11,641 research outputs found

    Estimating conditional probability densities for periodic variables

    Get PDF
    Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce three novel techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite

    Modelling wind direction from satellite scatterometer data

    Get PDF
    Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we apply two novel techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite

    Modelling conditional probability distributions for periodic variables

    Get PDF
    Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce two novel techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite

    Modelling conditional probability distributions for periodic variables

    Get PDF
    Most conventional techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce three related techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite

    Extracting the Cyclical Component in Hours Worked: a Bayesian Approach

    Get PDF
    The series on average hours worked in the manufacturing sector is a key leading indicator of the U.S. business cycle. The paper deals with robust estimation of the cyclical component for the seasonally adjusted time series. This is achieved by an unobserved components model featuring an irregular component that is represented by a Gaussian mixture with two components. The mixture aims at capturing the kurtosis which characterizes the data. After presenting a Gibbs sampling scheme, we illustrate that the Gaussian mixture model provides a satisfactory representation of the data, allowing for the robust estimation of the cyclical component of per capita hours worked. Another important piece of evidence is that the outlying observations are not scattered randomly throughout the sample, but have a distinctive seasonal pattern. Therefore, seasonal adjustment plays a role. We ¯nally show that, if a °exible seasonal model is adopted for the unadjusted series, the level of outlier contamination is drastically reduced.Gaussian Mixtures, Robust signal extraction, State Space Models, Bayesian model selection, Seasonality
    corecore