
Dynamic Scene Reconstruction and
Understanding

Yu-Shiang Wong

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

May 2, 2023

I, Yu-Shiang Wong, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

Traditional approaches to 3D reconstruction have achieved remarkable progress

in static scene acquisition. The acquired data serves as priors or benchmarks for

many vision and graphics tasks, such as object detection and robotic navigation.

Thus, obtaining interpretable and editable representations from a raw monocular

RGB-D video sequence is an outstanding goal in scene understanding. However,

acquiring an interpretable representation becomes significantly more challenging

when a scene contains dynamic activities; for example, a moving camera, rigid object

movement, and non-rigid motions. These dynamic scene elements introduce a scene

factorization problem, i.e., dividing a scene into elements and jointly estimating

elements’ motion and geometry. Moreover, the monocular setting brings in the

problems of tracking and fusing partially occluded objects as they are scanned from

one viewpoint at a time.

This thesis explores several ideas for acquiring an interpretable model in dy-

namic environments. Firstly, we utilize synthetic assets such as floor plans and object

meshes to generate dynamic data for training and evaluation. Then, we explore

the idea of learning geometry priors with an instance segmentation module, which

predicts the location and grouping of indoor objects. We use the learned geometry

priors to infer the occluded object geometry for tracking and reconstruction. While

instance segmentation modules usually have a generalization issue, i.e., struggling to

handle unknown objects, we observed that the empty space information in the back-

ground geometry is more reliable for detecting moving objects. Thus, we proposed a

segmentation-by-reconstruction strategy for acquiring rigidly-moving objects and

backgrounds. Finally, we present a novel neural representation to learn a factorized

Abstract 4

scene representation, reconstructing every dynamic element. The proposed model

supports both rigid and non-rigid motions without pre-trained templates. We demon-

strate that our systems and representation improve the reconstruction quality on

synthetic test sets and real-world scans.

Impact Statement

Reconstructing and understanding our indoor environments are fundamental to

deploying artificial intelligence (AI) applications. Two successful examples are

autonomous cleaning robots and 3D reconstruction using commodity hardware.

Robotic vacuum cleaner integrates simultaneous localization and mapping (SLAM)

and path planning technology, enabling robots to reconstruct floor plans in real-time

and perform floor cleaning tasks. On the other hand, 3D reconstruction using a depth

sensor such as a Kinect provides a low-cost solution to obtaining object geometry

and facilitates commercial design and visual effects industries. Although these appli-

cations are now billion-dollar markets, they are mainly restricted to static settings,

i.e., objects or scenes remain stationary. To unlock the next-generation applications,

such as intelligent home-assistant robots or mixed reality (MR), one of the funda-

mental building blocks is the ability to reconstruct dynamic objects and humans,

allowing robots to analyze dynamic events and assist humans in doing tedious daily

tasks. This thesis investigated three research problems for acquiring dynamic indoor

scene data using monocular RGB-D video input. First, Chapter 4 demonstrates a

joint optimization framework to track and reconstruct rigidly-moving objects by

leveraging intra-category priors. Then, Chapter 5 develops an unsupervised dense

reconstruction system for acquiring rigidly-moving objects and background geome-

try. Finally, Chapter 6 proposes a novel neural representation to formulate a joint

optimization problem for modeling rigid and non-rigid activities via volumetric

rendering. The outcomes of this thesis have been published as two international

conference papers at Eurographics 2021 and IEEE/CVF Conference on Computer

Vision and Pattern Recognition 2021. In summary, this thesis makes new progress in

Impact Statement 6

analyzing and understanding our indoor environments with large camera motions,

unknown moving objects, and non-rigid activities.

Acknowledgements

First, I am grateful to my advisor Niloy Mitra for his guidance during my PhD

journey. He is always encouraging and patient in teaching me how to address research

problems and motivating me to achieve high-impact results. I really appreciate his

help.

I would also like to extend my gratitude to Matthias Nießner for his supervision

during my summer visits and collaboration. I appreciate his expert insights, feedback,

and help in setting up a scanning pipeline, which saved me an enormous time. I also

want to acknowledge my collaborators: Norman Muller, Angela Dai, and Changjian

Li. Thank you for your contributions. I am particularly grateful for your help in the

(tough) last-hour submissions.

During my PhD, I am grateful for being a member of the SmartGeometry

group and for the daily help from the group members and visiting students: Paul,

Aron, Robin, Tuanfeng, James, Moos, Tom, Carlo, Linjie, Xuelin, Meng, Changjian,

Philipp, Eric, Preddy, Luca, Sanjeev, and Animesh. Thank you for assisting with

group tasks, solving technical issues, as well as those (funny) daily chats in the office.

Thanks to Xuelin, Changjian, and other members of the group for their help with 3D

scanning, which took several hours.

Also, I would like to thank my London friends, who remind me that London

is a wonderful city. Chanawee and Yu-Hsuan, thanks for connecting me to funny

events in London and sharing living tips with me. NhuY, many thanks for sharing

delicious receipts and bubble teas with me and for your help during the Covid-19

pandemic. It would have been be a stressful time without you. I also want to express

my appreciation to my friends in Taiwan: Bo-ren, Bo-cheng, Lin-Lin, Rih-ding,

Acknowledgements 8

Yang-sheng, Jia-wei, and Po-an. Thank you all for your friendship. It is always fun

to meet you guys.

Finally, I would like to express my deepest gratitude to my parents and sister for

their unconditional support, love, and understanding. Thank you for supporting me

in going through these challenging moments, reminding me about healthy lifestyles,

and being proud of my achievements. This thesis is dedicated to you.

Publications

Note that our work presented in this thesis has been published as two conference

papers. Their references are listed in the following.

• Chapters 3 and 5:

Yu-Shiang Wong, Changjian Li, Matthias Nießner, and Niloy J. Mitra. Rigid-

Fusion: RGB-D Scene Reconstruction with Rigidly-moving Objects. Com-

puter Graphics Forum, 2021.

• Chapters 4:

Norman Muller, Yu-Shiang Wong, Niloy J. Mitra, Angela Dai, and Matthias

Nießner. Seeing behind objects for 3d multi-object tracking in rgb-d sequences.

In Proc. Computer Vision and Pattern Recognition, IEEE, 2021.

• Chapter 6:

Yu-Shiang Wong and Niloy J. Mitra. Factored Neural Representation for

Scene Understanding, arXiv preprint arXiv:2304.10950.

Contents

1 Introduction 16

2 Related Work 22

2.1 Dynamic Indoor Scene Reconstruction 22

2.1.1 Background Reconstruction 22

2.1.2 Rigid Object Reconstruction 23

2.1.3 Non-rigid Object Reconstruction 24

2.1.4 Rigid Objects and Background Reconstruction 25

2.1.5 Full Dynamic Scene Reconstruction 26

2.2 Surface Representation . 27

2.2.1 Classical Models . 27

2.2.2 Learning-Based Models 28

2.2.3 Differential Rendering . 29

2.3 Synthetic Data for Learning . 30

3 Dynamic Indoor Scene Dataset 31

3.1 Introduction . 31

3.2 Data Generation . 32

3.3 Dataset Analysis . 34

3.4 Evaluation Metrics . 34

3.4.1 Reconstruction . 34

3.4.2 Tracking . 37

3.5 Discussion and Limitations . 38

Contents 11

4 Supervised Dynamic Objects Reconstruction 40

4.1 Introduction . 40

4.2 Method . 41

4.2.1 Object Detection . 41

4.2.2 Object Completion and Correspondences 43

4.2.3 Differentiable Pose Optimization 44

4.2.4 Object Tracking and Reconstruction 45

4.2.5 Implementation Details . 45

4.3 Evaluations and Results . 46

4.3.1 Comparison to State of the Art 47

4.3.2 Does Object Completion Help Tracking? 49

4.3.3 Real-world Dynamic RGB-D Sequences 49

4.3.4 Detection and Completion Evaluation 49

4.4 Discussion and Limitations . 51

5 Unsupervised Dynamic Scene Reconstruction 53

5.1 Introduction . 53

5.2 Method . 55

5.2.1 Overview . 55

5.2.2 Background Reconstruction and Camera Estimation 56

5.2.3 Asynchronous Foreground Reconstruction 58

5.2.4 Post-Processing . 61

5.2.5 Mesh Extraction . 62

5.3 Evaluations and Results . 62

5.3.1 Computational Time and Implementation Details 62

5.3.2 Evaluation on DYNSYNTH Test Set 63

5.3.3 Evaluation on Real-world Data 65

5.3.4 Evaluation on CoFusion Dataset 68

5.4 Discussion and Limitations . 68

Contents 12

6 Neural Dynamic Scene Representation 73

6.1 Introduction . 73

6.2 Image Formation Model . 75

6.2.1 Volume Rendering . 75

6.2.2 Volume Rendering with Implicit Surface 76

6.2.3 Attributes Rendering . 77

6.2.4 Volume Rendering with Factored Neural Representation . . 78

6.3 Method . 78

6.3.1 Initialization . 79

6.3.2 Joint Optimization . 79

6.4 Evaluation . 82

6.4.1 Datasets . 82

6.4.2 Comparison . 85

6.4.3 Evaluation Metrics . 85

6.4.4 Quantitative Evaluation . 85

6.4.5 Qualitative Evaluation . 87

6.4.6 Ablation study . 88

6.4.7 Applications . 88

6.4.8 Memory and Implementation Details 91

6.5 Discussion and Limitations . 91

7 Conclusions 94

7.1 Summary . 94

7.2 Future Work . 95

7.3 Remark . 97

Appendices 97

A A Glossary of the Terminology 98

B RigidFusion’s Experiment Details 99

Bibliography 101

List of Figures

1.1 Cyclic dependency in dynamic scene reconstruction. 17

1.2 The occlusion problem in tracking moving objects. 18

3.1 Data generation pipeline and examples. 32

3.2 Example scenes in our DYNSYNTH dataset. 35

3.3 A comparison of the occlusion settings.. 36

3.4 Assessing reconstruction quality evaluation and types of errors. . . . 37

3.5 Assessing tracking performance evaluation and types of errors. . . . 38

4.1 The illustration of our joint optimization formulation. 41

4.2 Overview of our network architecture. 42

4.3 Our network architecture. 46

4.4 Qualitative comparison on DYNSYNTH. 47

4.5 Qualitative comparison to state of the art on real-world sequences. . 50

5.1 RigidFusion’s 4D reconstruction results. 54

5.2 RigidFusion’s input buffer. 55

5.3 RigidFusion’s system diagram. 56

5.4 TSDF illustration. 57

5.5 Qualitative evaluation on DYNSYNTH. 63

5.6 Qualitative evaluation on real-world data. 67

6.1 Factored neural representation. 74

6.2 Rendering neural factored representation. 76

6.3 Pipeline. 77

List of Figures 14

6.4 Dataset. 81

6.5 Comparisons on our synthetic dataset. 83

6.6 Comparisons of the object reconstruction on our synthetic dataset. . 84

6.7 Comparisons of scene reconstruction on the BEHAVE dataset. 86

6.8 Reconstruction and applications on our synthetic dataset. 89

6.9 Reconstruction and applications on the BEHAVE dataset. 90

6.10 Our network architecture. 92

List of Tables

1.1 Indoor RGB-D dataset. 19

1.2 Comparison of the dense reconstruction methods using monocular

RGB-D input. 20

4.1 Evaluation of MOTA on DYNSYNTH. 48

4.2 Evaluation of object pose estimation on individual RGB-D frames. . 49

4.3 Evaluation of 3D detection and instance completion. 51

5.1 Quantitative evaluation of the background reconstruction and track-

ing on DYNSYNTH. 63

5.2 Quantitative evaluation of the foreground reconstruction and tracking

on DYNSYNTH. 64

5.3 The analysis of our real-world examples. 69

5.4 The evaluation of moving object detection. 69

5.5 Background tracking evaluation on TUM RGB-D dataset. 70

5.6 Foreground tracking evaluation on CoFusion’s dataset. 70

6.1 Reconstruction error on our synthetic dataset. 86

6.2 Reconstruction error on BEHAVE using the training camera. 87

6.3 Ablation study on our synthetic dataset. 88

A.1 The terminology used in this thesis. 98

B.1 RidgidFusion’s experimental setting 99

B.2 CoFusion’s experimental setting 100

B.3 MaskFusion’s experimental setting 100

Chapter 1

Introduction

Capturing 3D scene geometry is a long-standing challenge in the vision and graphics

fields. Among the various capture settings in the literature (such as a small scene

equipped with multiple pre-calibrated RGB cameras [1, 2] or an expensive laser

scanner [3]) scanning scene geometry with a depth sensor has become a popular

solution as it is ad hoc and inexpensive. While a depth sensor provides the 3D

information (i.e., the distance from a point to the camera), acquiring accurate 3D

scene geometry from monocular RGB-D input is still challenging because of the

missing information caused by occlusion and noisy depth measurements.

Several robust solutions [4, 5, 6, 7, 8, 9, 10, 11] have been developed for cap-

turing static scenes with monocular RGB-D input, and they have been successfully

applied to capture a large-scale indoor dataset [11, 12]. However, there are limited

options for capturing dynamic scenes, and available solutions focus on the simplified

problem settings by assuming the existence of background geometry through the ini-

tialization stage [13, 14] or restricting capturing to a single dynamic object recorded

by a stationary camera [15, 16, 17, 18].

This is rather surprising since our surroundings are mostly dynamic due to

objects moving around during our regular interactions; for instance, a person moving

a box, table, or chair. The ability to faithfully record indoor environments with

moving objects using commodity hardware (for example, a smartphone with a

mounted depth sensor) would open up many possibilities to capture our environments

in their natural settings and, in turn, provide rich data priors for several vision

17

Input RGB-D Frames

Tracking
requires known
segmentation

Motion segmentation
requires accurate
motion estimation

Figure 1.1: Cyclic dependency in dynamic scene reconstruction. Solving dynamic scene
reconstruction involves breaking the cyclic dependency between detecting the
moving objects, e.g., the dynamic chair among the other static chairs, and
estimating the movement of each point.

applications, such as mixed reality and home-assist robots.

The primary challenge in capturing dynamic scenes is to solve a complex

solution space involving factorizing individual dynamic elements from RGB-D

videos, associating dynamic elements between frames, classifying their motion type

(i.e., rigid or non-rigid movement), establishing the corresponding 3D points between

frames, estimating their motions, and produce 4D reconstructions in the form of fused

canonical models that aggregates multiple partial scans at different time steps to the

shared world-space geometry for each dynamic element. As Figure 1.1 shows, in the

absence of prior knowledge about object positions, shapes, or background geometry,

dynamic scene reconstruction naturally leads to a cyclic dependency on segmenting

dynamic elements and tracking their movement because motion segmentation (i.e.,

partitioning pixels into dynamic elements according to movement) requires accurate

tracking, and object tracking requires precise segmentation.

The second challenge is estimating motion from partial scans, as shown in

Figure 1.2, where two input frames contain different parts of scene geometry. This

is also known as the occlusion issue in the surface reconstruction literature due to

the camera view change and scene clutter, which prohibit finding correct correspon-

dences between frames, i.e., the same points observed at different time steps. A

common solution [11, 19, 20] for this issue is to establish a set of robust correspon-

dences by employing carefully designed high-dimension features such as SIFT [21]

18

Time
t

Time
t+1

Figure 1.2: The occlusion problem in tracking moving objects. Object movement and
the monocular input setting make object tracking difficult. Here the two input
chair segments have little overlapping, which leads to a challenging motion
estimation problem.

or FPFH [19] to filter outlier correspondences caused by view change. However, this

is harder in dynamic scenes, as moving objects are small, and their movement may

lead to less overlapping between frames.

The third challenge is formulating a joint optimization framework for solving

the reconstruction of multiple dynamic elements, including rigid objects, non-rigid

objects, and backgrounds. While this multi-object optimization requires instance seg-

mentation, i.e., the pixel grouping according to each individual object on the image,

instance segmentation is usually solved in a pre-processing step. Joint optimization

provides a chance to also optimize instance segmentation with other variables, such

as geometry and appearances. Hence, it can improve overall performance. How-

ever, it is non-trivial due to the explosion of the variables, especially for non-rigid

motion. Non-rigid motion is more complex than rigid motion because every pixel

(point) has a different amount of movement, significantly increasing the number of

variables. Therefore, non-rigid and rigid objects are usually discussed separately in

the literature.

Further, the difficulty of acquiring 4D data leads to the absence of a large-scale

training dataset. This challenge prohibits conducting quantitative evaluations or

leveraging supervised methods that use prior knowledge to solve 4D reconstruction

from data. Although several dynamic datasets have been developed, as summarized

in Table 1.1, they are targeting different sub-tasks, such as background reconstruction

19

Table 1.1: Indoor RGB-D dataset. Dynamic RGB-D data has received more focus in
recent years. However, the scale, scene sizes, and variety of the developed
dynamic datasets are still lower than the state-of-the-art static datasets.

Indoor RGB-D dataset

Name Type Scale Year Note

SUN-RGBD [26] Static 10,000 images 2013 static images

S3DIS [27] Static 271 rooms 2016 static rooms

Matterport3D [28] Static 10,800 panoramic views 2017 static rooms

ScanNet [12] Static 1,500 rooms 2018 static rooms

Bonn [22] Dynamic 25 sequences 2019 single scene, 4 subjects with 3 objects

DeepDeform [23] Dynamic 400 sequences 2020
static cameras, each scene

contains 1-2 deformable objects

IPhone [29] Dynamic 14 sequences 2022 local motion

BeHave [25] Dynamic 321 sequences 2022
static cameras, 8 subjects interacting

with 20 objects

HOI4D [30] Dynamic 4,000 sequences 2022 egocentric cameras, table-top activities

in dynamic environments [22], non-rigid registration [23], or robotic simulation and

navigation [24]. The most relevant dataset is BEHAVE [25], which uses four static

cameras to record human-object interactions and provide both motion estimation and

fused canonical geometry. However, this dataset was released only recently, with

limited variety, i.e., they recorded dynamic events with twenty common objects in

five indoor scenes.

In Chapter 3, we will explore synthesizing virtual scanning containing dynamic

events, building upon the rapid progress on synthetic 3D assets in recent years

[40, 41, 42]. We aim to create ground truth data where we virtually move objects

around by simulating real-world scanning scenarios in dynamic environments with

rigidly moving objects and utilize the generated data for training and evaluation.

Therefore, we developed a data generation framework to synthesize a large-scale

dynamic dataset containing rigidly-moving objects, non-static camera trajectories,

and an evaluation protocol for assessing the quality of 4D reconstruction results.

Chapter 4 will present a supervised method for reconstructing dynamic rigid

objects by leveraging our new dataset. We break the cyclic dependency between

segmentation and tracking, and tackle the occlusion issue by employing novel

20

Table 1.2: Comparison of the dense reconstruction methods using monocular RGB-D
input. Rect.: reconstruction. FG: foreground. N: number of detected instances.
N+1: incrementally solve a new foreground object. 1/N: only solve a new
foreground among the N simultaneously moved objects.

Method
Rect.

Background
Rect.

Rigid FG

Rect.
Non-Rigid

FG

Predict
Unseen

Geometry

No Use
Object
Prior

Solve
FG #

FPS

KinectFusion [6] ✓ ✗ ✗ ✗ ✓ 0 30Hz
StaticFusion [31] ✓ ✗ ✗ ✗ ✓ 0 30Hz

ReFusion [22] ✓ ✗ ✗ ✗ ✓ 0 N.A.
DynaSLAM [32] ✓ ✗ ✗ ✗ ✗ 0 2Hz

IMap [33] ✓ ✗ ✗ ✗ ✓ 0 2Hz
NiceSLAM [34] ✓ ✗ ✗ ✗ ✓ 0 6Hz

Neural RGB-D [35] ✓ ✗ ✗ ✗ ✓ 0 offline

Dynamicfusion [15] ✗ ✗ ✓ ✗ ✗ 1 30Hz
VolumeDeform [16] ✗ ✗ ✓ ✗ ✗ 1 30Hz
KillingFusion [18] ✗ ✗ ✓ ✗ ✗ 1 30Hz

NDR [36] ✗ ✗ ✓ ✗ ✗ 1 offline

CoFusion [14] ✓ ✓ ✗ ✗ ✓ N+1 12Hz
MaskFusion [37] ✓ ✓ ✗ ✗ ✗ N 5Hz
MIDFusion [38] ✓ ✓ ✗ ✗ ✗ N 2Hz
EMFusion [39] ✓ ✓ ✗ ✗ ✗ N 4Hz

ComObjTrackNet
(Chapter 4)

✗ ✓ ✗ ✓ ✗ N 1Hz

RigidFusion
(Chapter 5)

✓ ✓ ✗ ✗ ✓ 1/N 1Hz

FactoredNeRF
(Chapter 6)

✓ ✓ ✓ ✗ ✗ N offline

category-level priors to predict instance segmentation, correspondences, and oc-

cluded geometry. We demonstrate that our network can handle heavy occlusion and

improve object tracking performance using inferred object correspondences.

Object priors such as geometry and instance segmentation are useful but may

not always exist. A pre-trained segmentation network may not recognize an object

if it is not in the training distribution. This is known as the generalization prob-

lem of deep learning methods. In Chapter 5, we will present RigidFusion: a 4D

reconstruction system aimed at reconstructing rigidly-moving objects without using

object priors. We propose a novel segmentation-by-reconstruction step to handle

the cyclic dependency. Our system can simultaneously build a background model

and detect unseen moving objects in a highly dynamic environment, i.e., with non-

21

static camera movement, which is particularly challenging for the state-of-the-art

methods [14, 37, 38].

