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Abstract: Most of the common techniques for estimating conditional probability densities
are inappropriate for applications involving periodic variables. In this paper we apply two novel
techniques to the problem of extracting the distribution of wind vector directions from radar
scatterometer data gathered by a remote-sensing satellite.

Introduction

In an earlier paper (Nabney and Bishop, 1995), we have introduced three novel techniques for
modelling conditional distributions for periodic variables, and investigated their performance
using synthetic data. In this paper we show how these techniques can be applied to the problem
of determining the wind direction from radar scatterometer data gathered by the ERS-1 remote
sensing satellite.

Extraction of the wind vector from the radar signals represents an inverse problem which is
typically multi-valued. A conventional neural network approach to this problem, based on a
least squares estimate of the direction, would predict directions which were given by conditional
averages. Since the average of several valid wind directions is not itself a valid solution, such an
approach would clearly fail. In this paper we show how to extract the complete distribution of
wind directions (conditioned on the backscattered power and incidence angle) and hence avoid
such problems.

Application to Radar Scatterometer Data

The Furopean Remote Sensing satellite ERS-1 is equipped with three C-band radar antennae
which measure the total backscattered power along three directions relative to the satellite
track, as shown in Figure 1. When the satellite passes over the ocean, the strengths of the
backscattered signals are related to the surface ripples of the water (on a scale of a few cen-
timetres) which in turn are determined by the low level winds. The value og is the ratio of
transmitted to backscattered power signal. Noise is introduced into the signal by the effects of
wave breaking, modulation by long waves and rain.

Extraction of the wind vector from the radar signals represents an inverse problem which is
typically multi-valued. Although determining the wind speed is relatively straightforward, the
data gives rise to ‘aliases’ for the wind direction. For example, a wind direction of 8 will give
rise to similar radar signals to a wind direction of # 4+ 7, and there may be further aliases
at other angles. A conventional neural network approach to this problem, based on a least
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Figure 1: Schematic illustration of the ERS-1 satellite showing the footprints of the three radar
scatterometers.

squares estimate of the direction, would predict directions which were given by conditional
averages. Since the average of several valid wind directions is not itself a valid solution, such
an approach would clearly fail. In this paper we show how to extract the complete distribution
of wind directions (conditioned on the three og values and incidence angle) and hence avoid
such problems.

Earlier neural network studies (see, for example, (Thiria et al., 1993)) were based on simulated
data. In this paper, the direction was modelled with a target variable discretised into 36
bins. During testing, the estimated direction was calculated by interpolating over the 3 bins
surrounding the histogram peak for a given input vector. To improve the disambiguation,
inputs were taken from a 3 x 3 grid of cells around the cell of interest. Our approach is to
model the conditional density purely locally (i.e. based on the values from a single cell) and
then to combine these density functions (for example, using div-curl splines, see (Amodei and
Benbourhim, 1991)) using global information about wind field properties. Here we report on
the first step in the process.

A large dataset of ERS-1 measurements, spanning a wide range of meteorological conditions,
has been assembled by the European Space Agency in collaboration with the UK Meteorological
Office. Labelling of the dataset was performed using wind vectors from the Met Office Numerical
Weather Prediction model. These values were interpolated from the inherently coarse-grained
model to regions coincident with the scatterometer cells. This was the best estimate of the wind
vectors that was available in sufficient quantities for developing a neural network solution. It
is suitable for predicting a background wind direction, but may be less appropriate in regions
where there are smaller scale features, such as frontal zones and other areas of high gradients
in wind speed or direction.

The data that was selected for the experiments reported in this paper was collected from low
pressure (cyclonic) and high pressure (anti-cyclonic) circulations. These conditions, rather than
cases that were homogeneous or with a simple gradient in speed or direction, were chosen to
provide a more challenging task to test the modelling techniques. Ten windfields from each
of the two categories were used: each windfield contains 19 x 19 = 361 cells each of which
represents an area of approximately 50 x 50km. This gives a total of 7220 patterns, although
the data for some of the cells was missing. When the data was split into three subsets, each
contained 1963 patterns.

1Given that the total footprint width is 500 km, this implies that the cells overlap to some extent



Density Estimation for Periodic Variables

A commonly used technique for unconditional density estimation is based on mixture models
of the form

(1) pt) = > aigi(t)
i—1

where q;j are called mixing coefficients, and the kernel functions ¢;(t) are typically chosen to be
Gaussians. In order to turn this into a model for conditional density estimation, we simply make
the mixing coefficients and any parameters in the kernels into functions of the input vector X.
This can be achieved by setting these parameters from the outputs of a neural network which
takes X as input. This technique underlies the ‘mixture of experts’ model (Jacobs et al., 1991)
and has also been considered by a number of other authors ((Bishop, 1994); (?)). In this paper
we use a standard multi-layer perceptron with a single hidden layer of sigmoidal units and an
output layer of linear units.

In this section we briefly show how we have extended this technique to provide three distinct
methods for modelling a conditional density p(#|X) of a periodic variable 6. For further details,
see (Nabney and Bishop, 1995). For all three models, the error function E which is used is given
by the negative logarithm of the likelihood function for the data with respect to the density
function given by the network /mixture model combination.

