87,158 research outputs found

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    New Bounds for Permutation Codes in Ulam Metric

    Full text link
    New bounds on the cardinality of permutation codes equipped with the Ulam distance are presented. First, an integer-programming upper bound is derived, which improves on the Singleton-type upper bound in the literature for some lengths. Second, several probabilistic lower bounds are developed, which improve on the known lower bounds for large minimum distances. The results of a computer search for permutation codes are also presented.Comment: To be presented at ISIT 2015, 5 page

    Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. Relation of analytical code calculations to experimental performance

    Get PDF
    A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign
    corecore