In Chapter 6, we move one step forward to address the full dynamic scene

reconstruction problem using monocular RGB-D input. We propose a novel learned

representation, FactoredNeRF, using volume rendering to reconstruct rigid, non-

rigid, and background geometry jointly. We demonstrated that, by having a noisy

segmentation and axis-aligned bounding boxes initialization, our factorized neural

representation could jointly reconstruct both rigid and non-rigid objects without

using templates (such as SMPL [43]). Our learned representation supports several

scene editing operations, such as novel view rendering, object removal, and pose

editing, without requiring re-training the network at test time.

In summary, we compare the related problem statements and highlight our

contribution in Table 1.2. The thesis is organized as follows: Chapter 2 presents a

literature review; Chapter 3 introduces our data generation tool; Chapter 4 presents

our completion and tracking network; Chapter 5 presents RigidFusion; and Chapter 6

presents FactoredNeRF. The conclusion and future work are given in Chapter 7. A

glossary of the terminology used in this thesis is included in Appendix A.

Chapter 2

Related Work

This chapter reviews the literature on dynamic indoor scene reconstruction, ranging

from works on acquiring a single moving object to a full dynamic scene, providing

the background for Chapters 4 to 6. Then it introduces the literature on surface

representation related to Chapter 6. Finally, this chapter discusses synthetic datasets

relevant to Chapter 3.

2.1 Dynamic Indoor Scene Reconstruction

2.1.1 Background Reconstruction

Generalizing static scene reconstruction methods, such as KinectFusion [6], to

dynamic scenes requires tackling a significant amount of background outliers (i.e.,

moving objects). These dynamic pixels or points must be detected and segmented

to reconstruct the background. Thus, this line of research introduces an outlier

detection step in the reconstruction pipeline based on segmentation techniques,

which identifies the region (pixels or points on the input RGB-D images) that

belongs to moving objects. For example, Keller et al. [44] employ hierarchical

region-growing segmentation to remove outliers by maintaining a confidence score.

On the other hand, Scona et al. [31] propose a non-linear optimization to jointly

solve tracking and binary segmentation, i.e., foreground or background. Palazzolo

et al. [22] propose a flood-fill algorithm to grow outlier masks iteratively. These

methods, however, do not track and reconstruct foreground objects. In Chapter 5, we

propose a novel segmentation-by-reconstruction step to detect dynamic objects and

2.1. Dynamic Indoor Scene Reconstruction 23

reconstruct background and foreground objects.

2.1.2 Rigid Object Reconstruction

Reconstructing a rigid object is similar to background reconstruction because of the

rigidity assumption that the object motion is modeled by rigid transformations, which

preserves Euclidean distance under transformations. If the object segmentation is

known, this problem is reduced to static reconstruction, and static methods such as

KinectFusion [6] can be applied to reconstruct object geometry. However, tracking

a rigidly moving object is generally harder than tracking a camera (background)

due to occlusions, where parts of the object geometry cannot be seen from the

camera view. In addition, occlusions are hard to be bypassed under a monocular

setting. Previous works handle this issue by utilizing 3D shape priors and matching

input points with template meshes [45, 46, 47, 48, 49] or employing sparse feature

descriptors [50, 51, 52], which create a set of high-dimensional features to match

points under rotation, translation, scale, and illumination change. The limitations of

these methods are still occlusion and the requirements of templates.

More recently, deep learning methods have been adapted to object tracking.

PoseCNN [53] is one of the pioneering works using a convolutional neural network

on color input to predict object centers, semantic labels, and object poses. PointFu-

sion [54] and DenseFusion [55] add depth cues by concatenating image features and

point features using a convolutional neural network and PointNet [56]. These works

improved the tracking accuracy but are restricted to the training objects.

To improve the generalization capability to deal with unseen objects, Wang

et al. [57] proposed Normalized Object Coordinate Space (NOCS), which learns

category-level object priors using the modern detection framework [58]. This ap-

proach removes the requirement of an exact object template and relaxes template-

based object tracking to category-level object tracking. Moreover, 6-Pack [59]

integrates DenseFusion [55] with KeypointNet [60] to predict the keypoints shared

between each frame and achieve higher tracking accuracy. The main limitations of

6-Pack and DenseFusion are the requirement of the ground-truth poses and bounding

boxes in the first frame, which limits its application. In Chapter 4, we employ the

2.1. Dynamic Indoor Scene Reconstruction 24

off-the-shelf instance detection networks [58, 61] as a backbone and propose a novel

network architecture to learn category-level geometry priors and correspondences

using NOCS [57] to achieve robust object tracking.

2.1.3 Non-rigid Object Reconstruction

Many dynamic events contain non-rigid motions, for example, a human lifting a bag.

The tricky parts of non-rigid object reconstruction are that the object geometry may

change during acquisition, leading to an ambiguity between new information and

topology change, and every point may deform differently, leading to a large number

of variables. As this is a highly ill-posed problem, non-rigid object reconstruction

usually assumes the camera is static, 2D object masks are known, and applying

regularizations to constraint deformation.

Two common deformation regularizers are smooth deformation and local rigid-

ity [62, 63]. Smooth deformation constrains the neighboring points to have similar

motions by utilizing input connectivity, such as a mesh or a deformation graph.

On the other hand, local rigidity forces the motion to be as rigid as possible by

approximating a rigid transformation at each node. These two regularizations are

widely adopted in non-rigid object reconstruction literature [15, 16, 18, 64]. A recent

approach is to utilize the inductive bias of a multi-layer perceptron (MLP) network

to regularize deformation. Research on generative modeling [65, 66] demonstrates

that an MLP network tends to reconstruct a smooth latent space. This property has

been applied to shape deformation [35, 67], enhancing the reconstruction quality

without as-rigid-as-possible regularization [35].

Similar to the rigid tracking case in the previous section, the occlusion issue

exists when using monocular video as input, making the correspondence search

challenging. Previous works address this problem using sparse feature matching

[16], dense tracking [15, 18, 68], learning-based feature matching [23, 69, 70], and

optimizing MLP networks with object pose initialization [36]. Not surprisingly,

templates or category-level shape priors are also useful to alleviate the occlusion

problem. This line of work includes using hand-crafted parametric models [43, 71,

72, 73, 74, 75] and learning-based templates [76, 77, 78, 79]. In Chapter 6, we

2.1. Dynamic Indoor Scene Reconstruction 25

also employ the MLP network as deformation regularization and propose a novel

joint optimization framework to reconstruct both non-rigid objects, rigid objects, and

background geometry together.

2.1.4 Rigid Objects and Background Reconstruction

Dense reconstruction in dynamic indoor scenes with rigid motion assumption is still

a relatively new research topic. The main challenge is simultaneously handling the

uncertainty of detecting unknown moving objects and tracking static background

under a moving camera. Previous works can be classified into two types: using mo-

tion residuals and leveraging data priors, according to the signals used for detecting

moving objects.

Lu and Gabe [13] proposed detecting moving objects in a frame-to-frame fash-

ion by examining motion outliers in the background model. Multiple moving objects

are extracted by finding the disjoint region on the outlier mask. CoFusion [14]

follows a similar concept and proposes an efficient framework using Conditional

Random Field (CRF) [80] to solve motion segmentation in real time. Note that

the above methods [13, 14] only focus on small indoor scenes (e.g., 1-2 sqm) and

are restricted to slowly moved camera motion as reported in [31, 81]. With the

rapid progress in object detection and segmentation (see the recent segmentation

benchmark [82, 12]), semantic priors have become a popular solution because seg-

mentation networks can learn data prior from the existing large-scale image datasets.

MaskFusion [37] is one of the recent works that propose a real-time pipeline to

integrate surfel tracking [83] with an instance segmentation network [58]. Although

segmentation prior [58] can provide object masks, it suffers from a low recall issue

and slow inference time, e.g., 2Hz, due to the deep network architecture. To alleviate

the low recall issue, MID-Fusion [38] and EMFusion [39] accumulate segmentation

prediction using volumetric grids [4] and back-project object masks from the inte-

grated object models. Although these works improve the robustness, the moving

object detection problem is not completely solved due to instance segmentation

being a rather weak initialization for motion segmentation in cluttered scenes, e.g.,

a scene with many indoor objects. In Chapter 5, we propose a novel dynamic

2.1. Dynamic Indoor Scene Reconstruction 26

scene reconstruction system without using common object priors such as template

meshes or image segmentation networks to enhance the generalization ability of

object detection and segmentation. We applied our system to several challenging

examples that scene contains large camera motion and rigidly moving objects.

2.1.5 Full Dynamic Scene Reconstruction

Full dynamic scene reconstruction without rigidity assumption is a more general

problem statement. However, the existence of non-rigid motion creates extra com-

plexity in segmentation and optimization. The early efforts on this problem can

be categorized into three types. First, decoupling the handling of each scene ele-

ment uses semantic priors [37, 38, 39] or motion segmentation [14, 84, 85]. These

methods optimize individual objects separately, and the object segmentation is not

jointly optimized. Second, capturing dynamic effects by over-fitting to 4D space-

time volume [86, 87, 88, 89] uses a global neural radiance field (NeRF) [90]. These

methods are restricted to local motion and do not provide the ability to extract and

edit individual scene elements. Third, employing two (or three) neural networks

for modeling background and foreground [90, 91, 92, 93] (and Actor [93]) from

monocular color input. These works examine unsupervised segmentation [90, 91, 93]

or self-supervised [92] segmentation, but they do not decompose each foreground

object and recover object trajectories.

In other efforts, researchers have separately investigated the effect of using multi-

view input from a (static) camera array. Multi-view setup with static cameras provides

a good regularization for occlusion and demonstrates promising results [94, 95]. This

can be further integrated with a parametric human template [43, 71] and enhance

reconstruction quality on object-human interaction [96] or multiple human activities

[97]. However, setting up multiple calibrated cameras is non-trivial and therefore

restricts its applications.

In Chapter 6, we present FactoredNeRF: a learned dynamic scene representa-

tion that can be extracted, without requiring pre-training and parametric templates,

simultaneously with object tracking and segmentation. Further, unlike many other

multi-view pipelines [94, 95, 96, 97], we dynamically aggregate information across

2.2. Surface Representation 27

views to recover from occlusion under a moving camera setting. Once trained, our

representation can not only be viewed from novel camera paths but also used to

make changes to object trajectories and placements.

2.2 Surface Representation
Efficiently representing surface geometry is important for indoor reconstruction. In

this section, we summarize the literature from classical to learning-based approaches

and introduce differential rendering for optimizing learning-based models, which are

relevant to Chapter 6.

2.2.1 Classical Models

Truncated signed distance fields (TSDF) and surface elements (surfel) are two widely

used representations in the literature on surface reconstruction. The pioneering work

by Curless and Levoy [4] introduces the idea of using a volumetric grid to represent

geometry as a level-set function, named a truncated signed distance field (TSDF).

Each voxel in the volumetric grid is associated with a truncated scalar and a weight.

The scalar represents a signed distance value from a voxel to the nearest surface,

and the truncation ignores the far-surface regions as free-space information is less

relevant to the surface topology. The weight is used to implement moving averages

for efficiency. This implicit representation can model complex geometry and suits

for parallel processing and real-time systems [6, 7, 11, 98, 83] since each voxel can

be independently updated.

On the other hand, the surfel representation proposed by Pfister et al. [99]

is designed for memory-efficient graphic rendering and latterly applied to indoor

reconstruction [83, 44] due to its lightweight model size. A surfel consists of a

point (coordinates), a radius, and an orientation vector (normal), acting as a linear

approximation of the local geometry at the point position. The quality of the surfel

reconstruction is controlled by the density of sampled points, providing a speed-

quality trade-off, which can be linked to the r-sample theory [100, 101] on surface

meshing.

In Chapters 4 and 5, we employ the TSDF representation to model objects and

2.2. Surface Representation 28

scene geometry, and we utilize TSDF to model geometry prior (in Chapter 4) as well

as detect moving objects (in Chapter 5).

2.2.2 Learning-Based Models

The recent introduction of the implicit neural representation [65, 66, 102] has resulted

in an explosion of works to overfit a single object or to encode object collections.

The core idea is to employ several multi-layer perceptions (MLPs), taking inputs

as coordinates and regressing a signed distance value. Compared to the dense grid

models [4], neural models bypass the cubic memory complexity and significantly

compress the model size. However, this formulation [65, 66, 102] tends to miss

high-frequency details and have slow convergence.

Several follow-up works have been proposed to address the expressiveness

issue of the MLPs models. Mildenhall et al. [103] and Tancik et al. [104] revisit

feature lifting techniques from the machine learning literature [105] and lift input

coordinates to a high-dimensional space using Fourier features. Sitzmann et al. [106]

propose a periodic activation function with a carefully designed weight initialization

scheme to capture high-frequency details. Coarse-to-fine approaches [107, 108]

tackle high-frequency signals using a two-level architecture, where the first level

performs coarse reconstruction, and the second level refines the coarse output by

predicting a displacement.

Researchers have also proposed hybrid (i.e., explicit and implicit) representa-

tions by adapting classic representations such as a volumetric grid, providing fast

convergence and high quality. Local grid models decompose the space into small

voxels attached with feature vectors to learn the local structure [109, 110] or local

frequencies [111] using a shallow neural network. Hierarchical models [112, 113]

propose to use an octree to perform dynamic decomposition and preserve geometry

details. However, the re-employed grid structure brings back the memory con-

sumption issue. Point-based models aim to combine the simplicity of point data

structure with implicit representation by using a differentiable Poisson solver [114]

or optimizing point features to learn an implicit surface [115].

In Chapter 6, we employ multiple MLPs to represent both objects and back-

2.2. Surface Representation 29

ground geometry and propose a novel joint optimization framework to reconstruct

dynamic scenes.

2.2.3 Differential Rendering

Differential rendering allows optimizing implicit neural representations through

a reconstruction loss that supervises the predicted color or depth using the input

RGB-D frames, which is a useful tool for learning surface reconstruction. Two

common approaches are ray tracing and volume rendering.

Ray tracing accounts for explicit surface intersections and defines the training

loss on the surface. Ideally, a surface loss can be back-propagated through the whole

tracing process, but it is impractical due to the expensive cost of the Jacobian matrix.

Therefore, local approximation tricks are usually employed. This includes using

implicit differentiation [116, 117] to calculate the gradient on the surface with respect

to the input coordinates, max pooling the intersected anchor points to aggregate

gradients [118], or unfolding the last sphere tracing step [119, 120, 121]. However,

for complex geometry, these methods suffer from hard-to-propagate local gradients

and weight initialization.

In contrast, volume rendering [122], leading to Neural Radiance Fields (NeRF)

[103], integrates density and color samples along rays by modeling a radiance

field and employs a coarse-to-fine sampling scheme to focus on surface density,

without explicitly representing the underlying geometry. While NeRF can avoid the

local approximation step, its limitation on surface reconstruction is the noisy and

inaccurate learned implicit geometry. Follow-up works inject inductive bias through

a dual representation as a signed distance field [123, 124] or occupancy [124] to

define point density based on the implicit surface representations, constraining the

network to reconstruct geometry.

In Chapter 6, we utilize volume rendering and propose an efficient joint op-

timization framework to learn multiple objects’ geometry and motion through the

reconstruction loss.

2.3. Synthetic Data for Learning 30

2.3 Synthetic Data for Learning
The availability of depth sensors enables the development of large indoor datasets.

State-of-the-art indoor datasets, such as ScanNet [12] and the Stanford 3D indoor

scene dataset [27], provide rich data prior and enable the usage of deep learning

methods, resulting in significant performance improvement on several indoor under-

standing tasks, such as object detection [12, 125], object retrieval [42], and room

layout estimation [12, 126].

However, the ground truth of the collected real-world data, i.e., segmentation

labels, object geometry, and camera trajectories, is expensive to create and hard

to annotate accurately. For example, in order to obtain ground truth geometry, the

ROBOTHOR dataset [127] sets up a room that uses a set of pre-captured objects to

collect real-world indoor data. Although this strategy simplifies annotation efforts, it

only has a limited variety.

Thus, synthesizing virtual data becomes a more affordable alternative. One

successful example is the FlyingChairs dataset [128], which generates 22,872 image

pairs and their ground-truth optical flow by randomly placing chair models with

background textures. Surprisingly, despite the synthetic-to-real gap, FlowNet [128]

demonstrates that learning from synthetic data can obtain certain generalization

capabilities in nature scenes on the optical flow task. Similarly, several synthetic

indoor simulators [24, 129, 130, 131] have been developed in recent years, which

primarily benefit research on embodied artificial intelligence and smart indoor robots,

such as robot navigation [24, 129, 131, 130, 132], and object rearrangement [24,

130, 127, 131, 132, 133].

Based on the above observations, in Chapter 3, we developed a data generation

toolkit. We employed it to generate the first large-scale dataset for dynamic indoor

scene reconstruction and used it for both training and evaluation in Chapters 4 and

5. In addition, we created several synthetic examples for the evaluation purpose in

Chapter 6.

Chapter 3

Dynamic Indoor Scene Dataset

3.1 Introduction

Collecting a large-scale indoor dataset containing dynamic events is still an open

research question, which restricts the usage of deep learning methods and establishing

benchmarks. An alternative choice is to employ synthetic data to learn priors

[128, 134] or conduct evaluations [129, 24] by leveraging the publicly available 3D

indoor assets [40, 41].

This chapter explores developing an automatic pipeline to synthesize virtual

indoor scans containing dynamic events. The synthesized scans would serve as the

training and testing data for the succeeding chapters. To this end, we derive our

dataset from a set of publicly-sourced synthetic assets, including room layouts and

the CAD models of common indoor furniture, and simulate simple dynamic events

in that indoor objects are moved in a room observed by a virtual moving camera.

Through our toolkit, we generated rich synthetic data without manual annotations,

including RGB-D images, semantic labels, instance IDs, ground truth trajectories,

and complete scene geometry. One challenge here is synthesizing human actions,

e.g., a person picks an object. For simplicity, we only generated rigid object motion

because Chapters 3 and 4 focus only on rigid objects, and generating human motion

conditional on the object motion is still an open research problem.

Two crucial factors, occlusions and geometry features related to the limitation of

tracking and reconstruction [135], are carefully controlled during synthesizing, both

3.2. Data Generation 32

Figure 3.1: Data generation pipeline and examples. (a) Room sampling. We randomly
select a room having sufficient empty space (right) and avoid the cluttered one
(left) using the rendered occupancy maps. (b) Object sampling. We favor the
object with sufficient normal variation (right) over the object with flat geometry
(left). (c) Goal position sampling. We perform an occlusion test and identify
potential goal positions (blue cross). (d) Motion generation. We synthesize
a motion sequence using the path planning library [136]. (e) Camera motion
synthesis. We add camera motion by generating random transformations. We
calculate a visibility score to force the randomly generated cameras to focus on
the moving object. This score is calculated by rendering the occluded (middle)
and unoccluded (right) instance mask of the moving object using the instance
ID map (left).

described in the next section. Some challenging settings, such as illumination change

and motion blur, are excluded by our data generation pipeline, and we considered

such areas for future research. Our generated dataset is analyzed in Section 3.3, and

the evaluation metrics for assessing tracking performance and reconstruction quality

are introduced in Section 3.4.

3.2 Data Generation
We developed an automatic data synthesis framework to generate motion in indoor

scenes. Our synthesis pipeline starts by randomly sampling a set of floorplans,

rooms, and indoor objects from publicly-sourced indoor assets. Next, we randomly

synthesize object motions and a virtual moving camera looking at the dynamic

objects to create the motion configuration in the selected rooms. Then, we use

OpenGL to render output, including color images, depth images, instance ID maps,

and semantic label maps using NYU40 classes [137]. In Figure 3.1 and the following,

we elaborate on each step for synthesizing a sequence.

3.2. Data Generation 33

1. Room sampling: we sample a room with enough empty space to add object

motion. We measure an empty space ratio as the amount of space left on the

2D floor mask, and we reject overly cluttered or empty rooms.

2. Object sampling: we randomly sample dynamic objects in the room and avoid

featureless objects, such as a flat table. The featureless objects are identified

by checking their normal variation using the discretized normal directions.

3. Goal position sampling: we sample collision-free positions by moving the

sampled objects in the room. The object-to-object collision is detected by

performing an intersection check using primitive shapes, i.e., cuboids.

4. Motion generation: based on the original object position and the goal position,

we generate an object trajectory while avoiding collisions. This collision-free

trajectory is solved using a path planner [136]. We restrict movements to 2D

rigid rotation and translation on the XZ plane (floor plane) in order to create a

more reasonable motion (see Figure 3.1 (c)).

5. Camera motion synthesis: we aim to generate realistic camera motion as a

person using Kinect to record dynamic events. First, we sample several camera

positions in a room while requiring cameras to look at the dynamic objects.

We remove heavily occluded candidates by estimating a visibility score of the

target object in both 2D (pixels) and 3D (points) domains through the rendered

segmentation images and the target’s bounding box. Second, we interpolate

camera motion between the camera positions. We inject random motion by

randomly translating and rotating the XZ direction of a camera.

6. Render output: We render color, depth, semantic labels, and instance IDs

using OpenGL. Each synthesized sequence has ground truth trajectories and

complete meshes.

7. Post-process (manual step): We employ a manual post-process step to remove

bad sequences that contains undetected occlusions or texture flickering due to

the insufficient accuracy in the OpenGL depth buffer.

3.3. Dataset Analysis 34

3.3 Dataset Analysis
Using our framework, we generate two large datasets and serve as training and test

sets in Chapters 4 and 5. For simplicity, we named our generated dataset DYNSYNTH

in the later chapters. Two examples are provided in Figure 3.2.

