322 research outputs found

    CLADE: Cycle Loss Augmented Degradation Enhancement for Unpaired Super-Resolution of Anisotropic Medical Images

    Full text link
    Three-dimensional (3D) imaging is popular in medical applications, however, anisotropic 3D volumes with thick, low-spatial-resolution slices are often acquired to reduce scan times. Deep learning (DL) offers a solution to recover high-resolution features through super-resolution reconstruction (SRR). Unfortunately, paired training data is unavailable in many 3D medical applications and therefore we propose a novel unpaired approach; CLADE (Cycle Loss Augmented Degradation Enhancement). CLADE uses a modified CycleGAN architecture with a cycle-consistent gradient mapping loss, to learn SRR of the low-resolution dimension, from disjoint patches of the high-resolution plane within the anisotropic 3D volume data itself. We show the feasibility of CLADE in abdominal MRI and abdominal CT and demonstrate significant improvements in CLADE image quality over low-resolution volumes and state-of-the-art self-supervised SRR; SMORE (Synthetic Multi-Orientation Resolution Enhancement). Quantitative PIQUE (qualitative perception-based image quality evaluator) scores and quantitative edge sharpness (ES - calculated as the maximum gradient of pixel intensities over a border of interest), showed superior performance for CLADE in both MRI and CT. Qualitatively CLADE had the best overall image quality and highest perceptual ES over the low-resolution volumes and SMORE. This paper demonstrates the potential of using CLADE for super-resolution reconstruction of anisotropic 3D medical imaging data without the need for paired 3D training data

    Potentials and caveats of AI in Hybrid Imaging

    Get PDF
    State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research

    Transformer and GAN Based Super-Resolution Reconstruction Network for Medical Images

    Full text link
    Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.Comment: 8 pages and 6 figure

    Synthetic computed tomography for low-field magnetic resonance-only radiotherapy in head-and-neck cancer using residual vision transformers

    Full text link
    BACKGROUND AND PURPOSE Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep learning (DL) has shown remarkable performance in generating sCT scans from MR images, research has predominantly focused on high-field MR images. This study presents the first implementation of a DL model for sCT generation in head-and-neck (HN) cancer using low-field MR images. Specifically, the use of vision transformers (ViTs) was explored. MATERIALS AND METHODS The dataset consisted of 31 patients, resulting in 196 pairs of deformably-registered computed tomography (dCT) and MR scans. The latter were obtained using a balanced steady-state precession sequence on a 0.35T scanner. Residual ViTs were trained on 2D axial, sagittal, and coronal slices, respectively, and the final sCTs were generated by averaging the models' outputs. Different image similarity metrics, dose volume histogram (DVH) deviations, and gamma analyses were computed on the test set (n = 6). The overlap between auto-contours on sCT scans and manual contours on MR images was evaluated for different organs-at-risk using the Dice score. RESULTS The median [range] value of the test mean absolute error was 57 [37-74] HU. DVH deviations were below 1% for all structures. The median gamma passing rates exceeded 94% in the 2%/2mm analysis (threshold = 90%). The median Dice scores were above 0.7 for all organs-at-risk. CONCLUSIONS The clinical applicability of DL-based sCT generation from low-field MR images in HN cancer was proved. High sCT-dCT similarity and dose metric accuracy were achieved, and sCT suitability for organs-at-risk auto-delineation was shown

    Privacy Preserving Domain Adaptation for Semantic Segmentation of Medical Images

    Full text link
    Convolutional neural networks (CNNs) have led to significant improvements in tasks involving semantic segmentation of images. CNNs are vulnerable in the area of biomedical image segmentation because of distributional gap between two source and target domains with different data modalities which leads to domain shift. Domain shift makes data annotations in new modalities necessary because models must be retrained from scratch. Unsupervised domain adaptation (UDA) is proposed to adapt a model to new modalities using solely unlabeled target domain data. Common UDA algorithms require access to data points in the source domain which may not be feasible in medical imaging due to privacy concerns. In this work, we develop an algorithm for UDA in a privacy-constrained setting, where the source domain data is inaccessible. Our idea is based on encoding the information from the source samples into a prototypical distribution that is used as an intermediate distribution for aligning the target domain distribution with the source domain distribution. We demonstrate the effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic segmentation approaches on two medical image semantic segmentation datasets

    Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End Neural Network for 4D-MRI with Simultaneous Motion Estimation and Super-Resolution

    Full text link
    Four-dimensional magnetic resonance imaging (4D-MRI) is an emerging technique for tumor motion management in image-guided radiation therapy (IGRT). However, current 4D-MRI suffers from low spatial resolution and strong motion artifacts owing to the long acquisition time and patients' respiratory variations; these limitations, if not managed properly, can adversely affect treatment planning and delivery in IGRT. Herein, we developed a novel deep learning framework called the coarse-super-resolution-fine network (CoSF-Net) to achieve simultaneous motion estimation and super-resolution in a unified model. We designed CoSF-Net by fully excavating the inherent properties of 4D-MRI, with consideration of limited and imperfectly matched training datasets. We conducted extensive experiments on multiple real patient datasets to verify the feasibility and robustness of the developed network. Compared with existing networks and three state-of-the-art conventional algorithms, CoSF-Net not only accurately estimated the deformable vector fields between the respiratory phases of 4D-MRI but also simultaneously improved the spatial resolution of 4D-MRI with enhanced anatomic features, yielding 4D-MR images with high spatiotemporal resolution

    Medical image registration using unsupervised deep neural network: A scoping literature review

    Full text link
    In medicine, image registration is vital in image-guided interventions and other clinical applications. However, it is a difficult subject to be addressed which by the advent of machine learning, there have been considerable progress in algorithmic performance has recently been achieved for medical image registration in this area. The implementation of deep neural networks provides an opportunity for some medical applications such as conducting image registration in less time with high accuracy, playing a key role in countering tumors during the operation. The current study presents a comprehensive scoping review on the state-of-the-art literature of medical image registration studies based on unsupervised deep neural networks is conducted, encompassing all the related studies published in this field to this date. Here, we have tried to summarize the latest developments and applications of unsupervised deep learning-based registration methods in the medical field. Fundamental and main concepts, techniques, statistical analysis from different viewpoints, novelties, and future directions are elaborately discussed and conveyed in the current comprehensive scoping review. Besides, this review hopes to help those active readers, who are riveted by this field, achieve deep insight into this exciting field

    Learning strategies for improving neural networks for image segmentation under class imbalance

    Get PDF
    This thesis aims to improve convolutional neural networks (CNNs) for image segmentation under class imbalance, which is referred to the problem of training dataset when the class distributions are unequal. We particularly focus on medical image segmentation because of its imbalanced nature and clinical importance. Based on our observations of model behaviour, we argue that CNNs cannot generalize well on imbalanced segmentation tasks, mainly because of two counterintuitive reasons. CNNs are prone to overfit the under-represented foreground classes as it would memorize the regions of interest (ROIs) in the training data because they are so rare. Besides, CNNs could underfit the heterogenous background classes as it is difficult to learn from the samples with diverse and complex characteristics. Those behaviours of CNNs are not limited to specific loss functions. To address those limitations, firstly we propose novel asymmetric variants of popular loss functions and regularization techniques, which are explicitly designed to increase the variance of foreground samples to counter overfitting under class imbalance. Secondly we propose context label learning (CoLab) to tackle background underfitting by automatically decomposing the background class into several subclasses. This is achieved by optimizing an auxiliary task generator to generate context labels such that the main network will produce good ROIs segmentation performance. Then we propose a meta-learning based automatic data augmentation framework which builds a balance of foreground and background samples to alleviate class imbalance. Specifically, we learn class-specific training-time data augmentation (TRA) and jointly optimize TRA and test-time data augmentation (TEA) effectively aligning training and test data distribution for better generalization. Finally, we explore how to estimate model performance under domain shifts when trained with imbalanced dataset. We propose class-specific variants of existing confidence-based model evaluation methods which adapts separate parameters per class, enabling class-wise calibration to reduce model bias towards the minority classes.Open Acces
    corecore