6,955 research outputs found

    Special Libraries, December 1945

    Get PDF
    Volume 36, Issue 10https://scholarworks.sjsu.edu/sla_sl_1945/1009/thumbnail.jp

    SciTech News- 69(2)-2015

    Get PDF
    Columns and Reports From the Editor..........................................5 SciTech News Call for Articles.......................5 Division News Science-Technology Division.........................6 Chemistry Division.................................... 15 Engineering Division................................. 21 Aerospace Section of the Engineering Division................... 25 Architecture, Building Engineering, Construction and Design Section of the Engineering Division................... 26 Award & Other Announcements Stacey Mantooth Receives 2015 Marion E. Sparks Award for Professional Development...................................... 17 Engineering Division Awards Recipients....... 24 Engineering Division Mentoring Program...... 26 Conference Reports Post International Chemical Congress Report Held in Malaysia and Vietnam 2014, by Malarvili Ramalingam, PhD............... 18 Reviews Sci-Tech Book News Reviews...................... 2

    The birth of airplane stability theory

    Full text link
    Airplane stability theory was born at the end of the XIX century and matured around 100 years ago, when airplanes were hardly controllable yet. The success and safety of flights in the pioneer years depended upon largely unknown stability and control characteristics. Understanding the modes of airplane motion has been of paramount importance for the development of aviation. The contributions made by a few scientists in the decades preceding and following the first flight by the Wright brothers set the concepts and equations that, with minor notation aspects, have remained almost unchanged till present day.Magraner Rullan, JP.; Martinez-Val, R. (2014). The birth of airplane stability theory. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 228(9):1498-1506. doi:10.1177/0954410013494139S149815062289PERKINS, C. D. (1970). Development of airplane stability and control technology /1970 Von Karman Lecture/. Journal of Aircraft, 7(4), 290-301. doi:10.2514/3.44167Abzug, M. J., & Larrabee, E. E. (2002). Airplane Stability and Control, Second Edition. doi:10.1017/cbo9780511607141Graham, W. R. (1999). Asymptotic analysis of the classical aircraft stability equations. The Aeronautical Journal, 103(1020), 95-103. doi:10.1017/s0001924000027792Bryan, G. H., & Williams, W. E. (1904). The Longitudinal Stability of Aerial Gliders. Proceedings of the Royal Society of London, 73(488-496), 100-116. doi:10.1098/rspl.1904.0017Wegener, P. P. (1997). What Makes Airplanes Fly? doi:10.1007/978-1-4612-2254-5Pradeep, S., & Kamesh, S. (1999). Does the Phugoid Frequency Depend on Speed? Journal of Guidance, Control, and Dynamics, 22(2), 372-373. doi:10.2514/2.4391Phillips, W. F. (2000). Phugoid Approximation for Conventional Airplanes. Journal of Aircraft, 37(1), 30-36. doi:10.2514/2.2586Pamadi, B. N. (2004). Performance, Stability, Dynamics, and Control of Airplanes, Second Edition. doi:10.2514/4.862274Ananthkrishnan, N., & Ramadevi, P. (2002). Consistent Approximations to Aircraft Longitudinal Modes. Journal of Guidance, Control, and Dynamics, 25(4), 820-824. doi:10.2514/2.4952McRuer, D. T., Graham, D., & Ashkenas, I. (1990). Aircraft Dynamics and Automatic Control. doi:10.1515/978140085598

    Special Libraries, March 1955

    Get PDF
    Volume 46, Issue 3https://scholarworks.sjsu.edu/sla_sl_1955/1002/thumbnail.jp
    • …
    corecore