we face situations of positive externalities and thus societal desirable actions are omitted. We identify and discuss measures to foster diffusion of the two studied smart grid key components. Surprisingly, we find that direct interventions like subsidies are mostly not seen as appropriate even by experts from industries that would directly benefit from them. As the most important point, we identified well-designed and clearly defined regulatory and legal frameworks that are free of contradictions. --smart meter,decentralized electricity storage,smart grid,externality

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms

    Effects of Carbon Policies and Technology Change

    Get PDF
    We develop and estimate an index-based measure of expected consumer welfare under various carbon emissions control policies in the electricity generation sector. This approach estimates welfare effects by a somewhat less data intensive methodology than econometric approaches or more complex modeling. We include anticipated technological change in the production of renewable and nonrenewable power generation during the next two decades. We estimate welfare improvements from 2000 to 2020 as renewable energy technologies continue to be improved and gradually adopted, compared with a counterfactual scenario allowing for continual improvement of nonrenewable generation technology. We formally incorporate uncertainty. We evaluate the model under alternative carbon emissions control policies, including policies that create incentives through price mechanisms and policies that mandate the composition of the generation portfolio. We focus on three countries that differ widely in their power fuel mix: India, Germany, and the United States.carbon emissions control, electricity generation, technological change, consumer welfare

    A means to an industrialisation end? Demand side management in Nigeria

    Get PDF
    Electricity is essential for economic development and industrialisation processes. Balancing demand and supply is a recurrent problem in the Nigerian electricity market. The aim of this work is to assess the technical and economic potential of Demand Side Management (DSM) in Nigeria given different future levels of industrialisation. The paper places industrialisation at the centrefold of the appraisal of DSM potential in Nigeria. It does so by designing industrialisation scenarios and consequently deriving different DSM penetration levels using a cost-optimisation model. Findings show that under the high industrialisation scenario by the year 2050 DSM could bring about 7 billion USD in cumulative savings thanks to deferred investment in new generation and full deployment of standby assets along with interruptible programmes for larger industrial users. The paper concludes by providing policy recommendations regarding financial mechanisms to increase DSM deployment in Nigeria. The focus on DSM serves to shift the policy debate on electricity in Nigeria from a static state versus market narrative on supply to an engagement with the agency and influence on industrial end-users

    Estimating the Value of Water in Alternative Uses

    Get PDF
    Many public and private decisions regarding water use, allocation, and management require estimation of water's value in alternative uses. This paper discusses economic concepts essential in valuing water, outlines and compares market and nonmarket based approaches used to estimate water values, and reviews the application of these methodologies for valuing water in instream, irrigation, municipal and industrial uses in the western United States

    A Cost-Index Approach to Valuing Investment In "Far Into The Future" Environmental Technology

    Get PDF
    Governments investing in long-lead technology development programs face considerable uncertainty as to whether the investment eventually will “pay off” for the taxpayer. This paper offers a framework to inform long-lead technology investment. We extend the theory of quality-adjusted cost indices to develop a conceptually rigorous, but data parsimonious, means of estimating consumer benefits from a new technology. We apply this model to a possible future electricity generation technology, space solar power (SSP). The United States, Japan, and other governments have begun investing in SSP but lack the benefit of a relevant economic context for informed decisions. We frame and analyze the economic relationship between SSP and competing electricity generation technologies with respect to direct costs, environmental externalities, and reliability. We also explicitly incorporate uncertainty and consider differences in the resource endowments available to electricity markets by considering four distinct world geographic regions.energy, environment, technological change, cost indices, space technology
    corecore