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Graham H. Norton, Dept. Mathematics, Univ. of Queensland, Brisbane

Ana Sălăgean, Dept. Mathematics, Nottingham Trent Univ., Nottingham, U.K.

Abstract

We define alternant codes over a commutative ring R and a corresponding key equation.
We show that when the ring is a domain, e.g. the p-adic integers, the error–locator polynomial
is the unique monic minimal polynomial (shortest linear recurrence) of the syndrome sequence
and that it can be obtained by Algorithm MR of Norton.

When R is a local ring, we show that the syndrome sequence may have more than one
(monic) minimal polynomial, but all the minimal polynomials coincide modulo the maximal
ideal of R. We characterise the minimal polynomials when R is a Hensel ring. We also apply
these results to decoding alternant codes over a local ring R: it is enough to find any monic
minimal polynomial over R and to find its roots in the residue field. This gives a decoding
algorithm for alternant codes over a finite chain ring, which generalizes and improves a method
of Interlando et. al. for BCH and Reed–Solomon codes over a Galois ring.

1 Introduction

Block codes over finite rings were initially studied in [Bla75, Sha79]. A modification of the
Berlekamp–Massey algorithm for Z/mZ was given in [RS85], where it was claimed [loc. cit.,
Introduction] (without proof) to decode BCH codes defined over the integers modulo m. This
relatively classical topic was recently reinvigorated with the publication of the landmark paper
[HKC+94]. An algorithm to decode BCH and Reed–Solomon codes over a Galois ring has been
given in [IPE97]. See also [Nor98], which gives an analogue of the Berlekamp–Massey algorithm to
find a monic minimal polynomial (shortest linear recurrence) for any finite sequence over a finite
chain ring (e.g. a Galois ring) and which has quadratic complexity. Both of the latter algorithms
require root–finding in the ring itself.

We define alternant codes and a corresponding key equation over a commutative ring with identity,
R. Important examples of alternant codes over a ring are BCH and Reed–Solomon codes over a
Galois ring. We concentrate on decoding alternant codes over a domain or a local ring.

When R is a domain, the error–locator polynomial is the unique monic minimal polynomial (short-
est linear recurrence) of the syndrome sequence; see Theorem 4.4. We show that it can be easily
obtained using Algorithm MR of [Nor95]. Once we have the error–locator polynomial, the error
locations and magnitudes can be computed in the same way as over a field. Hence we can decode
any alternant code over a domain, e.g. the p-adic integers.

When R is a Hensel ring, i.e. a local ring which admits Hensel lifting (e.g. a finite local ring), we
characterize in Theorem 4.8 the set of monic minimal polynomials of a finite syndrome sequence
over R (there may be more than one). Our characterization is independent of any particular
algorithm, the number of roots of a minimal polynomial and the theory of Linear Systems over
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a finite ring, cf. [IPE97]. We also show (Theorem 4.5) that for any local ring, the minimal
polynomials of a syndrome sequence coincide modulo the maximal ideal M of R.

We apply these results to give a new decoding algorithm (Algorithm 5.1) for alternant codes
over a local ring R, once a minimal polynomial µ of the syndrome sequence is known. It turns
out that for determining the error locations it is enough to find the roots of the image of any
such minimal polynomial in the residue field. This is also more efficient than finding roots in
R, cf. [IPE97, Nor98]. After determining the error locations, the error magnitudes can easily be
computed. When R is a finite chain ring i.e. a finite ring in which all the ideals are linearly ordered
by inclusion (or equivalently a finite local ring with principal maximal ideal), we invoke Algorithm
MP of [Nor98] to find a monic minimal polynomial µ. Our method can be applied to any alternant
code over a finite chain ring, in particular to BCH and Reed–Solomon codes over a Galois ring.

It would be interesting to extend Algorithm MP of [Nor98] to a local ring (which is not necessarily
finite and where M is not necessarily principal). We would then be able to decode alternant codes
over a local ring.

2 Preliminaries

2.1 Subtractive subsets

Let R be a commutative ring with 1 6= 0. Let N(R) denote the subset of R consisting of all
elements which are not zero–divisors. Then N(R) is a multiplicative subset of R which contains
the units of R. (If R is a domain which is not a field, then by definition, R has elements which are
neither zero–divisors nor units. For example, if R is the domain of p–adic integers then p ∈ N(R),
but p is not a unit of R.)

The following result generalizes the trivial fact that if a ∈ N(R) and ax = 0, then x = 0:

Lemma 2.1 If A is a square matrix over R and det(A) ∈ N(R), then the homogeneous linear
system Ax = 0 has only the trivial solution.

Proof. For a linear system Ax = b over a ring, we have by Cramér’s rule (see [McD84, page 80])
det(A)xi = det(Ai) for i = 1, . . . , n, where Ai is the matrix obtained from A by replacing the ith

column by b. In our case b = 0, so det(A)xi = 0 for 1 ≤ i ≤ n. Finally, det(A) ∈ N(R) so the only
solution is xi = 0, i = 1, . . . , n. 2

The following notion is motivated by minimum distance considerations (Theorem 3.3).

Definition 2.2 We say that S ⊆ N(R) is subtractive in N(R) if for all distinct a, b ∈ S, a− b ∈
N(R).

We will abbreviate ‘subtractive in N(R)’ to ‘subtractive’. Clearly R is a domain iff all subsets of
R \ {0} are subtractive. If n ≥ 2, then {1, 1 + n} ⊆ Zn2 is not subtractive.

