19 research outputs found

    Error-triggered Three-Factor Learning Dynamics for Crossbar Arrays

    Get PDF
    Recent breakthroughs suggest that local, approximate gradient descent learning is compatible with Spiking Neural Networks (SNNs). Although SNNs can be scalably implemented using neuromorphic VLSI, an architecture that can learn in-situ as accurately as conventional processors is still missing. Here, we propose a subthreshold circuit architecture designed through insights obtained from machine learning and computational neuroscience that could achieve such accuracy. Using a surrogate gradient learning framework, we derive local, error-triggered learning dynamics compatible with crossbar arrays and the temporal dynamics of SNNs. The derivation reveals that circuits used for inference and training dynamics can be shared, which simplifies the circuit and suppresses the effects of fabrication mismatch. We present SPICE simulations on XFAB 180nm process, as well as large-scale simulations of the spiking neural networks on event-based benchmarks, including a gesture recognition task. Our results show that the number of updates can be reduced hundred-fold compared to the standard rule while achieving performances that are on par with the state-of-the-art

    Memory Organization for Energy-Efficient Learning and Inference in Digital Neuromorphic Accelerators

    Get PDF
    The energy efficiency of neuromorphic hardware is greatly affected by the energy of storing, accessing, and updating synaptic parameters. Various methods of memory organisation targeting energy-efficient digital accelerators have been investigated in the past, however, they do not completely encapsulate the energy costs at a system level. To address this shortcoming and to account for various overheads, we synthesize the controller and memory for different encoding schemes and extract the energy costs from these synthesized blocks. Additionally, we introduce functional encoding for structured connectivity such as the connectivity in convolutional layers. Functional encoding offers a 58% reduction in the energy to implement a backward pass and weight update in such layers compared to existing index-based solutions. We show that for a 2 layer spiking neural network trained to retain a spatio-temporal pattern, bitmap (PB-BMP) based organization can encode the sparser networks more efficiently. This form of encoding delivers a 1.37x improvement in energy efficiency coming at the cost of a 4% degradation in network retention accuracy as measured by the van Rossum distance.Comment: submitted to ISCAS202

    PCM-Trace: Scalable Synaptic Eligibility Traces with Resistivity Drift of Phase-Change Materials

    Full text link
    Dedicated hardware implementations of spiking neural networks that combine the advantages of mixed-signal neuromorphic circuits with those of emerging memory technologies have the potential of enabling ultra-low power pervasive sensory processing. To endow these systems with additional flexibility and the ability to learn to solve specific tasks, it is important to develop appropriate on-chip learning mechanisms.Recently, a new class of three-factor spike-based learning rules have been proposed that can solve the temporal credit assignment problem and approximate the error back-propagation algorithm on complex tasks. However, the efficient implementation of these rules on hybrid CMOS/memristive architectures is still an open challenge. Here we present a new neuromorphic building block,called PCM-trace, which exploits the drift behavior of phase-change materials to implement long lasting eligibility traces, a critical ingredient of three-factor learning rules. We demonstrate how the proposed approach improves the area efficiency by >10X compared to existing solutions and demonstrates a techno-logically plausible learning algorithm supported by experimental data from device measurement

    PCM-trace: Scalable Synaptic Eligibility Traces with Resistivity Drift of Phase-Change Materials

    Full text link
    Dedicated hardware implementations of spiking neural networks that combine the advantages of mixed-signal neuromorphic circuits with those of emerging memory technologies have the potential of enabling ultra-low power pervasive sensory processing. To endow these systems with additional flexibility and the ability to learn to solve specific tasks, it is important to develop appropriate on-chip learning mechanisms.Recently, a new class of three-factor spike-based learning rules have been proposed that can solve the temporal credit assignment problem and approximate the error back-propagation algorithm on complex tasks. However, the efficient implementation of these rules on hybrid CMOS/memristive architectures is still an open challenge. Here we present a new neuromorphic building block,called PCM-trace, which exploits the drift behavior of phase-change materials to implement long lasting eligibility traces, a critical ingredient of three-factor learning rules. We demonstrate how the proposed approach improves the area efficiency by >10X compared to existing solutions and demonstrates a techno-logically plausible learning algorithm supported by experimental data from device measurementsComment: Typos are fixe

    Online Few-shot Gesture Learning on a Neuromorphic Processor

    Full text link
    We present the Surrogate-gradient Online Error-triggered Learning (SOEL) system for online few-shot learningon neuromorphic processors. The SOEL learning system usesa combination of transfer learning and principles of computa-tional neuroscience and deep learning. We show that partiallytrained deep Spiking Neural Networks (SNNs) implemented onneuromorphic hardware can rapidly adapt online to new classesof data within a domain. SOEL updates trigger when an erroroccurs, enabling faster learning with fewer updates. Using gesturerecognition as a case study, we show SOEL can be used for onlinefew-shot learning of new classes of pre-recorded gesture data andrapid online learning of new gestures from data streamed livefrom a Dynamic Active-pixel Vision Sensor to an Intel Loihineuromorphic research processor.Comment: 10 pages, submitted to IEEE JETCAS for revie

    Chalcogenide optomemristors for multi-factor neuromorphic computation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The data presented and used in this publication is available from the corresponding authors on reasonable request.Code availability: The code presented and used in this publication is available from the corresponding authors on reasonable request.Neuromorphic hardware that emulates biological computations is a key driver of progress in AI. For example, memristive technologies, including chalcogenide-based in-memory computing concepts, have been employed to dramatically accelerate and increase the efficiency of basic neural operations. However, powerful mechanisms such as reinforcement learning and dendritic computation require more advanced device operations involving multiple interacting signals. Here we show that nano-scaled films of chalcogenide semiconductors can perform such multi-factor in-memory computation where their tunable electronic and optical properties are jointly exploited. We demonstrate that ultrathin photoactive cavities of Ge-doped Selenide can emulate synapses with three-factor neo-Hebbian plasticity and dendrites with shunting inhibition. We apply these properties to solve a maze game through on-device reinforcement learning, as well as to provide a single-neuron solution to linearly inseparable XOR implementation.Engineering and Physical Sciences Research Council (EPSRC)John Fell Fun
    corecore