337 research outputs found

    Structure from Recurrent Motion: From Rigidity to Recurrency

    Full text link
    This paper proposes a new method for Non-Rigid Structure-from-Motion (NRSfM) from a long monocular video sequence observing a non-rigid object performing recurrent and possibly repetitive dynamic action. Departing from the traditional idea of using linear low-order or lowrank shape model for the task of NRSfM, our method exploits the property of shape recurrency (i.e., many deforming shapes tend to repeat themselves in time). We show that recurrency is in fact a generalized rigidity. Based on this, we reduce NRSfM problems to rigid ones provided that certain recurrency condition is satisfied. Given such a reduction, standard rigid-SfM techniques are directly applicable (without any change) to the reconstruction of non-rigid dynamic shapes. To implement this idea as a practical approach, this paper develops efficient algorithms for automatic recurrency detection, as well as camera view clustering via a rigidity-check. Experiments on both simulated sequences and real data demonstrate the effectiveness of the method. Since this paper offers a novel perspective on rethinking structure-from-motion, we hope it will inspire other new problems in the field.Comment: To appear in CVPR 201

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters

    Monocular tracking of the human arm in 3D: real-time implementation and experiments

    Get PDF
    We have developed a system capable of tracking a human arm in 3D and in real time. The system is based on a previously developed algorithm for 3D tracking which requires only a monocular view and no special markers on the body. In this paper we describe our real-time system and the insights gained from real-time experimentation

    Dynamic Scene Reconstruction and Understanding

    Get PDF
    Traditional approaches to 3D reconstruction have achieved remarkable progress in static scene acquisition. The acquired data serves as priors or benchmarks for many vision and graphics tasks, such as object detection and robotic navigation. Thus, obtaining interpretable and editable representations from a raw monocular RGB-D video sequence is an outstanding goal in scene understanding. However, acquiring an interpretable representation becomes significantly more challenging when a scene contains dynamic activities; for example, a moving camera, rigid object movement, and non-rigid motions. These dynamic scene elements introduce a scene factorization problem, i.e., dividing a scene into elements and jointly estimating elements’ motion and geometry. Moreover, the monocular setting brings in the problems of tracking and fusing partially occluded objects as they are scanned from one viewpoint at a time. This thesis explores several ideas for acquiring an interpretable model in dynamic environments. Firstly, we utilize synthetic assets such as floor plans and object meshes to generate dynamic data for training and evaluation. Then, we explore the idea of learning geometry priors with an instance segmentation module, which predicts the location and grouping of indoor objects. We use the learned geometry priors to infer the occluded object geometry for tracking and reconstruction. While instance segmentation modules usually have a generalization issue, i.e., struggling to handle unknown objects, we observed that the empty space information in the background geometry is more reliable for detecting moving objects. Thus, we proposed a segmentation-by-reconstruction strategy for acquiring rigidly-moving objects and backgrounds. Finally, we present a novel neural representation to learn a factorized scene representation, reconstructing every dynamic element. The proposed model supports both rigid and non-rigid motions without pre-trained templates. We demonstrate that our systems and representation improve the reconstruction quality on synthetic test sets and real-world scans

