172 research outputs found

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    No full text
    As parasites, Plasmodium species depend upon their host for survival. During the blood stage of their life-cycle parasites invade and reside within erythrocytes, commandeering host proteins and resources towards their own ends, and dramatically transforming the host cell. Parasites aptly avoid immune detection by minimizing the exposure of parasite proteins and removing themselves from circulation through cytoadherence. Erythrocytic disorders brought on by host genetic mutations can interfere with one or more of these processes, thereby providing a measure of protection against malaria to the host. This review summarizes recent findings regarding the mechanistic aspects of this protection, as mediated through the parasites interaction with abnormal erythrocytes. These novel findings include the reliance of the parasite on the host enzyme ferrochelatase, and the discovery of basigin and CD55 as obligate erythrocyte receptors for parasite invasion. The elucidation of these naturally occurring malaria resistance mechanisms is increasing the understanding of the host-parasite interaction, and as discussed below, is providing new insights into the development of therapies to prevent this disease.We acknowledge funding support from the National Health and Medical Research Council (Grant APP605524, 490037 and 1047082), the Australian Research Council (Grant DP12010061), the National Collaborative Research Infrastructure Strategy of Australia and the Education investment fund from the Department of Innovation, Industry, Science and Research. PML is a recipient of an Australian Postgraduate award

    Impact of chronic inflammation, assessed by hs-CRP, on the association between red cell distribution width and arterial cardiovascular disease: the Tromso Study

    Get PDF
    Red cell distribution width (RDW), a measure of variability in size of circulating erythrocytes, is associated with arterial cardiovascular disease (CVD), but the underlying mechanism remains unclear. We aimed to investigate the impact of chronic inflammation as measured by high-sensitivity C-reactive protein (hs-CRP) on this relationship, and explore whether RDW could be a mediator in the causal pathway between inflammation and arterial CVD. Baseline characteristics, including RDW and hs-CRP, were obtained from 5,765 individuals attending a population-based cohort study. We followed up participants from inclusion in the fourth survey of the Tromsø Study (1994/1995) until December 31, 2012. Multivariable Cox-regression models were used to calculate hazard ratios (HR) with 95% confidence intervals (CI) for incident myocardial infarction (MI) and ischemic stroke across quintiles of hs-CRP and RDW. Subjects with hs-CRP in the highest quintile had 44% higher risk of MI (HR: 1.44, 95% CI: 1.14–1.80), and 64% higher risk of ischemic stroke (HR: 1.64, 95% CI: 1.20–2.24) compared with subjects in the lowest quintile. RDW mediated 7.2% (95% CI: 4.0–30.8%) of the association between hs-CRP and ischemic stroke. Subjects with RDW in the highest quintile had 22% higher risk of MI (HR: 1.22, 95% CI: 0.98–1.54) and 44% higher risk of ischemic stroke (HR: 1.44, 95% CI: 1.06–1.97) compared with subjects in the lowest quintile. These risk estimates were slightly attenuated after adjustments for hs-CRP. Our findings suggest that chronic inflammation is not a primary mechanism underlying the relationship between RDW and arterial CVD

    ライフサイクル・エンジニアリングの覚書

    Get PDF
    © 2015 The Authors. Human erythrocytes are highly specialized enucleate cells that are involved in providing efficient gas transport. Erythrocytes have been extensively studied both experimentally and by mathematical modeling in recent years. However, understanding of how aggregation and deformability are regulated is limited. These properties of the erythrocyte are essential for the physiological functioning of the cell. In this work, we propose a novel mathematical model of the molecular system that controls the aggregation and deformability of the erythrocyte. This model is based on the experimental results of previously published studies. Our model suggests fundamentally new mechanisms that regulate aggregation and deformability in a latch-like manner. The results of this work could be used as a general explanation of how the erythrocytes regulate their aggregation and deformability, and are essential in understanding erythrocyte disorders and aging

    Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites

    Get PDF
    Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5′-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites

    Isolated anaemia as a manifestation of Rh isoimmunisation

    Get PDF
    Rh isoimmunisation leads to haemolytic anaemia and hyperbilirubinaemia in the first h of life. Isolated early onset neonatal anaemia has rarely been reported. The authors describe the case of a term infant, born to an 'A' negative, second gravida mother. On the second day of life, pallor was noticed. His haemoglobin (Hb) was 6.8 g/dl, he had reticulocytosis and a positive direct antiglobulin test. However, he did not have a high total serum bilirubin (TSB) (87.2 μmol/l). He was transfused with red blood cells and kept under phototherapy for 3 days. Three weeks later, he received another transfusion for severe anaemia (Hb 6 5 g/dl). During this period, he was never jaundiced and the maximum level of TSB was 122 μmol/l. On follow-up, his Hb stabilised and he had no further problems. This report highlights the possibility of early onset anaemia without jaundice as the sole manifestation of Rh isoimmunisation

    Pharmacological correction of metabolic disorders in experimental acute pancreatitis on the background of chronic alcohol intoxication

    Get PDF
    Objective to determine the specific features of immunometabolic changes in acute pancreatitis in the context of short-term and chronic alcohol intoxication and to develop the ways of pharmacological correction of the detected violation
    corecore