For learning geometry priors for tracking in Chapter 4, we increase the occlusion

ratio to synthesize partially occluded motion sequences. A comparison of the two

occlusion levels is shown in Figure 3.3. In total, we generated 3300 sequences of

indoor scenes comprising 97,626 frames and split them into training, validation, and

testing set (containing 2900, 300, and 100 sequences, respectively). The average

length of camera movement is 8.3 m, and the object trajectory length is 7 m.

For the evaluation purpose in Chapter 5, we generated a training set for fine-

tuning a segmentation network and a test set for benchmarking the performance. The

training set contains 39,068 motion sequences spanning 151,335 RGB-D frames and

14 object categories (such as chairs, sofas, and beds). The test set consists of 20

sequences with longer motion. The average length of camera movement is 5.1 m,

and the object trajectory length is 8.6 m. The rooms have an average of 6 models,

leaving out walls/ceilings/wall decorations.

3.4 Evaluation Metrics

3.4.1 Reconstruction

A good reconstruction metric should handle the following issues: (a) different 3D

representation, (b) lack of correspondences between ground truth surface and an

output surface, and (c) the model space may be different from the canonical world

space (dependent on the implementation). In order to assess surface reconstruction

quality, we reconstruct ground truth mesh [4] using ground truth poses, ground truth

segmentation, and depth frames. Note that this fusion result is different from the

actual 3D CAD model since it contains occlusions from the virtual scanning.

We handle different surface representations by converting them into a point-

based representation (i.e., point cloud) and conducting evaluation with the ground

truth meshes’ vertices. Specifically, for the volumetric-based methods [6, 8, 22], we

3.4. Evaluation Metrics 35

Figure 3.2: Example scenes in our DYNSYNTH dataset. We synthesize rigid motions
along the ground, across the scene. The dynamic scenes are in turn recorded by
moving cameras.

3.4. Evaluation Metrics 36

Figure 3.3: A comparison of the occlusion settings.. The colored objects illustrate the
object’s movement. Upper row: no occluded cameras. Bottom row: partially
occluded cameras. We use the partial occlusion setting to train geometry com-
pletion priors in Chapter 4.

use the vertices of a reconstructed mesh as an output point set Sgt . If the volumetric

grid has a low resolution (e.g., less than 128), we re-sample the point on the recon-

structed mesh to create an output point set. For surfel-based methods [14, 37], we use

the centers of each surfel as an output point set. The surfel representation is usually

very dense, so we do not perform upsampling. We tackle the correspondence issue

and report Precision and Recall by employing a Chamfer distance metric, such that:

Precision =
1
N
·

N

∑
x∈Spred

1(min
y∈Sgt
∥x− y∥2 < ε) (3.1)

Recall =
1
M
·

M

∑
y∈Sgt

1(min
x∈Spred

∥x− y∥2 < ε), (3.2)

where 1 is an indicator function and ε is a distance threshold to determine whether a

point is successfully captured. We set ε to 3cm by considering that our scene size is

generally large than 3m2. We defined Recall as the squared distance between every

point in the ground truth Sgt to the corresponding nearest point in the output point

3.4. Evaluation Metrics 37

(i) P:1.0, R:1.0. (ii) P:0.7, R:1.0. (iii) P:0.5, R:1.0. (iv) P:1.0, R:0.54.

Figure 3.4: Assessing reconstruction quality evaluation and types of errors. (i) Ground
truth reconstruction, (ii) A noisy reconstruction. Low precision is usually
caused by tracking lost, which leads to misaligned surfaces. (iii) Another noisy
reconstruction example. This happens when outliers are accumulated in the
model over time due to inaccurate foreground/background segmentation. (iv)
A partial reconstruction example. This is usually caused by missed detection,
which skips some views of the object.

set Spred , and Precision as the squared distance calculated from the inverse direction,

i.e., from the output points to the ground truth points. In Figure 3.4, we show several

output examples and the corresponding reconstruction scores.

3.4.2 Tracking

To evaluate the quality of foreground detection and tracking, we employ the standard

visual object tracking metrics [138]: multiple object tracking accuracy (MOTA) and

precision (MOTP). These two metrics show the percentage of tracked frames and

tracking errors:

MOTA = 1−MISS+BAD+SWITCH
N

(3.3)

MOTP =

√
1
N

N

∑
i
∥ci− cg

i ∥2, (3.4)

where MISS, BAD, SWITCH, N are the number of false positives, loss-tracked

frames, identity switches, and input frames; and c and cg represent the estimated

and ground truth center at frame i. In addition, a distance threshold is introduced

to define whether the foreground object is tracked or not. We set the threshold to

5cm according to the TUM-RGBD tracking benchmark [11, 139]. The failed tracked

frames are marked as BAD frames. In Figure 3.5, we show several examples and the

corresponding scores.

3.5. Discussion and Limitations 38

(i) MOTA: 100%, MOTP: 0.0 cm. (ii) MOTA: 12% (MISS: 88%, BAD: 0%), MOTP: 0.1 cm.

(iii) MOTA: 6% (MISS: 0%, BAD: 94%), MOTP: 2.8cm. (iv) MOTA: 100%, MOTP: 1.6cm.

Figure 3.5: Assessing tracking performance evaluation and types of errors. The markers
show sparse keyframes for visualization purposes. Best viewed in color. (i) A
perfect tracking example. (ii) A delayed detection example. (iii) A good
detection but inaccurate tracking example. MOTP error is not extremely high
because it evaluates the precision of the good tracked frames (6% of the frames).
(iv) A good example. The object is detected and tracked over time. The object
is detected and tracked over time. Tracking errors accumulated slowly.

3.5 Discussion and Limitations
In this chapter, we developed a data generation toolkit and established an evaluation

protocol for benchmarking the 4D reconstruction task and resolving the lack of

training data issue. We will demonstrate that our dataset can be used to learn data

priors for object tracking in Chapter 4 and servers as a test set for evaluation purposes

in Chapter 5. We proposed a simple but efficient toolkit. However, it has three main

limitations:

• Photo-realistic rendering. Our toolkit is built using OpenGL rendering API,

providing real-time rendering performance. However, it doesn’t render shad-

ows, which creates a gap between our synthesized data and real-world envi-

ronments. Automatically placing indoor lighting and integrating a ray tracer

will be useful extensions to our toolkit.

3.5. Discussion and Limitations 39

• Non-rigid motion. Our toolkit cannot produce non-rigid motion such as

human activities. This problem is still an open research problem because

synthesizing non-rigid motion requires not only collision detection but also

skeleton information and a posture dataset.

• Multi-objects interaction. We do not support object-to-object interaction

as it is hard to define a meaningful multi-object movement through a set

of heuristics. Designing a plausible multi-object event will require manual

annotations, which is hard to scale up and generate a large dataset for training

purposes.

Chapter 4

Supervised Dynamic Objects

Reconstruction

4.1 Introduction

Reconstructing moving objects requires detecting the moving objects and estimating

their motion. One common strategy in this regard is utilizing an instance segmenta-

tion network [61, 140, 141, 142], which infers a mask for each known object (i.e., the

object exists in the training data) and tracks the predicted masks in a frame-by-frame

fashion [37, 38, 39]. However, robust object tracking is still challenging due to

occlusions caused by the monocular input setting and object movements.

This chapter presents the idea of inferring unseen surfaces to track occluded

moving objects. We first assume that the moving objects belonged to one of the

categories in our training set. Then, we develop a joint optimization framework

with differentiable pose optimization to jointly infer object centers, bounding boxes,

canonical coordinates, and object poses, as shown in Figure 4.1. The object center

and bounding box predictions allow us to crop object-related features. The canonical

coordinates map the input space to object space, being useful for merging the

object’s observations across time. Our approach differs from the recent object SLAM

systems [14, 37, 81] because we consider the observed geometry and utilize geometry

priors to track moving objects.

It must be here acknowledged that this is a joint project with Norman Muüller

4.2. Method 41

Figure 4.1: The illustration of our joint optimization formulation. Given a sequence of
RGB-D frames, our system detects instances, completes their implicit surface,
and infers the object’s canonical coordinates as correspondences. Our network
is jointly trained with differentiable pose optimization to achieve multi-object
tracking.

from the Technical University of Munich. I contributed to data generation, real-world

data recording, implementing baselines, setting up the comparison methods, and the

method discussion.

4.2 Method
An overview of our network architecture for joint object completion and correspon-

dence regression is shown in Figure 4.2. Our method takes as input an RGB-D

sequence and learns to detect object instances, complete occlusion object geometry,

and infer object coordinates as the correspondences between an object to its canoni-

cal model. We then associate the predicted objects across frames to obtain object

tracking and reconstruction over time.

4.2.1 Object Detection

Each RGB-D frame of the sequence is represented by a sparse grid Si of surface

voxels and a dense truncated signed distance field (TSDF)Di. Following the standard

volumetric fusion [4], an input RGB-D frame is back-projected to 3D space to obtain

a partial TSDF grid using the observed depth values and the camera pose. We follow

the state-of-the-art 3D object detection networks [61, 140, 141, 142] and employ a

multi-task loss [140, 141] with a sparse 3D convolutional auto-encoder to encode

4.2. Method 42

Figure 4.2: Overview of our network architecture. From an input frame, we employ
sparse and dense backbones to extract geometry features. The extracted features
are used to detect object centers, complete unseen geometry, and generate
correspondence prediction. By hallucinating the occluded surface and using
them to associate objects between frames, our method achieves robust dynamic
object tracking in high-dynamic scenes.

surface information. The sparse encoder compresses the input to 1/16 of the original

resolution, and the decoder upsamples the latent grids back to the input resolution.

The output sparse features grid F is then fed to the multi-head detection module. The

detection module infers objectness O(v), center coordinates C(v), object bounding

box D(v), and semantic labels S(v) on each voxel v. We supervise our detection

module using the loss function Ldetection, such that:

Ldetection = λ1Lo +λ2Lc +λ3Ld +λ4Ls (4.1)

where λ is the weighting scalar. The individual terms are defined as:

Lo = BinaryCrossEntropy(O,Ot) (4.2)

Lc =

1
2(C−Ct)2 for ∥C−Ct∥ ≤ 0.5,

∥C−Ct∥− 1
2 , otherwise

(4.3)

Ld =

1
2(D−Dt)2 for ∥D−Dt∥ ≤ 0.5,

∥D−Dt∥− 1
2 , otherwise,

(4.4)

Ls = CrossEntropy(S,St) (4.5)

4.2. Method 43

where Ot , Ct , Dt , and St represent ground truth objectness, centers, extents, and

semantic labels. The objectness O is represented as a binary mask indicating the

object surface. The object center C and the bounding box D are represented as the

relative offsets and extents of the voxel v. We use smooth L1 loss [140] for center

and extent regression. Note that the normalization constants and summation are

omitted here for clarity.

Next, we apply mean-shift clustering (20 steps, with 8 voxel radius) to extract

object proposals. We only perform clustering on the voxels having positive objectness

scores and remove small clusters containing less than 50 elements. We estimate

the remaining clusters’ bounding boxes using averaging and extract their centers,

geometry, and semantic labels using majority voting.

4.2.2 Object Completion and Correspondences

Given the inferred object proposals, we perform Sparse-to-Dense feature fusion

by cropping the corresponding sparse features fk from F and the dense TSDF grid

D. We fuse sparse features with dense TSDF information by adding TSDF values

over the feature channels. The fused features grid f ′k of the proposal k is first down-

sampled by a factor of two and then fed into a dense backbone using 3D convolutions

to obtain object features f o
k . Using the predicted dense features, we predict unseen

object geometry mk through another series of dense 3D convolutional layers. The

completed geometry mk is represented as an occupancy grid and supervised using

binary cross-entropy loss:

Lcomp = λcompBinaryCrossEntropy(mk,mt
k) (4.6)

with mt and λcomp denoting a ground truth occupancy grid and a weight, respectively.

Leveraging the same object feature f o
k , we employ a similar 3D convolutions

network to infer object coordinates ck. Inspired by the normalized object coordinate

space (NOCS) [57], we define the object coordinates in the object’s canonical space

4.2. Method 44

and supervise the coordinate regression by ℓ1 loss.

Lnoc = λnoc
∥∥ck− ct

k

∥∥ (4.7)

with ct denoting the target correspondences in R3 and λnoc denoting a weight. Com-

bining both mk and ck, we can now perform pose estimation with unseen geometry

and bypass correspondence searching.

4.2.3 Differentiable Pose Optimization

We solve object scale ν∗, rotation R∗, and translation t∗ using differentiable Pro-

crustes analysis, which minimizes the point-to-point distance between the predicted

object coordinates Po and their predicted canonical representation Pn:

ν
∗,R∗, t∗ := argmin

ν∈R+,R∈SO3,t∈R3
∥Po− (νR ·Pn + t)∥2. (4.8)

The closed-form solution [143] of this objective function can be obtained

through a differentiable SVD of (Po−µo)(Pn−µn)
T =UDV T , where µi and σi are

the means and variances of Pi, i ∈ {o,n}, and we have the optimal

ν
∗ =

1
σn

tr(DS),R∗ =USV T , and t∗ = µo−ν
∗R∗µn, (4.9)

where S = diag(1,1,det(UV T)).

To build a joint optimization pipeline, we supervise the estimated rotation matrix

using a Frobenius norm loss, the predicted scale using an ℓ1 loss, and the translation

using an ℓ2 loss, as:

Lpose =λRLR +λνLν +λtLt

=λR
∥∥R−Rt∥∥

F +λν

∣∣ν−ν
t∣∣+λt

∥∥t− tt∥∥
2 (4.10)

Similar to NOCS [57], we avoid the rotation ambiguity of symmetric objects by

taking the minimum rotation error between the predicted rotation and the possible

valid rotations. To stabilize training, we use ground truth geometry at training time

4.2. Method 45

and the predicted geometry at the test time.

Finally, our multi-task loss is defined as

min
θ

Ltotal(θ) = Ldetection +Lcomp +Lnoc +Lpose. (4.11)

The weights λo, λc, λd , and λs of the detection loss Ldetection are set to 1.0, 0.1, 0.1,

and 1.0, respectively, because object centers and bounding boxes are calculated in

voxel units. The completion weights λcomp and the correspondences weights λnoc

are set to 4, and the weights λR, λν , and λt of the pose loss Lpose are set to 0.2, 0.1,

and 0.1, respectively, in order to balance each term.

4.2.4 Object Tracking and Reconstruction

To achieve multi-object tracking and reconstruction, we associate object proposals in

each frame and map them into their canonical representation using a 643 resolution

grid. Specifically, we construct object tracklets frame-by-frame by computing the

pairwise distance from a detected object to all object proposals in a new frame

using the predicted bounding boxes and 3D IoU. Then, we use the Hungarian

algorithm [144] to find the best matches and filter outlier proposals by setting a 3D

IoU threshold (set to 0.3). Non-matched object proposals will be seen as a new

object and initialize a new tracklet.

We fuse the object’s canonical model by maintaining a moving average between

the current model and the new information, similar to volumetric fusion but oper-

ating with occupancy. We observed associating object proposals in their canonical

space (through the predicted correspondences) leads to an improvement in matching

accuracy and tracking, as demonstrated in the evaluation section later (Section 4.3).

4.2.5 Implementation Details

We implement our network using PyTorch and its differential SVD function. We

run our experiments using a single Nvidia GeForce RTX 2080 GPU. We employ

an Adam optimizer with a learning rate of l.0e-3 and a batch size of 2 due to the

limited GPU memory. We set the number of object proposals to 10 and select the

weights for each loss using the validation split. This weight-tuning step is essential

4.3. Evaluations and Results 46

Figure 4.3: Our network architecture. Dotted lines represent skip connections. Green-
colored boxes mean outputs.

to balance the multi-task loss. Our network requires two-stage training. First, we

train our detection network for 100K iterations. Then, we train our full model for

250K iterations. The total training time is around 3 GPU days. In Figure 4.3, we

provide the details of our network architecture.

4.3 Evaluations and Results
We evaluate our method against the existing methods (MaskFusion [37] and MID-

Fusion [38]) on our DYNSYNTH dataset consisting of 3,300 scenes (97,626 frames

in total). We split the scenes into 2900/300/100 as training/validation/test and predict

10 object classes, including common indoor furniture, such as bed, cabinet, and chair

class. We also conduct evaluations on real-world scans, including both dynamic

and static environments. We record real-world dynamic events using a Structure

Sensor1 mounted to an iPad and provide a qualitative comparison against the related

methods. We evaluate our pose estimation accuracy using static data. To create real-

world training data, we combine the ScanNet [12] dataset with the Scan2CAD [42]

annotations. As the ScanNet dataset is recorded in 30 FPS, we sample every 20

frames and generate 114,000 frames in total, and we employ the official splits for

1https://structure.io/

4.3. Evaluations and Results 47

Figure 4.4: Qualitative comparison on DYNSYNTH. Qualitative comparison to state
of the art on DYNSYNTH test sequences. Our method inferring the occluded
surface maintains a better association and tracking over time leading to robust
object tracking, e.g., our estimated trajectory is closer to ground truth as shown
from the top-view (t3). The colored lines show the estimated object trajectories.

training, validation, and testing (944/149/100). To measure the performance, we use

the evaluation metrics introduced in Section 3.4 and report multiple object tracking

accuracy (MOTA) on test sequences.

4.3.1 Comparison to State of the Art

MaskFusion is a surfel-based tracking and reconstruction method built on ElasticFu-

sion [83] and MaskRCNN [58]. MaskFusion employs a segmentation refinement

4.3. Evaluations and Results 48

Table 4.1: Evaluation of MOTA on DYNSYNTH. Our end-to-end network jointly infers
unseen geometry and object correspondences leading to notable performance
improvement over the state-of-the-art methods and baselines, including disabling
object completion (no comp.) and only using IoU-based matching (no corr.).
Please note that our method has lower accuracy for large objects such as beds and
bookshelves due to it is hard to aggregate their features using sparse convolution.

MOTA(%) bathtub bed bookshelf cabinet chair desk sink sofa table toilet seq. avg
MaskFusion [37] 27.7 76.4 25.4 24.4 25.3 33.8 39.2 5.7 45.8 27.7 17.2
MID-Fusion [81] 55.8 100 94.7 21.7 38.6 45.8 63.9 9.6 53.8 35.7 30.1
F2F-MaskRCNN 25.7 100 73.7 15.2 28.3 79.2 73.2 21.2 59.6 33.9 35.8
(no corr., no comp.) 39.8 54.5 22.6 21.8 27.2 37.5 49.5 13.8 60.4 36.7 29.3
(no corr.) 39.8 54.5 24.0 23.2 32.2 37.5 50.3 13.8 61.8 38.1 30.6
(no comp.) 24.9 45.5 50.0 26.1 42.3 66.4 63.3 18.0 63.2 38.0 35.6
Ours 24.9 45.5 50.1 26.1 51.8 66.4 63.3 17.3 67.4 49.0 42.3

step to alleviate occlusion, but it cannot handle non-convex surface and disconnected

segments, which leads to poor object association and tracking. Additionally, the

weighted surfel tracking scheme employed by MaskFusion requires a static ini-

tialization period and is unstable to handle high-dynamic sequences, as shown in

Table 4.1.

MID-Fusion is a volumetric fusion method using Octrees and MaskRCNN [58].

MID-Fusion achieves better MOTA compared to MaskFusion because of its vol-

umetric representation, which alleviates the occlusion problem and the low recall

issue of MaskRCNN through back-projecting the consolidated models. However, it

cannot associate with highly occluded objects, such as the qualitative examples in

Figures 4.5 and 4.4.

We also implement a frame-to-frame tracking method using iterative closest

point (ICP) [145, 146] with the segmentation predicted by MaskRCNN [58], named

F2F-MaskRCNN. As ICP has a correspondence searching step instead of the projec-

tive mapping strategy used by real-time methods (MID-Fusion and MaskFusion),

F2F-MaskRCNN performs better under fast object motion. However, it cannot

resolve occlusion or weakly constrained geometry [147], such as the chair objects in

Figure 4.5.

Compared to the above methods, our approach is the only method inferring the

unseen geometry to perform object association and tracking, which achieves the best

mean MOTA in Table 4.1.

4.3. Evaluations and Results 49

Table 4.2: Evaluation of object pose estimation on individual RGB-D frames. Predict-
ing the underlying geometry of each object enables more accurate object pose
estimation in each frame.

DynSynth ScanNet+Scan2CAD
Median
Rot. errors

Median
Transl. errors

Median
Rot. errors

Median
Transl. errors

Ours (no comp.) 7.4◦ 15.4 cm 16.6◦ 22.0 cm
Ours 5.7◦ 12.3 cm 13.3◦ 18.3 cm

4.3.2 Does Object Completion Help Tracking?

We validate our key hypothesis through ablation studies in Table 4.1. When object

association is calculated using 3D bounding box overlap, our completion variant (no

corr.) slightly improves tracking performance by 1.3% mean MOTA than no comple-

tion variant (no corr., no comp.). When objects are matched based on correspondence

prediction without completion prior (no comp.), it further enhances tracking per-

formance by 5% mean MOTA. Our full model achieves the best performance via

utilizing object completion and correspondence prediction to associate and track

objects leading to 42.3% mean MOTA. In addition, we evaluate our pose estimation

performance on DYNSYNTH and ScanNet in Table 4.2. Our evaluation results on

both datasets also confirm our hypothesis that object completion can improve object

tracking and pose estimation.