Mixture of Wrapped Normal Densities

The first technique involves a transformation from a Fuclidean variable y € (—o0,o0) to the
periodic variable § € [0,27) of the form # = y mod 2x. This induces a transformation of
density functions p with domain R to functions p with domain [0, 27) as follows:

(2) pOX) = > P+ N2r|x)
N=—o0
It is clear by construction that the function pis a density function (since its integral is 1) and

that it also satisfies the periodicity requirement p(é 4+ 27 |x) = p(d|x).

Various choices for the component density functions which make up the mixture p(y|X) are
possible, but here we shall restrict attention to functions which are Gaussian of the form

1 {_Ht—m(X)HZ}
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where t € R. The transformed density function ¢ is known as the ‘wrapped normal’ distribu-
tion (Kotz and Johnson, 1992).

(3) i(tx) =

The density function p(y|X) is modelled using a combination of a neural network and a mixture
model as described above.

Mixtures of Circular Normal Densities

The second novel approach is also based on a mixture of kernel functions, but in this case the
kernels themselves are periodic, thereby ensuring that the overall conditional density function



is periodic. The distribution we use has the form

(4) p(o) = exp{meos(d — 1)}

1
27r|0(m)
which is known as a circular normal or von Mises distribution (Mardia, 1972). The normal-
ization coefficient is expressed in terms of the zeroth order modified Bessel function of the
first kind, lo(m), and the parameter m is analogous to the inverse variance parameter in a
conventional normal distribution. The parameter ¢ corresponds to the peak of the density
function.

With this choice of kernel function, we again use a neural network to determine the parameters
ai(X), 0;(x) and m(X) in a mixture model to generate a periodic conditional density function.

Expansion in Fixed Kernels

The third and final technique introduced in this paper involves a conditional density model
consisting of a fixed set of periodic kernels, again given by circular normal functions as in
equation (4). In this case the mixing proportions alone are determined by the outputs of a
neural network (through a softmax activation function) and the centres ¢j and width parameters
m are fixed. We selected a uniform distribution of centres, and my = m for each kernel, where
the value for m was chosen to give moderate overlap between the component functions.

Clearly a major drawback of fixed kernel methods is that the number of kernels must grow
exponentially with the dimensionality of the output space. However, for a single output variable,
as in this application, they can be regarded as practical techniques.

Density Modelling

After selection of the wind field datasets, we then trained neural networks to model the wind
direction distribution. The inputs used were the three values of og for the aft-beam, mid-beam
and fore-beam, and the sine of the incidence angle of the mid-beam, since this angle strongly
influences the reflected signal received by the scatterometer. The o inputs were scaled to
have zero mean and unit variance, while the fourth input value was passed to the network
unchanged. The target value was expressed as an angle clockwise from the satellite’s forward
path and converted to radians. A conjugate gradient algorithm and ‘early stopping” were used
to train the networks.

Table 1 gives a summary of the preliminary results obtained with each of the three methods.
As expected, the complexity of the domain meant that there were many difficulties with local
optima. In fact, over 75% of the training runs ended with the network trapped in a local
minimum of the error surface. It was found that the validation error for methods 1 and 2 was
lowest for models with eight centres, even though fewer centres are actually required to model
the conditional density function well. This is also demonstrated by the graph in figure 2 which
shows the conditional distribution of wind directions given by this network at a typical data
point from the test set, and which is clearly bi-modal. This graph also shows how the fixed
kernel model gives rise to a conditional density with a different alignment.

Figure 2 also shows that the density given by the fixed kernel model has four peaks. Note
that the extra peaks are not just caused by the variance parameter being too small, since there
are kernel centres close to the minima between the two pairs of adjacent local maxima. The



Method | Centres | Hidden | Validation | Test
Units Error Error
1 4 20 2474.6 2446.2
6 20 2308.0 2337.9
3 36 24 2028.9 1908.9

Table 1: Results on satellite data.

Method 1: Mixture of wrapped normal functions.
Method 2: Mixture of adaptive circular normal functions.
Method 3: Mixture of fixed kernel functions.
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Figure 2: Plots of the conditional distribution p(f|X) obtained using all three methods. (a) and
(b) show linear and polar plots of the distributions for a given input vector from the test set.
The dominant alias at # is evident. In both plots, the solid curve represents method 1, the
dashed curve represents method 2, and the curve with circles represents method 3.

differences between the shapes of these distributions, despite the relatively close agreement
of the data likelihood values, suggests that more training data is required to obtain better
estimates of the density functions.

Discussion

In this paper we have a new approach to modelling the wind direction based on satellite
scatterometer data. It involves modelling the conditional density distribution of the direction
at a local level, and we have shown how some novel neural network methods for doing this can
be successfully applied. A conventional neural network approach, involving the minimization
of a sum-of-squares error function, would perform poorly on this problem since the required
mapping is multi-valued.

An advantage of the density modelling approach is that it enables a better understanding of the
direction ambiguities to be formed. There is the suggestion that there are other aliases than
at an angle of 7 in the distribution. In addition, it provides the most complete information
for the next stage of processing, which is to ‘de-alias’ the wind directions by combining local
information to determine the most probable overall wind field.
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