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters

    Active and Physics-Based Human Pose Reconstruction

    Get PDF
    Perceiving humans is an important and complex problem within computervision. Its significance is derived from its numerous applications, suchas human-robot interaction, virtual reality, markerless motion capture,and human tracking for autonomous driving. The difficulty lies in thevariability in human appearance, physique, and plausible body poses. Inreal-world scenes, this is further exacerbated by difficult lightingconditions, partial occlusions, and the depth ambiguity stemming fromthe loss of information during the 3d to 2d projection. Despite thesechallenges, significant progress has been made in recent years,primarily due to the expressive power of deep neural networks trained onlarge datasets. However, creating large-scale datasets with 3dannotations is expensive, and capturing the vast diversity of the realworld is demanding. Traditionally, 3d ground truth is captured usingmotion capture laboratories that require large investments. Furthermore,many laboratories cannot easily accommodate athletic and dynamicmotions. This thesis studies three approaches to improving visualperception, with emphasis on human pose estimation, that can complementimprovements to the underlying predictor or training data.The first two papers present active human pose estimation, where areinforcement learning agent is tasked with selecting informativeviewpoints to reconstruct subjects efficiently. The papers discard thecommon assumption that the input is given and instead allow the agent tomove to observe subjects from desirable viewpoints, e.g., those whichavoid occlusions and for which the underlying pose estimator has a lowprediction error.The third paper introduces the task of embodied visual active learning,which goes further and assumes that the perceptual model is notpre-trained. Instead, the agent is tasked with exploring its environmentand requesting annotations to refine its visual model. Learning toexplore novel scenarios and efficiently request annotation for new datais a step towards life-long learning, where models can evolve beyondwhat they learned during the initial training phase. We study theproblem for segmentation, though the idea is applicable to otherperception tasks.Lastly, the final two papers propose improving human pose estimation byintegrating physical constraints. These regularize the reconstructedmotions to be physically plausible and serve as a complement to currentkinematic approaches. Whether a motion has been observed in the trainingdata or not, the predictions should obey the laws of physics. Throughintegration with a physical simulator, we demonstrate that we can reducereconstruction artifacts and enforce, e.g., contact constraints

    Object Tracking and Mensuration in Surveillance Videos

    Get PDF
    This thesis focuses on tracking and mensuration in surveillance videos. The first part of the thesis discusses several object tracking approaches based on the different properties of tracking targets. For airborne videos, where the targets are usually small and with low resolutions, an approach of building motion models for foreground/background proposed in which the foreground target is simplified as a rigid object. For relatively high resolution targets, the non-rigid models are applied. An active contour-based algorithm has been introduced. The algorithm is based on decomposing the tracking into three parts: estimate the affine transform parameters between successive frames using particle filters; detect the contour deformation using a probabilistic deformation map, and regulate the deformation by projecting the updated model onto a trained shape subspace. The active appearance Markov chain (AAMC). It integrates a statistical model of shape, appearance and motion. In the AAMC model, a Markov chain represents the switching of motion phases (poses), and several pairwise active appearance model (P-AAM) components characterize the shape, appearance and motion information for different motion phases. The second part of the thesis covers video mensuration, in which we have proposed a heightmeasuring algorithm with less human supervision, more flexibility and improved robustness. From videos acquired by an uncalibrated stationary camera, we first recover the vanishing line and the vertical point of the scene. We then apply a single view mensuration algorithm to each of the frames to obtain height measurements. Finally, using the LMedS as the cost function and the Robbins-Monro stochastic approximation (RMSA) technique to obtain the optimal estimate

    Cognitive-developmental learning for a humanoid robot : a caregiver's gift

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 319-341).(cont.) which are then applied to developmentally acquire new object representations. The humanoid robot therefore sees the world through the caregiver's eyes. Building an artificial humanoid robot's brain, even at an infant's cognitive level, has been a long quest which still lies only in the realm of our imagination. Our efforts towards such a dimly imaginable task are developed according to two alternate and complementary views: cognitive and developmental.The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine learning problems across several categorization levels. Actions by embodied agents are used to automatically generate training data for the learning mechanisms, so that the robot develops categorization autonomously. Taking inspiration from the human brain, a framework of algorithms and methodologies was implemented to emulate different cognitive capabilities on the humanoid robot Cog. This framework is effectively applied to a collection of AI, computer vision, and signal processing problems. Cognitive capabilities of the humanoid robot are developmentally created, starting from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple sensing modalities. Human caregivers provide a helping hand for communicating such information to the robot. This is done by actions that create meaningful events (by changing the world in which the robot is situated) thus inducing the "compliant perception" of objects from these human-robot interactions. Self-exploration of the world extends the robot's knowledge concerning object properties. This thesis argues for enculturating humanoid robots using infant development as a metaphor for building a humanoid robot's cognitive abilities. A human caregiver redesigns a humanoid's brain by teaching the humanoid robot as she would teach a child, using children's learning aids such as books, drawing boards, or other cognitive artifacts. Multi-modal object properties are learned using these tools and inserted into several recognition schemes,by Artur Miguel Do Amaral Arsenio.Ph.D
    • …
    corecore