4.3.3 Real-world Dynamic RGB-D Sequences

To fill the synthetic-to-real gap, we pre-train our network using our synthetic DYN-

SYNTH dataset. Then, we finetune our network on a static real-world dataset using

ScanNet with Scan2CAD annotations. As we do not have ground truth information

for real-world dynamic data, we qualitatively evaluate our method’s performance

against comparing methods in Figure 4.5. Our method outputs more reasonable

object trajectories and provides visually plausible object reconstruction.

4.3.4 Detection and Completion Evaluation

We evaluate our detection and completion module on both DYNSYNTH and Scan-

Net+Scan2CAD in Table 4.3. For detection, We follow the standard evaluation

protocol [58] and report mean average precision (mAP) at a 3D bounding box IoU

4.3. Evaluations and Results 50

Figure 4.5: Qualitative comparison to state of the art on real-world sequences. Our
method recovers full object trajectories and accurate object shapes over time.
The colored lines show the estimated object trajectories.

4.4. Discussion and Limitations 51

Table 4.3: Evaluation of 3D detection and instance completion. The real-world dataset
(ScanNet+Scan2CAD) is harder than the synthetic dataset (DYNSYNTH). Big
objects such as bookshelves are harder to detect for our sparse convolutional
network.

3D Detection
bathtub bed bookshelf cabinet chair desk sink sofa table toilet mAP

DYNSYNTH 49.3 38.4 12.5 6.3 44.1 46.8 27.6 32.3 38.4 63.1 35.8
ScanNet+Scan2CAD 38.7 - 12.9 4.6 41.2 - - 26.4 29.2 - 25.6

Instance Completion
bathtub bed bookshelf cabinet chair desk sink sofa table toilet mAP

DYNSYNTH 34.8 23.6 12.7 11.4 38.4 34.1 32.2 41.1 29.9 52.6 31.1
ScanNet+Scan2CAD 20.4 - 8.6 12.7 24.4 - - 23.9 12.2 - 17.1

of 0.5. For completion, we also report mean average precision (mAP) at mesh

IoU of 0.25. As we expected, real-world data is more challenging than synthetic

data due to the variance of object appearances and geometry is larger. Our sparse

detection backbone [61, 142] has an inherited limitation on detecting and regressing

big objects such as beds, which is also the bottleneck of our tracking performance,

as shown in Table 4.1.

4.4 Discussion and Limitations
In this chapter, we propose a joint optimization framework to track and reconstruct

rigid objects in RGB-D sequences. We demonstrate that the completion and corre-

spondence priors can help object tracking and provide more accurate information for

associating objects across frames alleviating the occlusion problem caused by view

changes. Our approach also has some limitations, as discussed next.

• Reconstruction quality. While our method improves the reconstruction

quality, several open research problems remain unsolved, including capturing

high-frequency geometric details, thin structures, and glass surfaces. Jointly

modeling unseen geometry as well as addressing these issues is worth explor-

ing.

• Loop closure. Handling long-term tracking is another issue since tracking

errors will be accumulated. Integrating traditional feature descriptors or a

learning-based visual tracker will further improve tracking performance.

4.4. Discussion and Limitations 52

• Non-rigid motion. We do not reconstruct non-rigid objects, which requires a

lightweight architecture to model complex non-rigid deformation. Note that

our dense backbone already consumes a large portion of the GPU memory.

• Object association. We employ the Hungarian algorithm [144] to solve object

association. However, it is non-differentiable. Modeling object association

through a transformer network or a graph attention network will be interesting.

Chapter 5

Unsupervised Dynamic Scene

Reconstruction

5.1 Introduction

Acquiring dynamic indoor scenes with rigidly-moving objects and a non-static cam-

era is an ill-posed problem due to the dependency on tracking and segmentation.

Previous work commonly employs the tracking-by-detection paradigm by discov-

ering foreground objects using an instance segmentation network [37, 38, 39] and

motion residuals [14] to resolve the cyclic dependency on rigid object tracking and

segmentation. However, using the segmentation prior is restricted to the known ob-

ject classes, and the motion cues can be ambiguous when the camera has non-static

movements.

Our key idea is to discover the foreground object through the accumulated

free space information from multiple frames, which has been shown as an effective

signal for outlier removal [22]. The free-space grid and the background model are

used to separate moving elements using a frame-to-model back projection of the

input frames. Instead of performing an expensive global optimization for solving

a complete background model, we employ a delayed process, similar to the batch

processing approach [11], to regularize the problem, as shown in Figure 5.2.

We segment out pixels of humans in image space to facilitate real-world scan-

ning scenarios with an operator interacting with moving objects. The prediction

5.2. Method 54

Figure 5.1: RigidFusion’s 4D reconstruction results. Given a scene with rigidly moving
objects (rendered with cyan and yellow), RigidFusion performs 4D reconstruc-
tion from RGB-D frames. We present a novel segmentation-by-reconstruction
framework that factorizes camera motion (shown in green) and fused object ge-
ometries along with their respective motion (shown in brown/purple) over time
from raw RGB-D scans. Two novel-view reconstructions from two timesteps
(shown in blue/orange) are shown in the left columns.

of human segmentation may be inaccurate or missing. To purge outlier pixels, we

utilize free space information in the foreground model. Aside from this off-the-shelf

human segmentation method, our method requires no learning or training data, is

agnostic to the underlying volumetric fusion framework, and runs at interactive

frame rates after the initialization step.

In addition to real-world scanning cases for qualitative evaluation and com-

parisons on established datasets [14, 139], we employ our DYNSYNTH dataset, as

presented in Chapter 3. Our synthetic dataset provides a training set for fine-tuning

the state-of-the-art segmentation network [37] and a test set we used for quantitative

evaluation. In a series of experiments, we show that the proposed method, Rigid-

Fusion, outperforms existing state-of-the-art methods by a significant margin and

handles significantly more challenging real-world cases.

5.2. Method 55

Figure 5.2: RigidFusion’s input buffer. Our method runs at 1 fps with a delay of ∆ frames
for foreground reconstruction. The short delay between the background and
foreground module allows the system to accumulate more free space informa-
tion.

5.2 Method

5.2.1 Overview

Our method takes as input a sequence of RGB-D frames {Fi} captured using a

moving camera recording a dynamic scene with rigidly moving object(s). We

assume the setup to satisfy two conditions: dense recording, i.e., the input frames

come as a continuous RGB-D video; and objects either remaining static or rigidly

being moved, one at a time, by a human operator. Note that although we assume a

single object to be moving at any time, we do not require any object segmentation

priors, such as in MaskFusion [37]. As output, we produce a 4D reconstruction in the

form of consolidated static background mesh, camera trajectory, and the consolidated

foreground object meshes along with the respective object trajectories over time.

In order to break the cyclic dependency between rigid tracking and motion

segmentation, RigidFusion proceeds in the following steps: (i) background re-

construction and camera estimation, (ii) asynchronous foreground reconstruction,

(iii) optional post-processing, and (iv) mesh extraction. We now describe the individ-

5.2. Method 56

Figure 5.3: RigidFusion’s system diagram. (a) The background model and input depth
at the early frame. The human regions are masked out using human detection.
(b) The background model and input depth at the time i (equal to j+∆). (c)
The foreground model and the unknown segmentation u j. (d) The background
model is reset (due to the status change of the tracked object triggering the
model de-activation). (e) The foreground models and the unknown segmentation
at the later frame.

ual steps.

5.2.2 Background Reconstruction and Camera Estimation

Human Detection and Masking. Since we focus on capturing background and

rigidly moving objects, we first perform human detection in each frame Fi. We apply

a DensePose [148, 149] detector to acquire a human mask. We reset the depth of

the pixels under the detected mask to zero for each frame to serve as the input for

subsequent processing. This masking stage not only avoids the existence of non-rigid

objects interfering with the camera tracking but also removes the requirement that

humans should continuously move, as commonly assumed in [22, 31].

Free-Space Aware TSDF Fusion. To reconstruct a (static) scene, we employ

5.2. Method 57

volumetric fusion using sparse voxel hashing [4, 8]. Recall that in the standard

implementation, only the voxels near the recorded surface are stored, i.e., a truncated

signed distance field (TSDF) is progressively built. Additionally, RigidFusion

maintains, using voxel hashing, free space counts to identify free space (outside)

voxels, i.e., the voxels that have been frequently observed and have positive distances

larger than the truncation margin. An illustration is shown in Figure 5.4, where

red/blue cells denote negative/positive SDF values (underlying surface marked in

green) that are within the truncation range, and gray cells denote outside free cells.

We use this free-space information to prevent foreground signals from polluting the

background model. The pseudo-code of our proposed fusion method is listed in

Algorithm 1.

Camera Tracking Optimization. In our tracking formulation, we use 6D vectors ξ

∈ se3, encoded as instantaneous velocity using Lie algebra, to represent a 4×4 rigid

transformation T . To transform a spatial point, we convert ξ to a 4×4 transformation

matrix using exponential map, denoted by exp, as described in [6, 150]. To perform

camera tracking, we employ frame-to-SDF registration [22, 151]. Given the input as

an RGB-D frame Fi at time i, we solve for the best increment transformation ξ to

align the input frame to the TSDF model as,

T(c)
i = exp(ξ) ·T(c)

i−1, (5.1)

where T(c)
i represents the estimated camera pose at frame i. Our tracking objective

E includes both geometry and color intensity cost functions and is defined as

E(ξ) = ESDF(ξ)+αEI(ξ), (5.2)

Figure 5.4: TSDF illustration. The green curve, gray, blue, and red cells represent the
surface, free space, positive and negative truncation regions, respectively.

5.2. Method 58

where α is a scalar weight for balancing the two terms. The geometric cost term

ESDF minimizes the signed distance value of the transformed input point set P, as

any surface voxel has zero signed distance values, and hence a perfectly aligned

point set should have a zero residual. The input points are firstly transformed into

the world space using the accumulated pose T(c)
i−1.

ESDF(ξ) = ∑
p∈P

(ψg(T
(c)
i p))2 = ∑

p∈P
(ψg(exp(ξ) ·T(c)

i−1 p))2, (5.3)

where ψg represents a signed distance function ψg : R3→ R that takes a 3D point and

returns a truncated signed distance value from the TSDF model. The photometric

cost term EI minimizes the difference of color intensity between the transformed

input points p ∈P to the corresponding voxels in the model, where I represents the

input intensity map by converting the input RGB to relative luminance as,

EI(ξ) = ∑
p∈P

(ψI(T
(c)
i p)− I(p))2. (5.4)

Here, ψI represents a color interpolation function ψI : R3→ R, which takes a point

and returns an interpolated color intensity from the TSDF model. To optimize our

objective (5.2), we apply a Gaussian Newton solver while linearizing the objective

around the initial ξ .

Background Model Update. We take the estimated pose and transform the input

frame to integrate the new information. Note that we prevent any surface (depth

pixels) from being integrated into free voxels. Please refer to [4] and Algorithm 1.

5.2.3 Asynchronous Foreground Reconstruction

We regularize the foreground segmentation problem by assuming only one rigidly

moving object at any point. Note that by freezing the previously detected object, our

proposed scheme still supports capturing multiple moving objects (by detecting a

new moving object). We provide two examples in Figure 5.6, where we employ a

simple heuristic to deactivate previous-moving foreground objects and detect a new

object.

5.2. Method 59

Segmentation by Reconstruction. We define the unknown foreground segmen-

tation u j at the time j as the depth pixels that unproject to the free space of the

background model. We apply connected component filtering to remove small blobs

and initialize a new active object if the area of u j is larger than a threshold. We

empirically set the threshold to 1% of the image size. Note that remaining false

positives are later removed in our foreground deactivation step (see later) due to

the lack of correspondences detected using tracking failures. Compared to solving

segmentation using color (2D) information, our approach utilizes the space infor-

mation (3D) that resides in the background model and therefore is able to extract

object segmentation without prior knowledge. We provide the pseudo-code of our

segmentation-by-reconstruction step in Algorithm 2.

Delayed Processing. For motion segmentation, a frame-to-frame approach, such

as [14, 31], cannot guarantee the observed motion signals are sufficient because an

object may move slowly. Instead, we delay foreground tracking by a pre-defined

window size ∆ (60 frames), leading to a delayed reconstruction in the foreground

modules at run-time to gather more background information, as shown in Figure 5.2.

In other words, when the foreground module is processing the frame at the time i,

the background module has processed the frames until the time i+∆. Hence, the

extracted unknown foreground segments u j at the time j can directly access the

future background model during the segmentation-by-reconstruction step. This step

is similar to doing scene completion during registration in the sense that the fore-

ground module can use a completed background model. Note that our asynchronous

processing does not add any extra memory overhead and only has a short delay in

the beginning.

Foreground Tracking and Reconstruction. To estimate the pose Tk
j of the active

object k at the time j, as well as reconstruct its geometry, we apply the same

tracking optimization and free-space aware fusion used in the background module

(see Section 5.2.2 and Algorithm 1). Note that, during foreground tracking, we still

perform frame-to-SDF tracking without an instance mask since the non-foreground

pixels will receive zero gradients in the foreground TSDF model.

5.2. Method 60

Algorithm 1: Free-space Aware TSDF Fusion
Input: a RGBD frame, TSDF, FreeGrid, instance mask u, camera frustum η

1 for each voxel v ∈ TSDF∪η do
2 c← the free-space count of v in FreeGrid
3 C← the free-space threshold
4 sdf ← the signed distance value of v
5 w← the weight of v
6 v2d ← projected image coordinates on the input frame
7 dist ← the signed distance from v to the back-projected depth pixel at v2d

/* reject integration and denoise */

8 if (c≥C) then
9 if w > 0 then

10 remove the voxel v
11 end
12 continue
13 end

/* integration */

14 isForeground← u(v2d)
15 if (isForeground AND |dist|< truncation) then

/* In truncation, do standard integration */

16 update the w and sdf using running mean as in [4]
17 end
18 else if (dist ≥ truncation) then

/* In free space */

19 c← c+1
20 end
21 else

/* In occluded space */

22 continue
23 end
24 end

Handling Multiple Objects by Deactivation. In RigidFusion, we assume multiple

objects do not move simultaneously. We deactivate any active object under any of the

following conditions: (i) an active object becomes static over a period of time (i.e.,

accumulated pose difference is less than 1e-4 over the last ∆/2 frames); (ii) an active

object moves out of the camera view; or (iii) an active object cannot be successfully

tracked for more than ten frames.

Once a deactivation event is triggered, we temporarily reset the background

model (i.e., allocate a new TSDF model) and freeze foreground detection for ∆

frames to prevent inactive objects from being re-detected in the unknown segment

5.2. Method 61

Algorithm 2: Segmentation by Reconstruction
Input: an input depth frame D, a human detection mask h, background model,

camera pose T(c)
j

Output: instance mask u j

1 u j ← Initialize a 2D mask with false values
2 C← the free-space threshold
3 set the human segments’ depth to zero values in D using h
4 dmax ← the maximum depth value
5 FreeGrid← background model’s free-space grid
6 for each pixel at (x,y) ∈ input depth D do

/* skip invalid depth */

7 if (D(x,y) is 0 or D(x,y)> dmax) then
8 continue
9 end

/* back-project depth and transform to the world space */

10 p← T(c)
j · backproject(D(x,y))

/* query the background model */

11 c← FreeGrid (p)
/* valid check */

12 if (c >C) then
13 u j(x,y)← true
14 end
15 end

proposal u j.

5.2.4 Post-Processing

After processing all input frames, we can perform an optional post-process step (PS)

to optimize full 4D reconstruction. First, given the captured foreground models and

trajectories, we perform backward tracking for each object from its first detected

frame to the first frame. This step can recover some missing frames. Second, we

rebuild background reconstruction by using a high-resolution grid and re-optimize the

camera trajectory
{

T (c)
i

}
. During this optimization, the already inferred foreground

models are used to mask out foreground pixels by depth ray-casting. Thus it improves

the camera tracking accuracy. We provide ablation studies of this step in Tables 5.1

and 5.2.

5.3. Evaluations and Results 62

5.2.5 Mesh Extraction

To output surface reconstruction, we perform Marching Cube on each model and

extract a 3D mesh along with its corresponding trajectory.

5.3 Evaluations and Results

We compare RigidFusion with different state-of-the-art reconstruction methods, in-

cluding VoxelHashing (VH) [8], BundleFusion (BF) [11], StaticFusion (SF) [31],

ReFusion (RF) [22], CoFusion (CF) [14], MaskFusion (MF) [37], EM-Fusion

(EM) [39], and MID-Fusion (MID) [38] on both synthetic and real-world datasets.

We use the above abbreviation of comparison throughout the rest of this chapter.

To evaluate with the prior-based approach [37], we fine-tune MaskRCNN on

our DYNSYNTH dataset. Our trained model reaches 70.2 mean average precision

(mAP) on instance segmentation task, which shows the model is capable of providing

reasonable segmentation input. For real-world data, we use the pre-trained model on

the COCO dataset [125] and manually select the semantic class of moving objects

for each testing example.

5.3.1 Computational Time and Implementation Details

We measure the computational time of RigidFusion for processing a single frame

in each module, see Figure 5.3, as follows - Human detection: 0.38s. BG tracking

and model updating: 0.07s. FG tracking and model updating: 0.10s. Segment-

by-Reconstruction takes: 0.44s. Due to the asynchronous process, see Figure 5.2,

our system has (0.38+0.07)×∆ seconds delay at the beginning (including human

detection and background tracking). Each frame contains an active foreground

object takes around one second (0.38+0.07×2+0.44) to process. The post-process

step in Section 5.2.4 takes 0.45 second for each frame. We summarize the system

parameters in Appendix B. All the experiments are performed on a desktop machine

with Intel Core i7-6700K 4.00 GHz CPU, 32GB memory, and GTX 1080Ti GPU.

5.3. Evaluations and Results 63

(a) GT (b) CF [14] (c) MF [37] (d) Ours

Figure 5.5: Qualitative evaluation on DYNSYNTH. Note that the moving object is po-
sitioned at the first detected frame. In contrast to ours, both CoFusion and
MaskFusion result in ghosting in the background due to delayed moving object
detection.

Table 5.1: Quantitative evaluation of the background reconstruction and tracking on
DYNSYNTH. Our method shows the best reconstruction quality and tracking
accuracy.

Object
Priors

Background
Reconstruction Tracking

F1 R P CD (m) ↓ MOTA (%) MOTP (m) ↓
VH [8] no 0.58 0.66 0.52 0.15 49 0.024
BF [11] no 0.44 0.61 0.37 0.18 38 0.017
RF [22] no 0.64 0.67 0.62 0.09 66 0.023
CF [14] no 0.73 0.72 0.74 0.07 50 0.030
MF [37] yes 0.67 0.70 0.64 0.08 47 0.030

Ours w/o PS no 0.74 0.69 0.79 0.08 68 0.025
Ours no 0.86 0.83 0.90 0.04 70 0.025

5.3.2 Evaluation on DYNSYNTH Test Set

In Table 5.1, Table 5.2, and Figure 5.5, we conduct a quantitative and qualitative

evaluation on our synthetic dataset along the two main axes: reconstruction and

tracking, as introduced in Section 3.4. The employed metrics measure the accuracy

and the completeness of the reconstruction as well as the tracking performance.

Background Tracking and Reconstruction. In Table 5.1, we evaluate different

methods’ background tracking and reconstruction performance. VoxelHashing [8]

and BundleFusion [11] are designed for static scenes, which can be seen as a

performance reference. Their reconstruction and tracking performance are low due

to the existence of dynamic elements.

ReFusion [22] is a robust background reconstruction method and reaches a

F1 of 0.63 on background reconstruction and a MOTA of 66% on camera tracking.

ReFusion averages out foreground voxels in the TSDF model by additionally in-

tegrating free-space voxels and removes high residual pixels using a flood-filling

5.3. Evaluations and Results 64

Table 5.2: Quantitative evaluation of the foreground reconstruction and tracking on
DYNSYNTH. Overall, our method achieves a significantly lower miss-detection
ratio and better recall/outlier balance than the other approaches. Symbol ‘-’
denotes that the methods do not handle dynamic objects. Note that we do not
consider identity switches here because it is designed for re-identification instead
of acquiring a canonical model.

Object
Priors

Foreground
Reconstruction Tracking

F1 R P CD (m) ↓ MOTA (%) MISS(%) ↓ MOTP (m) ↓
VH [8] no - - - - - - -
BF [11] no - - - - - - -
RF [22] no - - - - - - -
CF [14] no 0.38 0.27 0.70 0.26 32 39 0.030
MF [37] yes 0.53 0.47 0.70 0.29 33 50 0.031

Ours w/o PS no 0.51 0.41 0.74 0.31 55 24 0.026
Ours no 0.56 0.44 0.88 0.13 59 13 0.025

algorithm. However, its performance is still affected by pixels from the foreground.

CoFusion [14] and MaskFusion [37] are state-of-the-art methods based on

ElasticFusion [83]. Interestingly, their MOTA for background tracking is 16-19%

lower than ReFusion. We found this is due to two reasons: The false positives of

the moving object detection remove many geometry signals for camera tracking.

And the weighting mechanism adapted from ElasticFusion prefers not to use newly

observed points.

RigidFusion achieves the best F1 (0.74) and MOTA (68%) on the background

tasks without performing the post-processing step (w/o PS, Section 5.2.4). This

is benefited from our aggressive outlier purging strategy (Section 5.2.2, free-space

aware fusion). With the post-processing step, our system’s performance can be

further enhanced by 0.12 on background reconstruction F1 and 2% on background

tracking MOTA.

