883 research outputs found

    Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

    Get PDF
    We propose a fully automatic method for fitting a 3D morphable model to single face images in arbitrary pose and lighting. Our approach relies on geometric features (edges and landmarks) and, inspired by the iterated closest point algorithm, is based on computing hard correspondences between model vertices and edge pixels. We demonstrate that this is superior to previous work that uses soft correspondences to form an edge-derived cost surface that is minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic

    MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

    Get PDF
    In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.Comment: International Conference on Computer Vision (ICCV) 2017 (Oral), 13 page

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Robust face recognition by an albedo based 3D morphable model

    Get PDF
    Large pose and illumination variations are very challenging for face recognition. The 3D Morphable Model (3DMM) approach is one of the effective methods for pose and illumination invariant face recognition. However, it is very difficult for the 3DMM to recover the illumination of the 2D input image because the ratio of the albedo and illumination contributions in a pixel intensity is ambiguous. Unlike the traditional idea of separating the albedo and illumination contributions using a 3DMM, we propose a novel Albedo Based 3D Morphable Model (AB3DMM), which removes the illumination component from the images using illumination normalisation in a preprocessing step. A comparative study of different illumination normalisation methods for this step is conducted on PIE and Multi-PIE databases. The results show that overall performance of our method outperforms state-of-the-art methods

    A fast 3D reconstruction system with a low-cost camera accessory

    Get PDF
    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object
    • …
    corecore