186 research outputs found

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm

    Improved decoding of affine-variety codes

    Get PDF
    General error locator polynomials are polynomials able to decode any correctable syndrome for a given linear code. Such polynomials are known to exist for all cyclic codes and for a large class of linear codes. We provide some decoding techniques for affine-variety codes using some multidimensional extensions of general error locator polynomials. We prove the existence of such polynomials for any correctable affine-variety code and hence for any linear code. We propose two main different approaches, that depend on the underlying geometry. We compute some interesting cases, including Hermitian codes. To prove our coding theory results, we develop a theory for special classes of zero-dimensional ideals, that can be considered generalizations of stratified ideals. Our improvement with respect to stratified ideals is twofold: we generalize from one variable to many variables and we introduce points with multiplicities

    Correcting errors and erasures via the syndrome variety

    Get PDF
    AbstractWe propose a new syndrome variety, which can be used to decode cyclic codes. We present also a generalization to erasure and error decoding. We can exhibit a polynomial whose roots give the error locations, once it has been specialized to a given syndrome. This polynomial has degree t in the variable corresponding to the error locations and its coefficients are polynomials in the syndromes

    Construction and decoding of a class of algebraic geometry codes

    Get PDF

    On the key equation over a commutative ring

    Get PDF
    We define alternant codes over a commutative ring R and a corresponding key equation. We show that when the ring is a domain, e.g. the p-adic integers, the error–locator polynomial is the unique monic minimal polynomial (shortest linear recurrence) of the syndrome sequence and that it can be obtained by Algorithm MR of Norton. When R is a local ring, we show that the syndrome sequence may have more than one (monic) minimal polynomial, but all the minimal polynomials coincide modulo the maximal ideal of R. We characterise the minimal polynomials when R is a Hensel ring. We also apply these results to decoding alternant codes over a local ring R: it is enough to find any monic minimal polynomial over R and to find its roots in the residue field. This gives a decoding algorithm for alternant codes over a finite chain ring, which generalizes and improves a method of Interlando et. al. for BCH and Reed–Solomon codes over a Galois ring
    corecore