Foreground Detection, Tracking, and Reconstruction. In Table 5.2, we evaluate

RidgidFusion’s foreground reconstruction, detection, and tracking accuracy against

other methods. To reconstruct foreground objects, moving object detection is es-

sential. This step is non-trivial because too many false positive detections not only

increase the computation costs but also remove the geometry signals for background

5.3. Evaluations and Results 65

tracking.

Both CoFusion [14] and MaskFusion [37] detect a new foreground object by

examining the estimated camera motion residuals. This approach’s major disadvan-

tage is being sensitive to the actual camera motion (moving direction and magnitude)

and the selection of the detection threshold. This causes a high missing detection

ratio (MISS) and makes these two methods require a static or slow camera setup.

This observation is also reported in the previous work [31].

MaskFusion utilizes a very good segmentation prior (73 mAP) and hence

achieves a higher recall and F1 on foreground reconstruction. However, semantic

segmentation does not directly solve motion segmentation. When motion segmen-

tation is the same as semantic segmentation input, such as TUM f3w sequences in

Table 5.5 (major moving objects are humans), MaskFusion has better background

tracking than CoFusion and achieves competitive performance as ReFusion [22].

Inversely, when motion segmentation is non-trivial, i.e., input masks may contain

static objects, such as the examples shown in Table 5.2 and Figure 5.5, MaskFu-

sion does not have performance gains on object tracking. Notably, RigidFusion’s

foreground miss detection is significantly lower than the comparisons (15% and

26% lower than CoFusion and MaskFusion). This is benefited by employing the

segment-by-reconstruction strategy, which is insensitive to the relative motion be-

tween the moving object and the camera. Hence, RigidFusion can detect foreground

quickly when both foreground and background have non-static movements. With the

post-process step (Section 5.2.4), the reconstruction F1 and MOTA can be enhanced

by 0.05 and 4%, respectively. In Figure 5.5, we show a qualitative comparison.

5.3.3 Evaluation on Real-world Data

Scenes with different levels of camera motion. We recorded four dynamic scenes

with different settings, including a small desktop scene with a near-static camera

and medium-scale scenes with non-static camera motions, using a Structure Sensor

developed by Occipital Inc. mounted to an iPad AIR2. The scene settings are

summarized in Table 5.3. We rank the ambiguity of the camera motion from low to

high using the estimated camera trajectories and the annotated foreground masks on

5.3. Evaluations and Results 66

the frame where a dynamic object appears or starts to move. In addition, to achieve

a fair comparison, we passed to other methods input frames with the human regions

masked out.

In Figure 5.6, we compare RigidFusion against CoFusion [14] and MaskFu-

sion [37]. In Table 5.4, we show the frame index of the foreground being detected

by each method and the corresponding delay frame number. The results of Scene

1 show when the camera motion is very small, both CoFusion and MaskFusion

can detect foreground objects within a short delay. When a camera has non-static

motion, as in Scene 2 to Scene 4, both CoFusion and MaskFusion suffer from

long-delayed detection causing severe errors in tracking and reconstruction. This

observation coincides with the evaluation results in Table 5.2, where both CoFusion

and MaskFusion suffer from high MISS ratios. RigidFusion produces significantly

better reconstruction results in all four examples, outputs visually completed object

trajectories, and maintains low detection latency, as shown in Figure 5.6.

Camera Tracking Accuracy. In Table 5.5, we carry out an evaluation on camera

tracking in dynamic scenes using the TUM RGB-D dataset, freiburg3, and report

ATE-RMSE. Note that this dataset contains many far-range pixels. RigidFusion’s

camera tracking is comparable to alternate methods, especially in high-dynamic

walking examples, although not the best.

What if the camera tracking fails? In this case, our method and all comparison [22,

14, 37, 39, 38] will fail to produce a reasonable reconstruction result since camera

tracking (or reconstruction) is used for identifying foreground objects.

Does our method mainly benefit from having the foreground movement as-

sumption? While the foreground movement assumption (i.e., objects do not move

simultaneously) helps to simplify the instance segmentation step, the evaluation

results in Section 5.3.2 and Section 5.3.3 show the major limitation of previous

work is the moving object detection step in scenes with moving cameras, i.e., when

to initialize the first foreground tracking and which pixels to group. The multiple

object association-and-tracking problem comes after a system having more than one

tracked foreground object. From Table 5.4 and Figure 5.6, we can see a long-delayed

5.3. Evaluations and Results 67

Scene 1

Scene 2

Scene 3

Scene 4

Input Depth CF [14] MF [37] Ours

Figure 5.6: Qualitative evaluation on real-world data. In each scene, the first row: full
4D reconstructions; the second row: foreground trajectories and reconstruction
results. The scene settings are analyzed in Table 5.3. The scenes are ordered
based on camera motion and the scene size. Our method can work on both
low-dynamic and high-dynamic settings and output plausible results.

5.4. Discussion and Limitations 68

detection, such as CoFusion’s result on Scene3, produces a noisy and rather partial

reconstruction.

5.3.4 Evaluation on CoFusion Dataset

In Table 5.6, we evaluate RigidFusion on the CoFusion’s synthetic data [14] and

report ATE-RMSE. For the Airship object in Room4, both MaskFusion [37] and

EMFusion [39] fail to associate segments across frames and output fragmented

trajectories. Compared to the other methods, RigidFusion consistently produces

better camera tracking and improves foreground tracking in Room4 sequence without

using object priors.

Tracking methods versus moving object detection methods. Table 5.6 shows that

the accuracy of the moving object detection step is more important than the underlay

tracking methods. Note that both CoFusion and MaskFusion use surfel tracking [83],

while EMFusion uses volumetric-based tracking but employs a similar moving object

detection step as MaskFusion using semantic priors. EMFusion utilizes its volumetric

model to improve semantic segmentation. Therefore its object tracking is better than

MaskFusion. However, EMFusion and MaskFusion still have similar error patterns

in camera tracking, and both have higher ATE-RMSE than CoFusion. In contrast,

RigidFusion employs the segment-by-reconstruction strategy and volumetric-based

tracking and achieves the best-in-class camera tracking performance.

What if our foreground movement assumption does not hold? RigidFusion

assumes foreground objects are not moving simultaneously. Our method will only

track the dominant foreground object if this assumption does not hold. One example

is the ToyCar3 sequence in Table 5.6. where the two cars move simultaneously, and

Car1 is the dominant foreground object.

5.4 Discussion and Limitations
In this Chapter, we develop an unsupervised reconstruction system for acquiring

both rigidly-moving objects and background. We demonstrate that our system can

successfully reconstruct objects and scene geometry in highly-dynamic scenes, which

was particularly challenging for the state-of-the-art methods.

5.4. Discussion and Limitations 69

Table 5.3: The analysis of our real-world examples. Each scene contains a different level
of dynamic, ordered from low to high. The motion residuals is calculated using
the estimated camera trajectory by running ReFusion [22]. When the camera
motion is large, the motion residuals become unreliable for segmenting moving
objects.

Scene1
(two objects)

Scene2
(two objects)

Scene3
(one object)

Scene4
(one object)

Scene size 2.4x0.6 m2 4.5x3.0 m2 4.3x2.2 m2 5.9x4.5 m2

Camera motion 2.7 cm/s 25.3 cm/s 10.5 cm/s 39.2 cm/s
BG’s median

motion residuals
4.32E-04 9.65E-05 1.22E-04 4.85E-04

FG’s median
motion residuals

9.70E-01 1.01E-04 1.43E-04 7.87E-04

Motion
ambiguity

Low Medium High High

First dynamic
frame / total frame #

11 / 350 134 / 635 26 / 270 1 / 209

Table 5.4: The evaluation of moving object detection. We show the number of delayed
detection frames (Delay #) using the output trajectories. Clearly, RigidFusion has
the lowest detection latency. Symbol ’n/a’ represents the object is not detected,
and ’-’ indicates there are no object 2.

Scene1
(two objects)

Scene2
(two objects)

Scene3
(one object)

Scene4
(one object)

FG ID
Detection
Methods

Delay # Delay # Delay # Delay #

CF [14] 11 27 145 144
MF [37] 11 12 120 21

Ours w/o PS 3 10 5 0
Object1

Ours 3 0 0 0
CF [14] 3 n/a - -
MF [37] 7 0 - -

Ours w/o PS 4 6 - -
Object2

Ours 3 0 - -

5.4. Discussion and Limitations 70

Table 5.5: Background tracking evaluation on TUM RGB-D dataset. Our method has
a slight performance drop due to our free-space aware fusion step remove some
geometry features in the latter frames. f3s and f3w represent sitting and walking
cases in freiburg3 respectively.

AT-RMSE (in cm)

Methods
Human
Priors

Object
Priors

f3s
static

f3s
xyz

f3s
halfsphere

f3w
static

f3w
xyz

f3w
halfsphere

SF [31] no no 1.3 4.0 4.0 1.4 12.7 39.1
RF [22] no no 0.9 4.0 11.0 1.7 9.9 10.4
CF [14] no no 1.1 2.7 3.7 55.1 69.6 80.3
MF [37] yes yes 2.1 3.1 5.2 3.5 10.4 10.6
MID [38] yes yes 1.0 6.2 3.1 2.3 6.8 3.8
EM [39] yes yes 0.9 3.7 3.2 1.4 6.6 5.1

Ours yes no 1.9 5.4 12.9 1.8 9.0 7.6

Table 5.6: Foreground tracking evaluation on CoFusion’s dataset. Symbol ‘†’ represents
the corresponding moving object is not detected. MaskFusion does not detect
Horse due to the delay detection and camera tracking drift, as reported in [39].
Our method does not detect Car2 and Horse due to they simultaneously move with
other objects, but our approach achieves the best tracking accuracy on Airship,
Car, and Camera.

AT-RMSE (in cm)

ToyCar3 Room4
Object
Priors Camera Car1 Car2 Camera Car Airship Horse

CF [14] no 0.61 7.78 1.44 0.93 0.29 0.96 5.8

MF [37] yes 20.6 1.53 0.58 1.41 2.66
6.46

(13.6 / 2.3 / 3.5) †

EM [39] yes 0.95 0.77 0.18 1.37 2.1
0.91

(0.6 / 1.4 / 0.8) 3.57

Ours no 0.46 1.9 † 0.58 1.0 0.55 †

5.4. Discussion and Limitations 71

Compared to Chapter 4, our method does not require pre-trained object priors,

and our segmentation-by-reconstruction strategy is more reliable for unseen objects.

On the other hand, for the common objects with lower variance in appearance and

structure, such as books and boxes, the supervised approach may exhibit higher

performance.

Our approach also has some limitations, as discussed in the following:

• Only allows one active object at a time. Although our method requires

this assumption to simplify the foreground detection step, we demonstrated in

Section 5.3.3 that our method can still successfully handle several real-world

examples since many dynamic events only have a single moving object at

a time. We believe this assumption can be relaxed by incorporating dense

tracking priors, a visual tracker, or a global optimization step to estimate the

number of objects. These ideas can be combined with TSDF representation

and formulate a robust multi-object SLAM solution.

• Object re-identification. Similar to Chapter 4, We do not handle object

re-identification, where an object may re-enter the scene or switch its motion

status (static or dynamic) multiple times. We believe this requires an efficient

scene representation and possibly can be combed with online learning methods

to build object identification at run-time.

• Large run time. As mentioned in Section 5.3, the major bottlenecks of our

system are the human detector [148], which we believe can be improved by

adapting a real-time human detector, and the segment-by-reconstruction step,

which can be sped up by using parallel processing on GPU as the volumetric

fusion step.

• Model size. We employ sparse voxel hashing to represent background and

object geometry on a commodity Nvidia GeForce 1080Ti GPU. The maximum

number of objects we can support is four in a medium size room. The tricky

part for memory management is that the object association step requires all

5.4. Discussion and Limitations 72

active foreground models to be alive on GPU. Further compressing model size

using neural networks or designing a novel object association algorithm will

be interesting future work.

Chapter 6

Neural Dynamic Scene

Representation

6.1 Introduction

Dynamic scene reconstruction and understanding from video capture have a long

history in content creation; It subsequently enables editing by replaying the con-

tent from novel viewpoints and allowing object-level modifications. The task is

particularly challenging in the dynamic context of moving and deforming objects

when observed through a moving (monocular) camera due to occlusion and the

large parameter space of non-rigid motions. Traditional approaches make simpli-

fications by assuming the scene to be static [4], focusing on a single deformable

object [15, 16, 18, 36], or requiring access to a variety of priors in the form of object

templates [46, 47], or deformable object models [43, 72, 152].

Neural Radiance Field (NeRF) [103], a recently developed neural representa-

tion, has provided a breakthrough in terms of producing highly photo-realistic (static)

representation, simultaneously capturing geometry and appearance from only a set

of posed images. A substantial body of work has rapidly emerged to extend the

formulation to dynamic settings [86, 87, 88, 89, 94, 153, 154], work with localized

representations for real-time inference [155, 156, 157, 158, 159, 160, 161, 162],

support fast training [163, 159, 160, 161, 164], and investigate applications in the

context of generative models [165]. However, the representations often lack inter-

6.1. Introduction 74

Input Monocular RGB-D Video

Learned
Renderer

Edited camera path
(Novel view)

Factorized Neural
Representation

Rendered Output

Neural background
+ camera path

Neural object #1
 + motion trajectory

Neural object #k
 + motion trajectory

User edits
object pose

GeometryDepth RGB

R
ec

on
st

ru
ct

io
n

N
ov

el
 v

ie
w

M
ov

e
ta

bl
e

+
hu

m
an...

...

Figure 6.1: Factored neural representation. We present an algorithm that directly factor-
izes raw RGB-D monocular video [25] to produce object-level neural representa-
tion with explicit motion trajectories and possibly deformation information. The
decoupling subsequently enables different object manipulation and novel view
synthesis applications to produce authored videos. We do not use any template
but instead use an end-to-end optimization to enable factorization. Note that the
human deforms/moves in this sequence.

pretability, require multi-view input, fail to provide scene understanding, and do not

provide object-level factorization or enable object-level scene manipulation.

We introduce factored neural representation (FactoredNeRF), a novel scene

representation using neural volumetric rendering that supports object-level geometry

reconstruction (including both rigid and non-rigid objects), interpretability, and edi-

bility while still capturing appearance details under object movement and viewpoint

changes. Compared to the recently developed neural dynamic scene representations

[166, 167, 92] that support appearance and view changes, our scene representation

supports not only novel view rendering but also outputs individual object geometry

instead of a single time-dependent foreground model. Further, our approach does

not require any object template, deformation prior, or pre-training object NeRFs.

Starting from an RGB-D monocular video of a dynamic scene, we demonstrate how

such a factored neural representation can be robustly extracted via joint optimization

by leveraging off-the-shelf image-space segmentation and tracking information. Fac-

torization is provided in the form of object-level neural representations, as well as

object trajectory and/or deformations.

Technically, we formulate a global optimization to simultaneously build and

track per-object neural representations along with a background model while solving

for object trajectories and a camera path. Further, we model deformable bodies

6.2. Image Formation Model 75

(e.g., a moving human) by adapting the learned neural representation over time. Our

proposed representation combines the advantages of object-centric representations

and motion tracking, thereby allowing per-object manipulation, without having to

pay the overhead of separately building object priors or requiring 3D supervision,

and naturally integrates information from a monocular input over time across the

neural representations to recover from occlusion. For example, Figure 6.1 shows

a factored representation obtained by our method, which operates on a monocular

RGB-D sequence [25] of 60 frames, along with some edits.

6.2 Image Formation Model
Before introducing the optimization formulation in Section 6.3, we present our image

formation model to produce a rendered image from a factored neural representation.

6.2.1 Volume Rendering

To render an image I from the given camera parameters Π (i.e., intrinsic parameters),

volume rendering [103, 122] maps each image pixel uv to form a camera ray r.

Points are sampled on each ray and sorted based on their depth values to produce

a rendered color C(r) as the integration of the sampled point colors {ci} weighted

by the corresponding point opacity {αi} and transmittance {Ti}. Note that samples

along a ray r := (o,d), going through point o along the direction d, are parameterized

as p(si,r) := o+ sid for increasing scalar samples si ∈ R+. Using the samples, we

discretize the continuous formulation using the quadrature approximation as:

C(r) := ∑
i

Tiαici

Ti :=
i−1

∏
j
(1−αi)

αi := 1− exp(−σiδi), (6.1)

where σi is the point density, and δi is the depth distance between two adjacent

samples. Recall that point opacity αi represents the probability of a ray stopping at the

point position p(si), while the transmittance Ti indicates the cumulative transmittance

6.2. Image Formation Model 76

before a ray hits the i-th sample point. Looping over all image pixels {uv}, we obtain

I :=R(Π, fθ ,{ruv}), where the function fθ , typically modeled by an MLP [103],

can be probed to produce density and color samples as fθ (p(si),r) := (σi,ci). Note

that only the color values are view-dependent.

6.2.2 Volume Rendering with Implicit Surface

Implicit surface representation, such as occupancy or signed distance field, can

also be used with volume rendering [123, 124, 168] and provides an inductive bias

for modeling surface geometry. We found this to be more suitable for object-level

factored representation as we can easily regularize the optimization to encode object

surfaces, instead of producing volumetric clouds. Here, we employ the signed

distance field formulation proposed by Wang et al. [123] and convert the signed

distance value ψ to the opacity values by assigning non-zero values near the zero

level set of the modeled surface geometry as:

α j := max
(

Φ(ψ j)−Φ(ψ j+1)

Φ(ψ j)
,0
)
, (6.2)

A
A

B
B

AABB

AABB

Volume render Rendered attributes

Factorized Neural
Representation

Neural background
+ camera path

Neural object #1
+ motion trajectory

Neural object #k
+ motion trajectory

... re-sort samples

Inverse transform sampling

=

Figure 6.2: Rendering neural factored representation. Given a factored representation
F{(f i,ψ i,Bi,Ti)

k
i=0} and any query ray r from the current camera, we first

intersect each object’s bounding box Bi to obtain a sampling range and then
compute a uniform sampling for each of the intervals. For each such sample p,
we lookup feature attributes by re-indexing using local coordinate T−1

i p, resort
the samples across the different objects based on (sample) depth values, and then
volume render to get a rendered attribute. Background is modeled as the 0-th
object. See Section 6.2 for details. For objects with active non-rigid flags, we
also invoke the corresponding deformation block (see Section 6.3). The neural
representations and the volume rendering functions are jointly trained.

6.2. Image Formation Model 77

Monocular RGB-D Input

Time

Intialization Applications

...

...

.....
..

.....
..

.....
..

Joint Optimization

Factored Neural Representation

Novel view

Trajectories

Remove object

Change trajectory

Volume Rendering

{I(t)}
A(r) :=R(Π,F ,r)

F := {(f i,ψ i,Bi,Ti)
k
i=0}

Figure 6.3: Pipeline. Starting from a monocular RGB-D sequence {I(t)}, we extract a
factored neural representation F that contains separate neural models for the
background and each of the moving objects along with their trajectories. For any
object tagged as non-rigid, we also optimize a corresponding deformation block
(e.g., human). First, in an initialization phase, we assume access to keyframe
annotations (segmentation and AABBs) over time, propagate them to neigh-
boring frames via dense visual tracking and optical flow, and estimate object
trajectories. Then, we perform end-to-end optimization using a customized
neural volume rendering block. The factored representation enables a variety of
applications involving novel view synthesis and object manipulations.

where we use a shorthand ψ j := ψ(p(s j)) for the j-th sample and Φ is the Sigmoid

function. Here, we represent the rendering function as I := R(Π, fθ ,ψ,{ruv}),

where the function fθ again can be probed to produce only view dependent color

samples fθ (p(si),Π) := ci and ψ represents the learned SDF function.

6.2.3 Attributes Rendering

By replacing point color ci with any other attribute ai, such as depth [88, 34] or

semantic labels [169], volumetric rendering can be generalized to render depth or

semantic segmentation, respectively. Specifically, for any attribute ai and ray r, we

simply compute an attribute at a pixel as A(r) := ∑i Tiαiai.

6.3. Method 78

6.2.4 Volume Rendering with Factored Neural Representation

Our proposed factored representation F := {(f i,ψ i,Bi,Ti)
k
i=0} for a background

model f 0 and the foreground objects { f i, i ∈ [1,k]}, which can be probed to output

density and color attributes. Each model, the background or any foreground object,

can be probed to output color attributes with corresponding AABB (axis-aligned

bounding boxes) {Bi}, transformations {Ti} to map the AABB local coordinates to

the global coordinate system, and implicit SDF functions {ψ i} to produce density

samples. We now define the rendering function I := R(Π,F ,{ruv}) using our

factored representation F . Figure 6.2 illustrates the process. For each ray r, for

each intersected model, computed using its AABB Bi, we obtain SDF density values

using uniform samples and perform inverse transform sampling to generate 128

samples per ray. For each background (i = 0) or foreground (i ∈ [1,k]) sample, we

obtain sampled color f i(T−1
i pi(s j),r) := ci

j and opacity α i
j using Equation 6.2 with

ψ i and the remapped sample T−1
i pi(s j), expressed in the local coordinate system of

the object. We collect the samples across the background and all the intersecting

objects, sort the samples based on their depth values, and render the colors/attributes

as described earlier (see Equation 6.1).

6.3 Method

As input, we take in RGB-D frames, denoted by {I(t) := (Ct ,Dt)} with color C and

depth D frames at time t, of scenes with one or more moving objects, where objects

can be moving rigidly or non-rigidly (e.g., humans). We assume access to keyframe

annotations over time, containing instance segmentation and rigid/non-rigid flags.

This information is used, in an initialization step, to extract initial camera and object

trajectories, instance masks over time, and axis-aligned bounding boxes (AABBs)

in the camera space. As output, we produce a factored neural representation F of

the scene, where for each object we produce a neural representation along with

its estimated object trajectory, and for each non-rigid object also an associated

deformation function. In Section 6.4, we use these inferred factored representations

to directly render novel view synthesis or perform object-level manipulations.

6.3. Method 79

In order to obtain such a factored representation, we have to address several

challenges. First, the extracted segmentation information from the RGB-D frames

is imperfect, and hence any information or supervision (e.g., segmentation loss)

derived from them leads to error accumulation. Second, we need to recover from

artifacts in initial pose estimation, especially in scenes with insufficient amount of

textures to guide the camera calibration stage. Auto-focus, color corrections, and

error accumulation in real captures pose further challenges. Third, since we only use

monocular input, the input provides partial information in the presence of occlusion,

both in terms of shape and appearance, and, in the absence of any priors, we have to

recover from the missing information by fusing information across the (available)

frames. Finally, we allow objects to exhibit non-rigid motion (e.g., human walking)

and have to factorize object deformation from object motion. In the following, we

present how to set up a joint optimization, with suitable initialization and regularizes,

involving object deformation, neural representations, and volume rendering to solve

these challenges.

6.3.1 Initialization

We first use an off-the-shelf visual tracker [170] with keyframe annotations, including

instance segmentation and AABBs, to propagate the segmentation across the frames.

The keyframe annotations are annotated by users. Segmentation is annotated at

every ten frames because the visual tracker may fail for long-term tracking. AABBs

are only annotated at the first frame and can be overlapped between objects or be

slightly larger than the actual object size. In order to get an initial registration,

we run a state-of-the-art optical flow network [171] to find initial correspondences

and solve for frame-to-frame rigid alignment using the iterated closest point (ICP)

approach [85]. The registration information across frames provides object trajectory

{Ti(t)} estimates.

6.3.2 Joint Optimization

We now introduce the main loss terms to capture reconstruction quality and additional

regularizers to get a desired factored representation. We first perform balanced

6.3. Method 80

sampling for each object using the inferred segmentation from the initialization step

and sample P pixels from N RGB-D frames. This prevents the background object

from dominating the whole loss term.

Reconstruction loss: We then render color and depth attributes using the current

(multi-object) neural factored representation as described in Section 6.2. Note that

the ground truth attributes are indexed by the sampled ray r and frame time t. We

compare the sampled color C and depth D attributes against the estimated attributes

using the L1 reconstruction loss, i.e.,

Lcolor(F) := ∑
(r,t)∈P

|Ct(r)−RC(Π,F(t),r)|/|P| and

Ldepth(F) := ∑
(r,t)∈P

|Dt(r)−RD(Π,F(t),r)|/|P|, (6.3)

where render the current background and foreground neural objects at time t, i.e.,

F(t) := {(f i,ψ i,Bi,Ti(t))k
i=0}, to produce RGB and depth attributes, and sum up

over the sampled pixels.

Free-space loss: In order to check the factorization quality, one approach is to

compare the predicted object segmentation, computed using the current re-projection

of objects’ transmission, against the input segmentation. However, we found this

approach leads to poor results as segmentation estimates are noisy. Instead, we focus

on the complement space and define a free-space loss to penalize density values in

regions that are indicated to be free according to the raw depth information. For

any point sample derived from P, we identify free-space samples using depth ID.

Then, we constrain the integrated weights of each free-space sample p ∈ Pfree, before

reaching the object surface, to be zero using L1 loss. Specifically,

Lfree(F) := ∑
p∈Pfree

∣∣Tpαp
∣∣/|Pfree|

where Pfree = {p(s,r)|s < Dt(r)} . (6.4)

Non-rigid Deformation: In order to handle non-rigid objects, we additionally in-

corporate a deformation block for objects marked with non-rigid flags. To achieve

6.3. Method 81

Figure 6.4: Dataset. We test on a mix of synthetic and real RGB-D monocular captures
from the BEHAVE [25] dataset. Here we show RGB (top) and depth (bottom)
representative frames.

this, we employ a state-of-the-art bijective deformation network proposed by Cai et

al. [36], which consists of three sub-networks, each predicting a low-dimensional

deformation. Given an input 3D point, each sub-network selects one axis, predicts a

1D displacement, and infers a 2D translation and rotation for the other axes. These

sub-networks are sequentially invoked in the XYZ axis order. Note that this block

gets directly optimized via the reconstruction loss and is not supervised with any

intermediate data.

Surface Regularizers: In order to regularize our network to learn object geometry

as a shared model between frames (i.e., a canonical model) instead of arbitrary

reconstruction, we employ auxiliary losses to constrain our geometry models to be

actual surfaces. We achieve this by penalizing the implicit functions ψ i to (i) be a

true signed distance field (i.e., Eikonal loss) by constraining random points in the

bounding box Bi; (ii) requiring the surface samples to have normals in the direction

of normals n(x) estimated from the input RGB-D frames; and (iii) surface samples to

have zero implicit values. These auxiliary losses do not slow down the optimization

since surface samples can be obtained from input depth, and these losses can be

directly calculated without performing volumetric rendering. Putting them together,

6.4. Evaluation 82

we get,

Lsurface(F) := ∑
i∈[0,k]

1
(k+1)

[
∑

x∈PBi

∥∇ψ
i(x)−1∥/|PBi|

+ ∑
x∈PΩi

(1−< ∇ψ
i(x),n(x)>)/|PΩi|

+ ∑
x∈PΩi

|ψ i|/|PΩi|
]
, (6.5)

where PBi and PΩi denote the randomly sampled spatial points and surface samples

in the object bounding box, respectively. Finally, we arrive at the full optimization

problem as,

min
F

Ltotal(F) := Lcolor(F)

+λ1Ldepth(F)

+λ2Lfree(F)+λ3Lsurface(F), (6.6)

where λ1 < 1 due to noisy depth input. We use λ1 = 0.1, λ2 = 1.0, and λ3 = 0.1 in

our experiments.

6.4 Evaluation
We evaluated Factored Neural Representations on a variety of synthetic and real

scenes in the presence of rigid and non-rigid objects. In each case, we start with only

RGB-D sequences without access to any geometry or motion prior.

6.4.1 Datasets

We tested on two types of datasets, synthetic and real. As synthetic data, we

propose a new dataset using publicly available CAD models [41, 172] and render

RGB-D sequences using Blender [172, 173]. To inject motion, we manually edit

camera motion and rigid object motion, and we combine non-rigid motion from the

DeformingThings4D [174] dataset. As representative examples, we present three

sequences, SYN-SCENE-A, SYN-SCENE-B, and SYN-SCENE-C, each spanning

for 90-100 frames, and simulate sensor noises using the noise model proposed

6.4. Evaluation 83

Figure 6.5: Comparisons on our synthetic dataset. Visually comparing our results against
iMAP [33] and NiceSLAM [34] on our synthetic dataset. See Table 6.1 for
the quantitative evaluation and Figure 6.6 for object factorization. Please note
that since both iMAP and NiceSLAM work for static scenes, for a comparison
purpose, we provide the same segmentation initialization as ours (ground truth
keyframes segmentation and the inferred segmentation using SiamMask [170]
for the other frames); and we run the methods multiple times, once for each
object, and generate full rendering using their predicted depth. Our results
capture finer object geometry and do not affect by the imperfect object segmen-
tation (e.g., the handle of the green bag). In the validation view of Scene C, we
observed that large non-rigid deformation is quite challenging for the network
to learn accurate geometry showing some over-fitting happened.

6.4. Evaluation 84

Figure 6.6: Comparisons of the object reconstruction on our synthetic dataset. Visually
comparing our results against iMAP [33] and NiceSLAM [34] on our synthetic
dataset. See Table 6.1 for quantitative evaluation. For comparison, we provide
the same segmentation initialization as ours. Note that the other methods do not
support reconstructing the non-rigidly moving human. Our object reconstruction
is not affected by the noisy segmentation boundary and captures appearance
details (e.g., shading on the yellow monkey face). Our results also show a better
visual quality of novel view rendering, although our method doesn’t factorize
out some floor regions in the Human objects due to the textureless issue.

by [175]. For these sequences, we have access to ground truth data (e.g., object

segmentation, validation views) for conducting the per-object evaluation.

As real dataset, we use the BEHAVE [25] dataset, which provides human object

interaction RGB-D videos with keyframe annotation. We crop and evaluate the

first non-occlusion sequence in each scene to avoid the object re-identification issue.

Figure 6.4 shows some representative frames.

6.4. Evaluation 85

6.4.2 Comparison

We compare our approach against different competing alternatives. Existing monocu-

lar approaches can be categorized as either employing an MLP (e.g., iMAP [33]), or

using multi-resolution feature grids (e.g., NiceSLAM [34]). Since these competing

methods do not support jointly optimizing multiple objects, we use the segmenta-

tion predicted by the visual tracker [170] and manually run them multiple times to

reconstruct background and dynamic objects. Note that we modified the ray sample

step of iMAP and NiceSLAM to accept object segmentation input, and we use L1

segmentation loss [123, 168, 36] when training foreground models. For both iMAP

and NiceSLAM, we employ the open-source network implementation [34] in our

training framework instead of their multi-threads SLAM framework, which contains

several optimizations (e.g., view-purging) for real-time applications. Furthermore,

we do not optimize both camera and object poses for all comparison methods and

focus on evaluating the reconstruction quality. We will discuss joint pose estimation

and reconstruction in the future work section.

6.4.3 Evaluation Metrics

We compare different methods across a range of metrics. We evaluate reconstruction

quality using PSNR, L1, and SSIM in Table 6.1 and Table 6.2. We also qualitatively

evaluate object trajectory estimates and re-synthesis quality under the authoring of

updated object trajectory and the visibility states of objects from the factored scenes

in Figure 6.8 and Figure 6.9.

6.4.4 Quantitative Evaluation

We present quantitative comparisons using both synthetic and real-world data. In Ta-

ble 6.1, we evaluate novel view rendering quality on our synthetic dataset, separately

for RGB and depth channels. Notably, our method consistently outputs better recon-

struction than others (iMAP and NiceSLAM), indicating that our method extracts

a proper factorization and avoids overfitting to training views. In the absence of

validation views and per-frame annotations, we cannot run a quantitative evaluation

for real sequences. Therefore, we evaluate reconstruction quality using the training

6.4. Evaluation 86

Table 6.1: Reconstruction error on our synthetic dataset. (Top/Bottom) Quantitative
color/depth results on validation poses. We evaluate novel view rendering using a
validation camera. Ours largely produces better reconstruction, validating that our
joint optimization captures better scene geometry. See Figure 6.5 and Figure 6.6
for qualitative evaluation.

Color Reconstruction, Validation camera,
PSNR ↑ / SSIM ↑

SYN-Scene A SYN-Scene B SYN-Scene C
Full BG FG Full BG FG FG2 Full BG FG FG2

iMAP 20.32/0.79 21.02/0.86 15.02/0.88 17.98/0.78 21.87/0.90 18.78/0.93 - 16.56/0.76 25.73/0.93 18.48/0.90 -
NiceSLAM 22.48/0.85 23.16/0.90 14.34/0.88 18.89/0.80 26.38/0.91 18.11/0.93 - 15.45/0.78 23.20/0.91 17.90/0.92 -
Our 24.38/0.86 24.91/0.90 19.31/0.93 22.77/0.82 27.01/0.92 20.71/0.95 16.75/0.88 20.04/0.80 27.15/0.93 20.97/0.95 15.23/0.84

Depth Reconstruction, Validation camera,
PSNR ↑ / L1 ↓

SYN-Scene A SYN-Scene B SYN-Scene C
Full BG FG Full BG FG FG2 Full BG FG FG2

iMAP 17.87/0.67 22.96/0.45 14.99/0.27 16.49/0.96 20.23/0.66 16.74/0.10 - 16.43/1.63 21.22/1.27 16.74/0.19 -
NiceSLAM 16.23/0.62 20.84/0.38 13.90/0.32 12.64/1.16 14.82/0.79 16.03/0.12 - 17.50/0.84 26.32/0.39 16.68/0.19 -
Our 23.19/0.26 26.70/0.18 18.59/0.11 21.81/0.33 26.67/0.20 18.75/0.07 14.96/0.19 23.60/0.45 31.28/0.27 19.78/0.11 13.73/0.50

Figure 6.7: Comparisons of scene reconstruction on the BEHAVE dataset. Visually
comparing our results against iMAP [33] and NiceSLAM [34] on the BEHAVE

dataset using the training camera. For comparison, we provide the same segmen-
tation initialization as ours. See Table 6.2 for quantitative evaluation. Notably,
our method generalizes better when the scene contains large missing depth areas,
showing the learned geometry model is constrained well (see the wall in the
training views). Our method successfully captures non-rigid motion.

6.4. Evaluation 87

Table 6.2: Reconstruction error on BEHAVE using the training camera. We crop and
evaluate the first non-occlusion sequence in each scene to avoid the object re-
identification issue. We report total scene reconstruction errors using PSNR and
SSIM due to the lack of per-frame annotation. Our method consistently produces
better reconstruction quality benefiting from the proposed joint optimization and
the deformation module. See Figure 6.7 for qualitative evaluation.

Color Reconstruction, Training camera,
PSNR ↑ / SSIM ↑

tablesquare move trashbin yogaball play chairblack lift
iMAP 14.68/0.66 13.46/0.65 12.42/0.64 13.28/0.64

NiceSLAM 11.35/0.54 11.71/0.55 12.16/0.60 13.30/0.63
Our 26.48/0.85 27.75/0.87 28.03/0.87 26.71/0.85

Depth Reconstruction, Training camera,
PSNR ↑ / L1 ↓

tablesquare move trashbin yogaball play chairblack lift
iMAP 24.84/0.31 21.67/0.49 22.25/0.43 26.21/0.28

NiceSLAM 25.48/0.23 21.89/0.44 22.62/0.38 27.00/0.24
Our 30.06/0.14 30.07/0.15 30.29/0.13 30.39/0.14

camera against the related methods in Table 6.2 and Figure 6.7. Again, our method

achieves the best quality.

Does joint optimization help reconstruction? Our joint optimization allows the

network to adjust object segmentation and sidestep the inaccurate segmentation issue

introduced by the visual tracker [170]. This advantage is clearly demonstrated in

Figures 6.5 and 6.6. The non-joint optimized methods (iMAP and NiceSLAM) failed

to recover from imperfect segmentation. We also observed that a limitation of our

method is to factorize the texture-less floor area in the object reconstruction, which

may require additional priors, and left as future work.

6.4.5 Qualitative Evaluation

In Figure 6.5 and Figure 6.6, we qualitatively compare our method against alternative

approaches (iMAP and NiceSLAM) using our synthetic data and the real-world

BEHAVE dataset. Note that these approaches jointly optimize for scene geometry

and appearance but assume the scenes to be static. In other words, these methods

provide only partial factorization into rigid models and camera trajectories, and

cannot be used for scene manipulation applications as supported by ours. Although

these methods perform better in terms of modeling the background, they produce

worse foreground object reconstruction and have a weaker generalization ability as

6.4. Evaluation 88

Table 6.3: Ablation study on our synthetic dataset. We evaluate total scene reconstruction
errors using the validation camera on our synthetic dataset. Our setting (the last
row) achieves the best performance. Segment. Loss: supervise the rendered
masks (weights of each sampled ray) using the input segmentation [123, 168, 36].
Recon. Loss: color and depth reconstruction loss. Surface Reg. and Freespace
Loss: the surface regularizer and the loss described in Section 6.3.

Ablation Settings Scene Reconstruction

Recon.
Loss

Segment.
Loss

Surface
Reg.

Freespace
Loss

Joint
Training

Color
(PSNR↑/ SSIM↑)

Depth
(PSNR↑/ L1↓)

✓ 18.59 / 0.81 16.54 / 0.65
✓ ✓ 18.87 / 0.82 17.31 / 0.57
✓ ✓ ✓ 20.08 / 0.79 18.34 / 0.49
✓ ✓ ✓ ✓ 14.47 / 0.74 8.48 / 3.07
✓ ✓ ✓ 17.85 / 0.76 14.85 / 0.85
✓ ✓ ✓ ✓ ✓ 22.78 / 0.84 20.99 / 0.42

compared to ours. They also fail to reconstruct the deforming human models. In

Figure 6.5 and Figure 6.6, we also present the extracted object motion trajectories

in R3 as recovered by our initialization step (Section 6.3.1). Note that since we do

not perform any loop closure, the trajectory estimates degrade over a longer distance

due to error accumulation.

6.4.6 Ablation study

In Table 6.3, we conduct an ablation study using our synthetic dataset. While the

commonly employed segmentation loss [123, 168, 36] can constrain the object shape

through the rendered mask (weights of each sampled ray), it blocks the foreground

reconstruction in joint optimization. The surface regularizers can stabilize the

geometry models and improve both color and depth reconstruction. Our final setting

(with surface regularizers and freespace loss) has the best full-scene reconstruction

quality.

6.4.7 Applications

We support different editing modes: (i) novel view synthesis by changing the ex-

tracted camera trajectory; (ii) object-level manipulation by changing one or more

object trajectories; (iii) deleting objects by removing them from the factored repre-

sentations. Note that the scene-specific learned renders are held fixed during any of

6.4. Evaluation 89

Figure 6.8: Reconstruction and applications on our synthetic dataset. Here we show
frames for the output RGB, depth, and underlying recovered geometries (ex-
tracted by performing diffuse shading using the estimated implicit representa-
tions ψ i). We also show the recovered trajectories, along with corresponding
ground truth trajectories. Recall that the 0-th object is the background, and
{T0(t)} represents the camera path. Any stationary object gets reconstructed in
the background layer in our factorization.

the edits. Figure 6.8 and Figure 6.9 show different examples. These edit modes are

applied separately or in parallel, and test the quality of the scene understanding (i.e.,

factorization) by revealing unseen object parts and configurations.

6.4. Evaluation 90

Figure 6.9: Reconstruction and applications on the BEHAVE dataset. Here we also
show frames for the output RGB, depth, underlying geometry rendering, and
the recovered trajectories. Real-world data is harder than synthetic one due to
the missing depth and sensor noises.

6.5. Discussion and Limitations 91

6.4.8 Memory and Implementation Details

We report the model size of our method and comparisons. iMAP uses 0.9MB

(FG/BG); NiceSLAM uses 76MB (FG) and 135MB (BG) with 323 and 643 grid

resolutions for the foreground and 323 and 803 for the background. In contrast, our

model takes 5.7MB. We train all methods using our training framework on a single

Nvidia RTX 3090 GPU. We do not use input depth to guide ray sampling for any of

the methods as we observed that this reduces models’ generalization ability on novel

view rendering. Instead, at each training iteration, we perform inverse transform

sampling and sample 256 rays with 128 points per ray.

Architecture. We provide our network architecture in Figure 6.10. For the SDF

MLP networks, we use geometric initialization [176], weighted normalization [177],

Softplus activations, and a skip-connection at the 4-th layer. The input coordinates

and view directions are lifted to a high dimensional space using positional encod-

ing [90]. For rigid objects, we use SE3 representation, i.e., a quaternion and a

translation vector. For non-rigid objects, we use bijective deformation blocks [36]

with weighted normalization and Softplus activations as well. For the color MLP

network, we use ReLU activation.

6.5 Discussion and Limitations
We have presented a factored neural representation along with a joint optimization

formulation that allows the separation of a monocular RGB-D video into object-

level encodings, without requiring access to additional shape or motion priors. We

demonstrated how to directly obtain object-level coupled geometry and appearance

encoding, along with object trajectories and deformations. The factorized represen-

tation directly supports novel view synthesis along with authoring edits on object

trajectories. Our work has limitations that we would like to address in future works,

as discussed next.

• Joint camera and object tracking. We do not optimize the camera obtained

during the initialization phase. As a next step, it would be interesting to

jointly fine-tune the initial estimates, possibly by loop closing and locally

6.5. Discussion and Limitations 92

SE3

Rigid Motion

p

q

SE3

Non-rigid Motion

SE3

x3,
switch
w and uv.

p

enc.

{ time code }

t

64

t

frame index

u,v

128

w

+

w’

enc.

128

t

SE2 (Rot.,trsl.)

u,v

u’,v’

q=[u’,v’,w’]

32

x2

x2

64

Geometry and Appearances

32

x 3256

x K (m+n)
objects

r

A shared
color decoder.RGB

view
direction

en
c.

256 x4

encoding

256 x4

SDF

. . .

q

256 x4

encoding

256 x4

x m
rigid objects

. . .

. . .
x n
non-rigid
objects

Figure 6.10: Our network architecture. We use sine positional encoding as NeRF [90].
The number of rigid and non-rigid motion blocks depends on the objects’
motion labels. For the simplifying purpose, we do not predict ambient coordi-
nates [178, 36] in the non-rigid motion block.

linearizing the transformation estimates to simplify the resultant optimization,

while computing the factorization.

• Inter object interactions. We do not model object-object or object-

background effects. For example, we do not explicitly model shadows

or object interactions arising from human affordance considerations. In the

future, it would be a possibility to model these in the volume rendering step,

possibly by allowing rays to look up features before and after current pixels

(e.g., using a transformer architecture).

6.5. Discussion and Limitations 93

• Time-dependent appearance. While our model accepts the time-dependent

latent input (time codes), Our employed datasets (both synthetic and real) only

contain static lighting. Therefore, it will be interesting to apply our method to

the scenes containing dynamic lighting and explore time-dependent effects.

• Better architecture. At present, we modeled object functions of the form fθ

simply using MLPs. More recent alternatives and localized versions [179, 160]

or sparse points [115] can be explored alternatively. However, the challenge

would then be effectively integrating information across multiple frames to

model deformations, possibly by dynamically re-indexing the local grid-based

representations or using an attention module.

• Other priors. We do not employ geometry or tracking priors in volume

rendering. Several interesting choices can be considered, including depth and

normal priors [180] for resolving sensor noises, optical flow [86, 128] for

regularizing occlusion and poses, and layout estimation models [181, 182] for

background modeling.

Chapter 7

Conclusions

7.1 Summary

In this thesis, we investigated the problem of 4D reconstruction of scenes with moving

objects, as recorded from a moving camera, and address several sub-problems in this

field. Here we summarize our contributions in each chapter.

In Chapter 3, we developed a data generation toolkit and established an evalua-

tion protocol for benchmarking the 4D reconstruction task and resolving the lack of

training data issue. We leveraged our generated data as a training set and a test set in

Chapter 4 and Chapter 5 to solving object tracking and reconstruction problem.

In Chapter 4, we explored the idea of incorporating intra-category priors for

tracking objects and reported performance improvement against the state-of-the-

art methods. Our key hypothesis is that completion and dense correspondence

priors can help to resolve heavy occlusion and provides robust object tracking.

We presented an end-to-end pipeline that jointly solves detection, completion, and

correspondence mapping for object pose estimation and tracking. We verify our

hypothesis by training our network on our DYNSYNTH dataset and ScanNet [12]

using Scan2CAD [42] annotations. Both qualitative and quantitative evaluations

demonstrate performance improvement than comparison methods.

In Chapter 5, we proposed RigidFusion to simultaneously solve tracking and

segmentation. Our key observation is that free-space information is more reliable in

detecting moving objects under large camera or object motions than the commonly

7.2. Future Work 95

used instance segmentation priors [37, 81, 39] and motion residuals [14]. We quanti-

tatively evaluate our method against comparisons on our DYNSYNTH dataset and

reported systematic improvement in terms of tracking accuracy and reconstruction

quality. We also provide qualitative evaluations using real-world scans, and the

results again verified our system outputs more accurate 4D reconstruction in high-

dynamic environments. Our approach, being non-learning based, is not restricted to

objects with semantic labels. Hence, it can be used to collect training data for typical

object movements under real-world interactions.

Finally, in Chapter 6, we addressed the question of full dynamic scene recon-

struction and proposed FactoredNeRF to jointly optimize both rigid and non-rigid

scene elements using volume rendering. Our hypothesis is that neural volume

rendering can be used to achieve full dynamic scene reconstruction and provide a

factorized scene representation using monocular RGB-D video input. We verify

our approach on a new synthetic dataset created by adding non-rigid motion from

DeformingThings4D [174] dataset and real-world scans as well. Our representation

can be trained on a single commodity GPU and acquire non-rigid objects, which

verifies our hypothesis. We provide qualitative evaluations against other neural

scene representations demonstrating better generalization ability and finer object

reconstruction. Further, our scene representation supports scene editing operations,

such as object re-positioning and deleting objects, without requiring re-training,

which serves as the building block for the downstream applications.

7.2 Future Work
Understanding dynamic environments involving several vision and graphics chal-

lenges. In this section, we elaborate on some future avenues of dynamic scene

reconstruction.

• Generative modeling. Synthetic data have become a rapidly developed field

in recent years because of its usages on learning data priors and benchmarking

performance, as we demonstrated in Chapters 4 to 6. A useful addition in this

direction is to synthesize human-object interaction and generate a large-scale

7.2. Future Work 96

dataset. There are several challenges reminding: the variance and the random-

ness of the synthesized data, the scale of the dataset, the synthetic-to-realistic

gap in terms of object motion, environment lighting, sensor noises, and shading.

A potential solution is to employ generative modeling techniques. Particularly,

the recent success on language-driven generative modeling, which has received

enormous success in various modalities, such as image synthesis [183, 184]

meshes [185, 186] and human motions [187, 188]. Adapting a language model

to synthesize human-object or object-to-object interactions with motion styles,

e.g., slow steady and fast sweeping, will be worth exploring.

• Static priors. Another less explored topic is applying static data priors on

dynamic tasks. Static priors are relatively easier to access than dynamic priors

because of the availability of large-scale datasets [12, 40, 41]. There are still

a lot of unknowns regarding utilizing static pre-training on dynamic tasks.

Researchers have employed a similar idea on learning a weight initialization

for achieving fast training on dynamic scene modeling [189]. Other potential

usages are partial shape completion and correspondence searching. One exam-

ple is the self-supervised vision transformer [190, 191], which demonstrates its

ability on visual object tracking and segmentation without accessing dynamic

training data. This direction has the potential to break the chicken-and-eggs

situation in dynamic scene understandings such that we don’t have a mature

solution to capture a large-scale dynamic dataset and the lack of dynamic data

priors to create a robust capture system using neural networks.

• Continuous learning. Current dynamic reconstruction systems primarily

focus on short sequences, typically less than a minute. Extending current

approaches ([14, 37, 38, 39, 178, 34, 33] and our FactoredNeRF) to han-

dle a daily-long video bring several new challenges, including object re-

identification, memory consumption, scene change detection, global opti-

mization, and loop closing. Several very recent works have proposed solutions

for these research problems, such as continuous learning [192, 193, 194] and

7.3. Remark 97

localization with neural fields [195, 196]. However, they are focused on static

environments. Adapting the state-of-the-arts to dynamic environments will be

worth exploring.

• Object state management. Managing the state of the detected objects is not a

trivial problem due to the view change and self-occlusion. This is particularly

difficult under a highly dynamic environment with monocular input because

a moving object can sometimes become a static item during a recording or

disappear from the camera view. Efficiently solving object detection, full

scene reconstruction, and object re-identification will be an important step for

dynamic scene understanding.

7.3 Remark
In this thesis, we have addressed the problem of dynamic scene understating from

four perspectives, synthetic data, learning geometry priors, free-space as segmenta-

tion signals, and representing a dynamic scene. To evaluate the effectiveness of our

systems, we tested them on the challenging sequences containing large camera and

object motions, using both synthetic and real-world data. Further, we highlighted

several future directions, and we expect the continuous explorations of these research

questions can accelerate the development of home assistant robots, augmented reality,

and other exciting artificial intelligence applications.

Appendix A

A Glossary of the Terminology

Table A.1: The terminology used in this thesis.

Name Definition

Canonical Model
The reference model represents the reconstructed geometry
in the reference coordinate space.

Correspondences The same points observed in different input frames.

Fusion
Merging input scans into a model in the reference
coordinate space.

Geometric Features Features driven from an object’s surface points or normals.

Instance Segmentation
Image pixels are grouped according to individual objects.
Each pixel can be assigned to multiple object groups.

Non-Rigid Motion
A type of motion that does not preserve angle and distance
during movement. It is usually approximated by multiple
rigid transformations.

Object Priors
The prior knowledge of the dynamic foreground object,
including object geometry, appearance, and segmentation.

Occlusion,
Occluded Geometry

Only a part of the target object/scene is observed during
scanning.

Rigid Motion,
Rigid Transformation

A type of motion can be modeled by an angle and distance
preserved 3D transformation, which consists of a 3D
rotation and translation.

Semantic Segmentation
Image pixels are labeled using a set of pre-defined semantic
classes. In the context of indoor understanding, the semantic
classes contain the categories of common indoor objects.

Surfel
Surface element. A disk-like data structure. Each surfel
consists of a point, a radius, and a normal vector.

Truncated Signed
Distance Function (TSDF)

A volumetric grid records the distance from a voxel
to the closest surface. The distance is truncated to focus
on the close-surface regions.

Template Mesh A reference geometry for object tracking and detection.

Tracking Drift
The tracking errors accumulated in the system result
in a large misalignment.

Appendix B

RigidFusion’s Experiment Details

We list all system parameters used in our quantitative evaluation in Chapter 5,

including RigidFusion, and the two major comparing methods, CoFusion [14] and

MaskFusion [37].

Table B.1: RidgidFusion’s experimental setting

RidgidFusion
Parameters Values Explanation
∆ 60 the size of delay window
min size 4500 the minimum size of new object segments
segth 10 freespece count threshold
detth 1.00E-04 foreground de-activation threshold
chnum 0.5∆ foreground de-activation check frame numbers
bvxsize 0.03 background TSDF voxel size
fvxsize 0.01 foreground TSDF voxel size
btrunc 10 · voxel size background truncation
ftrunc 15 · voxel size foreground truncation

100

Table B.2: CoFusion’s experimental setting

CoFusion
Parameters Values Explanation
confO 0.01 initial surfel confidence threshold for objects
confG 1.0 initial surfel confidence threshold for scene
segMinNew 0.015 the minimum size of new object segments
segMaxNew 0.4 the maximum size of new object segments
thNew 5.5 the threshold of initilizing a new model
offset 22 offset between creating models
or 1 outlier rejection level
crfRGB 10 the parameters for the conditional random field
crfDepth 0.9 the parameters for the conditional random field
crfPos 1.8 the parameters for the conditional random field
crfAppearance 15 the parameters for the conditional random field
crfSmooth 4 the parameters for the conditional random field
icpWeight 10 ICP weight

Table B.3: MaskFusion’s experimental setting

MaskFusion
Parameters Values Explanation
confO 0.01 initial surfel confidence threshold for objects
confG 1.0 initial surfel confidence threshold for scene
segMinNew 0.015 the minimum size of new object segments
segMaxNew 0.4 the maximum size of new object segments
thNew 5.5 the threshold of initilizing a new model
offset 22 offset between creating models
or 1 outlier rejection level
filter classes - filter instance segmentation by semantic labels
icpWeight 20 ICP weight
frameQ 30 the size of frame-queue

Bibliography

[1] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J Gortler, and

Leonard McMillan. Image-based visual hulls. In Proceedings of the 27th

annual conference on Computer graphics and interactive techniques, pages

369–374, 2000.

[2] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner, Jamie Waese,

and Tim Hawkins. A lighting reproduction approach to live-action composit-

ing. ACM Transactions on Graphics (TOG), 21(3):547–556, 2002.

[3] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,

Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,

et al. The digital michelangelo project: 3d scanning of large statues. In Pro-

ceedings of the 27th annual conference on Computer graphics and interactive

techniques, pages 131–144, 2000.

[4] Brian Curless and Marc Levoy. A volumetric method for building complex

models from range images. In Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques, pages 303–312. ACM, 1996.

[5] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d model

acquisition. ACM Transactions on Graphics (TOG), 21(3):438–446, 2002.

[6] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux,

David Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges,

and Andrew Fitzgibbon. Kinectfusion: Real-time dense surface mapping

Bibliography 102

and tracking. In Mixed and augmented reality (ISMAR), 2011 10th IEEE

international symposium on, pages 127–136. IEEE, 2011.

[7] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable real-time

volumetric surface reconstruction. ACM Transactions on Graphics (ToG),

32(4):113, 2013.

[8] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger.

Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions

on Graphics (TOG), 2013.

[9] Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin Sun, Philip

Torr, and David Murray. Very high frame rate volumetric integration of depth

images on mobile devices. IEEE transactions on visualization and computer

graphics, 21(11):1241–1250, 2015.

[10] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong

Xiao. Chisel: Real time large scale 3d reconstruction onboard a mobile device

using spatially hashed signed distance fields. In Robotics: science and systems,

volume 4, 2015.

[11] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram Izadi, and Christian

Theobalt. Bundlefusion: Real-time globally consistent 3d reconstruction using

on-the-fly surface re-integration. ACM Transactions on Graphics 2017 (TOG),

2017.

[12] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas

Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstruc-

tions of indoor scenes. In Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2017.

[13] Lu Ma and Gabe Sibley. Unsupervised dense object discovery, detection,

tracking and reconstruction. In European Conference on Computer Vision,

pages 80–95. Springer, 2014.

Bibliography 103

[14] Martin Rünz and Lourdes Agapito. Co-fusion: Real-time segmentation, track-

ing and fusion of multiple objects. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 4471–4478, May 2017.

[15] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion:

Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

343–352, 2015.

[16] Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt,

and Marc Stamminger. Volumedeform: Real-time volumetric non-rigid re-

construction. In European Conference on Computer Vision, pages 362–379.

Springer, 2016.

[17] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan

Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David

Kim, Jonathan Taylor, et al. Fusion4d: Real-time performance capture of

challenging scenes. ACM Transactions on Graphics (TOG), 35(4):114, 2016.

[18] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic.

Killingfusion: Non-rigid 3d reconstruction without correspondences. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July

2017.

[19] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature

histograms (fpfh) for 3d registration. In 2009 IEEE international conference

on robotics and automation, pages 3212–3217. IEEE, 2009.

[20] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system

for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics,

33(5):1255–1262, 2017.

[21] David Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60:91–110, 11 2004.

Bibliography 104

[22] Emanuele Palazzolo, Jens Behley, Philipp Lottes, Philippe Giguère, and Cyrill

Stachniss. Refusion: 3d reconstruction in dynamic environments for rgb-d

cameras exploiting residuals. arXiv, 2019.

[23] Aljaz Bozic, Michael Zollhöfer, Christian Theobalt, and Matthias Nießner.

Deepdeform: Learning non-rigid rgb-d reconstruction with semi-supervised

data. ArXiv, abs/1912.04302, 2019.

[24] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John

Turner, Noah Maestre, Mustafa Mukadam, Devendra Chaplot, Oleksandr

Maksymets, Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska

Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra

Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home assistants

to rearrange their habitat. In Advances in Neural Information Processing

Systems (NeurIPS), 2021.

[25] Bharat Lal Bhatnagar, Xianghui Xie, Ilya A Petrov, Cristian Sminchisescu,

Christian Theobalt, and Gerard Pons-Moll. Behave: Dataset and method for

tracking human object interactions. In Proc. CVPR,, pages 15935–15946,

2022.

[26] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 567–576, 2015.

[27] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-3D-Semantic Data

for Indoor Scene Understanding. ArXiv e-prints, February 2017.

[28] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias

Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Mat-

terport3d: Learning from rgb-d data in indoor environments. arXiv preprint

arXiv:1709.06158, 2017.

Bibliography 105

[29] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo

Kanazawa. Monocular dynamic view synthesis: A reality check. In Ad-

vances in Neural Information Processing Systems, 2022.

[30] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen,

Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi. Hoi4d: A 4d egocentric

dataset for category-level human-object interaction. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

21013–21022, 2022.

[31] Raluca Scona, Mariano Jaimez, Yvan R. Petillot, Maurice Fallon, and Daniel

Cremers. Staticfusion: Background reconstruction for dense rgb-d slam in

dynamic environments. 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 1–9, 2018.

[32] Berta Bescos, José M. Fácil, Javier Civera, and José Neira. Dynaslam: Track-

ing, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automa-

tion Letters, 3(4):4076–4083, 2018.

[33] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Implicit

mapping and positioning in real-time. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 6229–6238, 2021.

[34] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng

Cui, Martin R Oswald, and Marc Pollefeys. Nice-slam: Neural implicit

scalable encoding for slam. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12786–12796, 2022.

[35] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner,

and Justus Thies. Neural rgb-d surface reconstruction. In Proc. CVPR, pages

6290–6301, 2022.

[36] Hongrui Cai, Wanquan Feng, Xuetao Feng, Yan Wang, and Juyong Zhang.

Neural surface reconstruction of dynamic scenes with monocular rgb-d camera.

arXiv preprint arXiv:2206.15258, 2022.

Bibliography 106

[37] Martin Runz, Maud Buffier, and Lourdes Agapito. Maskfusion: Real-time

recognition, tracking and reconstruction of multiple moving objects. In 2018

IEEE International Symposium on Mixed and Augmented Reality (ISMAR),

pages 10–20. IEEE, 2018.

[38] Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew J.

Davison, and Stefan Leutenegger. Mid-fusion: Octree-based object-level

multi-instance dynamic slam. 2019 International Conference on Robotics and

Automation (ICRA), pages 5231–5237, 2019.

[39] Michael Strecke and Jörg Stückler. Em-fusion: Dynamic object-level slam

with probabilistic data association. In International Conference on Computer

Vision, October 2019.

[40] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li,

Qixun Zeng, Chengyue Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d

furnished rooms with layouts and semantics. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 10933–10942, 2021.

[41] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing

Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

et al. Shapenet: An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[42] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X.

Chang, and Matthias Niessner. Scan2cad: Learning cad model alignment

in rgb-d scans. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019.

[43] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.

Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

[44] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich,

and Andreas Kolb. Real-time 3d reconstruction in dynamic scenes using

Bibliography 107

point-based fusion. In 2013 International Conference on 3D Vision-3DV 2013,

pages 1–8. IEEE, 2013.

[45] Youngmin Park, Vincent Lepetit, and Woontack Woo. Texture-less object

tracking with online training using an rgb-d camera. In 2011 10th IEEE

International Symposium on Mixed and Augmented Reality, pages 121–126.

IEEE, 2011.

[46] Changhyun Choi and Henrik I Christensen. Rgb-d object tracking: A particle

filter approach on gpu. In 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1084–1091. IEEE, 2013.

[47] Carl Ren, Victor Prisacariu, David Murray, and Ian Reid. Star3d: Simul-

taneous tracking and reconstruction of 3d objects using rgb-d data. pages

1561–1568, 12 2013.

[48] Carl Yuheng Ren, Victor Prisacariu, Olaf Kaehler, Ian Reid, and David Murray.

3d tracking of multiple objects with identical appearance using rgb-d input.

In 2014 2nd International Conference on 3D Vision, volume 1, pages 47–54.

IEEE, 2014.

[49] C. Y. Ren, V. A. Prisacariu, O. Kähler, I. D. Reid, and D. W. Murray. Real-

time tracking of single and multiple objects from depth-colour imagery using

3d signed distance functions. Int. J. Comput. Vision, 124(1):80–95, August

2017.

[50] Daniel Wagner, Dieter Schmalstieg, and Horst Bischof. Multiple target

detection and tracking with guaranteed framerates on mobile phones. In 2009

8th IEEE International Symposium on Mixed and Augmented Reality, pages

57–64. IEEE, 2009.

[51] Youngmin Park, Vincent Lepetit, and Woontack Woo. Multiple 3d object

tracking for augmented reality. In 2008 7th IEEE/ACM International Sympo-

sium on Mixed and Augmented Reality, pages 117–120. IEEE, 2008.

Bibliography 108

[52] Kiyoung Kim, Vincent Lepetit, and Woontack Woo. Keyframe-based model-

ing and tracking of multiple 3d objects. In 2010 IEEE International Sympo-

sium on Mixed and Augmented Reality, pages 193–198. IEEE, 2010.

[53] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. Posecnn:

A convolutional neural network for 6d object pose estimation in cluttered

scenes. 2018.

[54] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor

fusion for 3d bounding box estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2018.

[55] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin, Cewu Lu, Li Fei-

Fei, and Silvio Savarese. Densefusion: 6d object pose estimation by iterative

dense fusion. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019.

[56] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages

652–660, 2017.

[57] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and

Leonidas J. Guibas. Normalized object coordinate space for category-level 6d

object pose and size estimation. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019.

[58] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Computer Vision (ICCV), 2017 IEEE International Conference on, pages

2980–2988. IEEE, 2017.

[59] Chen Wang, Roberto Martı́n-Martı́n, Danfei Xu, Jun Lv, Cewu Lu, Li Fei-Fei,

Silvio Savarese, and Yuke Zhu. 6-pack: Category-level 6d pose tracker with

anchor-based keypoints. In 2020 IEEE International Conference on Robotics

and Automation (ICRA), pages 10059–10066. IEEE, 2020.

Bibliography 109

[60] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tompson, and Mohammad

Norouzi. Discovery of latent 3d keypoints via end-to-end geometric reasoning.

Advances in neural information processing systems, 31, 2018.

[61] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d se-

mantic segmentation with submanifold sparse convolutional networks. In

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 9224–9232, 2018.

[62] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In

Symposium on Geometry processing, volume 4, pages 109–116, 2007.

[63] Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation

for shape manipulation. In ACM siggraph 2007 papers, pages 80–es. 2007.

[64] Hao Li, Robert W Sumner, and Mark Pauly. Global correspondence optimiza-

tion for non-rigid registration of depth scans. In Computer graphics forum,

volume 27, pages 1421–1430. Wiley Online Library, 2008.

[65] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and

Steven Lovegrove. Deepsdf: Learning continuous signed distance functions

for shape representation. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019.

[66] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape

modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5939–5948, 2019.

[67] Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun.

Geometry processing with neural fields. Advances in Neural Information

Processing Systems, 34:22483–22497, 2021.

[68] Kaiwen Guo, Feng Xu, Tao Yu, Xiaoyang Liu, Qionghai Dai, and Yebin Liu.

Real-time geometry, albedo, and motion reconstruction using a single rgb-d

camera. ACM Transactions on Graphics (ToG), 36(4):1, 2017.

Bibliography 110

[69] Aljaz Bozic, Pablo Palafox, Michael Zollhöfer, Angela Dai, Justus Thies, and

Matthias Nießner. Neural non-rigid tracking. Advances in Neural Information

Processing Systems, 33:18727–18737, 2020.

[70] Yang Li, Aljaz Bozic, Tianwei Zhang, Yanli Ji, Tatsuya Harada, and Matthias

Nießner. Learning to optimize non-rigid tracking. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

4910–4918, 2020.

[71] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed

A. A. Osman, Dimitrios Tzionas, and Michael J. Black. Expressive body

capture: 3D hands, face, and body from a single image. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages

10975–10985, 2019.

[72] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d

faces. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 187–194, 1999.

[73] John P Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Frederic H Pighin,

and Zhigang Deng. Practice and theory of blendshape facial models. Euro-

graphics (State of the Art Reports), 1(8):2, 2014.

[74] Alexandru Eugen Ichim, Ladislav Kavan, Merlin Nimier-David, and Mark

Pauly. Building and animating user-specific volumetric face rigs. In Sympo-

sium on Computer Animation, pages 107–117, 2016.

[75] Ahmed A A Osman, Timo Bolkart, and Michael J. Black. STAR: A sparse

trained articulated human body regressor. In European Conference on Com-

puter Vision (ECCV), pages 598–613, 2020.

[76] Pablo Palafox, Aljaž Božič, Justus Thies, Matthias Nießner, and Angela Dai.

Npms: Neural parametric models for 3d deformable shapes. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 12695–

12705, 2021.

Bibliography 111

[77] Pablo Palafox, Nikolaos Sarafianos, Tony Tung, and Angela Dai. Spams:

Structured implicit parametric models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 12851–12860,

2022.

[78] Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran

Song. Category-level articulated object pose estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

3706–3715, 2020.

[79] Enric Corona, Tomas Hodan, Minh Vo, Francesc Moreno-Noguer, Chris

Sweeney, Richard Newcombe, and Lingni Ma. Lisa: Learning implicit shape

and appearance of hands. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 20533–20543, 2022.

[80] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected

crfs with gaussian edge potentials. Advances in neural information processing

systems, 24, 2011.

[81] Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davi-

son, and Stefan Leutenegger. Mid-fusion: Octree-based object-level multi-

instance dynamic slam. In 2019 International Conference on Robotics and

Automation (ICRA), pages 5231–5237. IEEE, 2019.

[82] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:

Common objects in context. In European conference on computer vision,

pages 740–755. Springer, 2014.

[83] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison,

and Stefan Leutenegger. Elasticfusion: Real-time dense slam and light source

estimation. The International Journal of Robotics Research, 35(14):1697–

1716, 2016.

Bibliography 112

[84] Hao Zhang and Feng Xu. Mixedfusion: Real-time reconstruction of an indoor

scene with dynamic objects. IEEE transactions on visualization and computer

graphics, 24(12):3137–3146, 2017.

[85] Yu-Shiang Wong, Changjian Li, Matthias Nießner, and Niloy J. Mitra. Rigid-

Fusion: RGB-D Scene Reconstruction with Rigidly-moving Objects. Com-

puter Graphics Forum, 2021.

[86] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene

flow fields for space-time view synthesis of dynamic scenes. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 6498–6508, 2021.

[87] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer,

Christoph Lassner, and Christian Theobalt. Non-rigid neural radiance fields:

Reconstruction and novel view synthesis of a dynamic scene from monoc-

ular video. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 12959–12970, 2021.

[88] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time

neural irradiance fields for free-viewpoint video. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

9421–9431, 2021.

[89] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view

synthesis from dynamic monocular video. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 5712–5721, 2021.

[90] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron,

Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance

fields for unconstrained photo collections. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 7210–7219,

2021.

Bibliography 113

[91] Wentao Yuan, Zhaoyang Lv, Tanner Schmidt, and Steven Lovegrove. Star:

Self-supervised tracking and reconstruction of rigid objects in motion with

neural rendering. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13144–13152, 2021.

[92] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and

Cengiz Oztireli. D2̂ nerf: Self-supervised decoupling of dynamic and static

objects from a monocular video. arXiv preprint arXiv:2205.15838, 2022.

[93] Vadim Tschernezki, Diane Larlus, and Andrea Vedaldi. Neuraldiff: Seg-

menting 3d objects that move in egocentric videos. In 2021 International

Conference on 3D Vision (3DV), pages 910–919. IEEE, 2021.

[94] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph

Lassner, Changil Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele,

Richard Newcombe, et al. Neural 3d video synthesis from multi-view video.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5521–5531, 2022.

[95] Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yanshun Zhang, Minye

Wu, Yingliang Zhang, Lan Xu, and Jingyi Yu. Editable free-viewpoint video

using a layered neural representation. ACM Transactions on Graphics (TOG),

40(4):1–18, 2021.

[96] Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen Guo, Minye Wu,

Jingyi Yu, and Lan Xu. Neuralhofusion: Neural volumetric rendering under

human-object interactions. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 6155–6165, 2022.

[97] Qing Shuai, Chen Geng, Qi Fang, Sida Peng, Wenhao Shen, Xiaowei Zhou,

and Hujun Bao. Novel view synthesis of human interactions from sparse

multi-view videos. In ACM SIGGRAPH 2022 Conference Proceedings, pages

1–10, 2022.

Bibliography 114

[98] Nicola Fioraio, Jonathan Taylor, Andrew Fitzgibbon, Luigi Di Stefano, and

Shahram Izadi. Large-scale and drift-free surface reconstruction using online

subvolume registration. In 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4475–4483, 2015.

[99] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.

Surfels: Surface elements as rendering primitives. In Proceedings of the 27th

annual conference on Computer graphics and interactive techniques, pages

335–342, 2000.

[100] Nina Amenta and Marshall Bern. Surface reconstruction by voronoi filter-

ing. In Proceedings of the fourteenth annual symposium on Computational

geometry, pages 39–48, 1998.

[101] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In

Proceedings of the sixth ACM symposium on Solid modeling and applications,

pages 249–266, 2001.

[102] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin,

and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in

function space. In Proceedings IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2019.

[103] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,

Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance

fields for view synthesis. In European conference on computer vision, pages

405–421. Springer, 2020.

[104] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil,

Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and

Ren Ng. Fourier features let networks learn high frequency functions in low

dimensional domains. Advances in Neural Information Processing Systems,

33:7537–7547, 2020.

Bibliography 115

[105] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel

machines. Advances in neural information processing systems, 20, 2007.

[106] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and

Gordon Wetzstein. Implicit neural representations with periodic activation

functions. Advances in Neural Information Processing Systems, 33:7462–

7473, 2020.

[107] Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung. Geometry-

consistent neural shape representation with implicit displacement fields. arXiv

preprint arXiv:2106.05187, 2021.

[108] Luca Morreale, Noam Aigerman, Paul Guerrero, Vladimir G Kim, and Niloy J

Mitra. Neural convolutional surfaces. arXiv preprint arXiv:2204.02289, 2022.

[109] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub,

Steven Lovegrove, and Richard Newcombe. Deep local shapes: Learning

local sdf priors for detailed 3d reconstruction. In European Conference on

Computer Vision, pages 608–625. Springer, 2020.

[110] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas

Funkhouser. Local deep implicit functions for 3d shape. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 4857–4866, 2020.

[111] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ra-

mamoorthi, and Manmohan Chandraker. Modulated periodic activations

for generalizable local functional representations. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 14214–

14223, 2021.

[112] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop,

Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler.

Neural geometric level of detail: Real-time rendering with implicit 3D shapes.

2021.

Bibliography 116

[113] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco

Monteiro, and Gordon Wetzstein. Acorn: Adaptive coordinate networks for

neural scene representation. arXiv preprint arXiv:2105.02788, 2021.

[114] Songyou Peng, Chiyu ”Max” Jiang, Yiyi Liao, Michael Niemeyer, Marc

Pollefeys, and Andreas Geiger. Shape as points: A differentiable poisson

solver. In Advances in Neural Information Processing Systems (NeurIPS),

2021.

[115] Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong Han. Learn-

ing deep implicit functions for 3d shapes with dynamic code clouds. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12840–12850, 2022.

[116] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger.

Differentiable volumetric rendering: Learning implicit 3d representations

without 3d supervision. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3504–3515, 2020.

[117] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ro-

nen, and Yaron Lipman. Multiview neural surface reconstruction by disentan-

gling geometry and appearance. Advances in Neural Information Processing

Systems, 33:2492–2502, 2020.

[118] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer

implicit surfaces without 3d supervision. Advances in Neural Information

Processing Systems, 32, 2019.

[119] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gor-

don Wetzstein. Neural lumigraph rendering. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4287–4297,

2021.

[120] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and

Zhaopeng Cui. Dist: Rendering deep implicit signed distance function with

Bibliography 117

differentiable sphere tracing. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 2019–2028, 2020.

[121] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Dif-

ferentiable rendering of signed distance fields for 3d shape optimization. In

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 1251–1261, 2020.

[122] Nelson Max. Optical models for direct volume rendering. IEEE Transactions

on Visualization and Computer Graphics, 1(2):99–108, 1995.

[123] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and

Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering

for multi-view reconstruction. arXiv preprint arXiv:2106.10689, 2021.

[124] Michael Oechsle, Songyou Peng, and Andreas Geiger. Unisurf: Unifying

neural implicit surfaces and radiance fields for multi-view reconstruction. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 5589–5599, 2021.

[125] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco:

Common objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and

Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755,

Cham, 2014. Springer International Publishing.

[126] Sinisa Stekovic, Shreyas Hampali, Mahdi Rad, Sayan Deb Sarkar, Friedrich

Fraundorfer, and Vincent Lepetit. General 3D Room Layout from a Single

View by Render-and-Compare. European Conference on Computer Vision

(ECCV), 2020.

[127] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve,

Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew

Bibliography 118

Wallingford, et al. Robothor: An open simulation-to-real embodied ai plat-

form. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 3164–3174, 2020.

[128] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,

Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox.

Flownet: Learning optical flow with convolutional networks. In Proceedings

of the IEEE international conference on computer vision, pages 2758–2766,

2015.

[129] Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas Funkhouser,

and Vladlen Koltun. Minos: Multimodal indoor simulator for navigation in

complex environments. arXiv preprint arXiv:1712.03931, 2017.

[130] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs,

Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi.

Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint

arXiv:1712.05474, 2017.

[131] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and

Silvio Savarese. Gibson env: real-world perception for embodied agents. In

Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on.

IEEE, 2018.

[132] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador,

Kiana Ehsani, Winson Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi,

et al. Procthor: Large-scale embodied ai using procedural generation. arXiv

preprint arXiv:2206.06994, 2022.

[133] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,

Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated

part-based interactive environment. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages 11097–11107,

2020.

Bibliography 119

[134] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion

using 3d-encoder-predictor cnns and shape synthesis. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 5868–

5877, 2017.

[135] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Christian Theobalt,

Matthias Nießner, Reinhard Klein, and Andreas Kolb. State of the art on 3d re-

construction with rgb-d cameras. Computer Graphics Forum, 37(2):625–652,

2018.

[136] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December

2012. http://ompl.kavrakilab.org.

[137] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor

segmentation and support inference from rgbd images. ECCV (5), 7576:746–

760, 2012.

[138] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking

performance: The clear mot metrics. EURASIP Journal on Image and Video

Processing, 2008, 01 2008.

[139] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel

Cremers. A benchmark for the evaluation of rgb-d slam systems. 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

573–580, 2012.

[140] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international confer-

ence on computer vision, pages 1440–1448, 2015.

[141] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision,

pages 2961–2969, 2017.

http://ompl.kavrakilab.org

Bibliography 120

[142] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal

convnets: Minkowski convolutional neural networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages

3075–3084, 2019.

[143] Shinji Umeyama. Least-squares estimation of transformation parameters

between two point patterns. IEEE Trans Pattern Analysis and Machine

Intelligence, 13(4):376–380, 1991.

[144] H. W. Kuhn. The hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(1-2):83–97, 1955.

[145] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In

Sensor fusion IV: control paradigms and data structures, volume 1611, pages

586–606. International Society for Optics and Photonics, 1992.

[146] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm.

In Proceedings Third International Conference on 3-D Digital Imaging and

Modeling, pages 145–152, 2001.

[147] Natasha Gelfand, Leslie Ikemoto, Szymon Rusinkiewicz, and Marc Levoy.

Geometrically stable sampling for the icp algorithm. volume 2003, pages 260–

267, 11 2003.

[148] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense

human pose estimation in the wild. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7297–7306, 2018.

[149] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and

Ross Girshick. Detectron2. https://github.com/facebookresearch/

detectron2, 2019.

[150] Richard M. Murray, S. Shankar Sastry, and Zexiang Li. A mathematical

introduction to robotic manipulation. CRC Press, 1994.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Bibliography 121

[151] Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cre-

mers. Real-time camera tracking and 3d reconstruction using signed distance

functions. 06 2013.

[152] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun,

Jim Rodgers, and James Davis. Scape: shape completion and animation of

people. In ACM SIGGRAPH 2005 Papers, pages 408–416. 2005.

[153] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun

Wu. Neural radiance flow for 4d view synthesis and video processing. In

2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages

14304–14314. IEEE Computer Society, 2021.

[154] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-

Noguer. D-nerf: Neural radiance fields for dynamic scenes. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 10318–10327, 2021.

[155] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.

Neural sparse voxel fields. Advances in Neural Information Processing

Systems, 33:15651–15663, 2020.

[156] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf:

Speeding up neural radiance fields with thousands of tiny mlps. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 14335–

14345, 2021.

[157] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.

Plenoctrees for real-time rendering of neural radiance fields. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 5752–

5761, 2021.

[158] Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer,

Yaser Sheikh, and Jason Saragih. Mixture of volumetric primitives for efficient

neural rendering. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.

Bibliography 122

[159] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization:

Super-fast convergence for radiance fields reconstruction. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 5459–5469, 2022.

[160] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. Relu

fields: The little non-linearity that could. In ACM SIGGRAPH 2022 Confer-

ence Proceedings, pages 1–9, 2022.

[161] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang,

Wenyu Liu, Matthias Nießner, and Qi Tian. Fast dynamic radiance fields with

time-aware neural voxels. arXiv preprint arXiv:2205.15285, 2022.

[162] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang,

Yingliang Zhang, Minye Wu, Jingyi Yu, and Lan Xu. Fourier plenoctrees

for dynamic radiance field rendering in real-time. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

13524–13534, 2022.

[163] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-

supervised nerf: Fewer views and faster training for free. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 12882–12891, 2022.

[164] Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao

Zhang, Jussi Keppo, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Devrf:

Fast deformable voxel radiance fields for dynamic scenes. arXiv preprint

arXiv:2205.15723, 2022.

[165] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 3inGAN:

Learning a 3D generative model from images of a self-similar scene. In Proc.

3D Vision (3DV), 2022.

Bibliography 123

[166] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin

Recht, and Angjoo Kanazawa. K-planes: Explicit radiance fields in space,

time, and appearance. In CVPR, 2023.

[167] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong

Yuan, Yi Xu, and Andreas Geiger. Nerfplayer: A streamable dynamic scene

representation with decomposed neural radiance fields. IEEE Transactions on

Visualization and Computer Graphics, 2023.

[168] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of

neural implicit surfaces. Advances in Neural Information Processing Systems,

34:4805–4815, 2021.

[169] Shuaifeng Zhi, Edgar Sucar, Andre Mouton, Iain Haughton, Tristan Laidlow,

and Andrew J Davison. ilabel: Interactive neural scene labelling. arXiv

preprint arXiv:2111.14637, 2021.

[170] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast

online object tracking and segmentation: A unifying approach. In Proceedings

of the IEEE/CVF conference on Computer Vision and Pattern Recognition,

pages 1328–1338, 2019.

[171] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for

optical flow. In European conference on computer vision, pages 402–419.

Springer, 2020.

[172] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel

Duckworth, David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles

Herrmann, et al. Kubric: A scalable dataset generator. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

3749–3761, 2022.

[173] Blender Online Community. Blender - a 3D modelling and rendering package.

Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

Bibliography 124

[174] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias

Nießner. 4dcomplete: Non-rigid motion estimation beyond the observable sur-

face. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 12706–12716, 2021.

[175] Ankur Handa, Thomas Whelan, John McDonald, and Andrew J Davison. A

benchmark for rgb-d visual odometry, 3d reconstruction and slam. In 2014

IEEE international conference on Robotics and automation (ICRA), pages

1524–1531. IEEE, 2014.

[176] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman.

Implicit geometric regularization for learning shapes. In Proceedings of

Machine Learning and Systems 2020, pages 3569–3579. 2020.

[177] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparam-

eterization to accelerate training of deep neural networks. Advances in neural

information processing systems, 29, 2016.

[178] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien

Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, and Steven M. Seitz.

Hypernerf: A higher-dimensional representation for topologically varying

neural radiance fields. ACM Trans. Graph., 40(6), dec 2021.

[179] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. In-

stant neural graphics primitives with a multiresolution hash encoding. arXiv

preprint arXiv:2201.05989, 2022.

[180] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. Omnidata:

A scalable pipeline for making multi-task mid-level vision datasets from

3d scans. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 10786–10796, 2021.

[181] Hung Jin Lin, Sheng-Wei Huang, Shang-Hong Lai, and Chen-Kuo Chiang.

Indoor scene layout estimation from a single image. In 2018 24th International

Conference on Pattern Recognition (ICPR), pages 842–847. IEEE, 2018.

Bibliography 125

[182] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian Chang, and

Jian Jun Zhang. Total3dunderstanding: Joint layout, object pose and mesh re-

construction for indoor scenes from a single image. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2020.

[183] Mr D Murahari Reddy, Mr Sk Masthan Basha, Mr M Chinnaiahgari Hari, and

Mr N Penchalaiah. Dall-e: Creating images from text. UGC Care Group I

Journal, 8(14):71–75, 2021.

[184] Manling Li, Ruochen Xu, Shuohang Wang, Luowei Zhou, Xudong Lin, Chen-

guang Zhu, Michael Zeng, Heng Ji, and Shih-Fu Chang. Clip-event: Connect-

ing text and images with event structures. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 16420–16429,

2022.

[185] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka.

Text2mesh: Text-driven neural stylization for meshes. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

13492–13502, 2022.

[186] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Popa Tiberiu.

Clip-mesh: Generating textured meshes from text using pretrained image-text

models. December 2022.

[187] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo,

Lei Yang, and Ziwei Liu. Motiondiffuse: Text-driven human motion genera-

tion with diffusion model. arXiv preprint arXiv:2208.15001, 2022.

[188] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Amit H Bermano,

and Daniel Cohen-Or. Human motion diffusion model. arXiv preprint

arXiv:2209.14916, 2022.

[189] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu, Lanyun Zhu, Xiaowei

Zhou, Andreas Geiger, and Yiyi Liao. Panoptic nerf: 3d-to-2d label transfer

Bibliography 126

for panoptic urban scene segmentation. In International Conference on 3D

Vision (3DV), 2022.

[190] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal,

Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised

vision transformers. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 9650–9660, 2021.

[191] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features

as dense visual descriptors. arXiv preprint arXiv:2112.05814, 2(3):4, 2021.

[192] Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacra-

mento. Continual learning with hypernetworks. In International Conference

on Learning Representations, 2020.

[193] Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang, and Hongbin

Zha. Continual neural mapping: Learning an implicit scene representation

from sequential observations. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 15782–15792, 2021.

[194] Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and Abhinav Valada.

Continual slam: Beyond lifelong simultaneous localization and mapping

through continual learning. arXiv preprint arXiv:2203.01578, 2022.

[195] Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney Mario, and Luca

Carlone. Loc-nerf: Monte carlo localization using neural radiance fields.

arXiv preprint arXiv:2209.09050, 2022.

[196] Haofei Kuang, Xieyuanli Chen, Tiziano Guadagnino, Nicky Zimmerman, Jens

Behley, and Cyrill Stachniss. Ir-mcl: Implicit representation-based online

global localization. arXiv preprint arXiv:2210.03113, 2022.

	Introduction
	Related Work
	Dynamic Indoor Scene Reconstruction
	Background Reconstruction
	Rigid Object Reconstruction
	Non-rigid Object Reconstruction
	Rigid Objects and Background Reconstruction
	Full Dynamic Scene Reconstruction

	Surface Representation
	Classical Models
	Learning-Based Models
	Differential Rendering

	Synthetic Data for Learning

	Dynamic Indoor Scene Dataset
	Introduction
	Data Generation
	Dataset Analysis
	Evaluation Metrics
	Reconstruction
	Tracking

	Discussion and Limitations

	Supervised Dynamic Objects Reconstruction
	Introduction
	Method
	Object Detection
	Object Completion and Correspondences
	Differentiable Pose Optimization
	Object Tracking and Reconstruction
	Implementation Details

	Evaluations and Results
	Comparison to State of the Art
	Does Object Completion Help Tracking?
	Real-world Dynamic RGB-D Sequences
	Detection and Completion Evaluation

	Discussion and Limitations

	Unsupervised Dynamic Scene Reconstruction
	Introduction
	Method
	Overview
	Background Reconstruction and Camera Estimation
	Asynchronous Foreground Reconstruction
	Post-Processing
	Mesh Extraction

	Evaluations and Results
	Computational Time and Implementation Details
	Evaluation on DynSynth Test Set
	Evaluation on Real-world Data
	Evaluation on CoFusion Dataset

	Discussion and Limitations

	Neural Dynamic Scene Representation
	Introduction
	Image Formation Model
	Volume Rendering
	Volume Rendering with Implicit Surface
	Attributes Rendering
	Volume Rendering with Factored Neural Representation

	Method
	Initialization
	Joint Optimization

	Evaluation
	Datasets
	Comparison
	Evaluation Metrics
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation study
	Applications
	Memory and Implementation Details

	Discussion and Limitations

	Conclusions
	Summary
	Future Work
	Remark

	Appendices
	A Glossary of the Terminology
	RigidFusion's Experiment Details
	Bibliography