Lemma 2.3 If f ∈ R[X] has the distinct roots ri where 1 ≤ i ≤ n and {r1, . . . , rn} is subtractive,
then

∏n
i=1(X − ri)|f .

Proof. Since X − r1 is monic, the usual argument over a field shows that (X − r1)|f . Hence
f = (X − r1)g1 for some g1 ∈ R[X]. Evaluating at r2, we obtain (r2 − r1)g1(r2) = 0. Since
r2 − r1 ∈ N(R), we have g1(r2) = 0, i.e. f = (X − r1)(X − r2)g2 for some g2 ∈ R[X]. Continuing
in this way, we obtain f = gn

∏n
i=1(X − ri) for some gn ∈ R[X]. 2
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Note that this result fails if we drop the condition that {r1, . . . , rn} be subtractive. For example, if
n ≥ 3, f = (X − 1)2 ∈ Zn2 [X] and ri = 1 + (i− 1)n for i = 1, . . . , n, then f(ri)=0 for i = 1, . . . , n,
but

∏n
i=1(X − (i− 1)n) 6 |f .

2.2 Local Rings

If R is a local ring, let M be the maximal ideal of R and K = R/M the residue field. For any
element y ∈ R we will denote by y its image under the canonical projection from R to K. We
extend this projection in the natural way to a projection from R[X] to K[X]. For a set S ⊆ R[X]
we define S = {s : s ∈ S}. We can regard a field F as a local ring with M = (0) and F → K the
identity map.

Recall that the units of R are exactly the elements of R\M and all zero–divisors of R are contained
in M . The following result is known (see for example [McD74, Exercise I.8]). We give a simple
proof for completeness.

Proposition 2.4 Let R be a finite ring. Then every element of N(R) is a unit.

Proof. Let A be the set of non–units of R. Let x ∈ N(R) and assume x is not a unit, i.e. x ∈ A.
Then xR ⊆ A. Since |A| < |R| < ∞, we must have rx = r′x for distinct r, r′ ∈ R i.e. x is a
zero–divisor, which is a contradiction. 2

We give now a few simple properties of subtractive sets in local rings.

Lemma 2.5 Let R be a local ring and r, r′ ∈ R. Then r 6= r′ iff r − r′ is a unit of R.

Corollary 2.6 Let R be a local ring and S a finite subset of R.

(i) If |S| = |S|, then S is subtractive.

(ii) If all elements of N(R) are units (in particular if R is finite), then S is subtractive iff |S| = |S|.
(iii) If S = {1, γ, . . . , γn−1} and γ is a unit in R such that γ has order at least n, then |S| = |S|
and S is subtractive.

Note that for rings with elements that are neither units nor zero–divisors, the property that
|S| = |S| is strictly stronger than S being subtractive. For example in the ring of p-adic integers
the set {1, 1 + p} is subtractive but 1 = 1 + p = 1.

By a monic polynomial, we mean a non–zero polynomial with leading coefficient 1.

Definition 2.7 (Hensel ring) We say that a local ring R is a Hensel ring if R admits Hensel
lifting i.e.

if F ∈ R[X] is monic, F = g · h and g, h ∈ K[X] satisfy (g, h) = 1,

then there are monic G, H ∈ R[X] such that

F = G ·H and G = g, H = h.

From now on, we will say ‘lift’ for ‘Hensel lift’. The following theorem is an analogue of [McD74,
Lemma XV.1] for Hensel rings. The proof is similar.

Theorem 2.8 If R is a Hensel ring, F ∈ R[X] is monic and α ∈ K is a simple root of F , then
there is a unique root β ∈ R of F such that β = α. We call β the lift of α.
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The next result is useful for constructing Galois extensions and cyclic codes. A similar version
appears in [Sha79, Theorem 3]. We let ord( ) denote the order function on R and on K.

Theorem 2.9 Let R be a Hensel ring and let n be a natural number not divisible by the charac-
teristic of K. Assume there is an α ∈ K such that αn = 1. Then there is a unique β in R such
that βn = 1 and β = α. Moreover ord(β) = ord(α).

Proof. Since ord(α)|n and n is not divisible by the characteristic of K, Xord(α) − 1 has only
simple roots in K. So by Theorem 2.8, there is a unique β such that βn = 1 and β = α.

From βord(β) = 1 = β
ord(β)

we infer that ord(β)| ord(β). Hence we can write Xord(β) − 1 =
(Xord(β)−1)h for some h ∈ R[X]. The root β of Xord(β)−1 can be lifted to a root γ of Xord(β)−1
in R and ord(γ)| ord(β). Now both γ and β are roots of Xord(β) − 1 and γ = β. Since ord(β)|n,
all roots of Xord(β) − 1 are simple, so by Theorem 2.8, β = γ and so ord(β)| ord(β)). We conclude
that ord(β) = ord(β). 2

It is well–known that if R is complete in its M–adic topology, then R is a Hensel ring. For more
details on general Hensel rings, see [Eis95].

A finite local ring is a Hensel ring (see [McD74, Theorem XII.4]). Finite local rings are completely
classified (see the structure theorems in [McD74, Chapter XVII]). Recall that chain ring is a ring
in which all its ideals are linearly ordered by inclusion and that R is a finite chain ring iff it is a
finite local ring with M principal.

If p is a prime and a, l ∈ N are strictly positive, the Galois ring R = GR(pa, l) is the quotient
ring Zpa [y]/(f), where f is a monic irreducible polynomial of degree l such that f is irreducible in
Zp[y]. It is a finite local ring with M = (p) and K = GF (pl). The integers modulo a power of a
prime and their Galois extensions are important special cases of finite chain rings and we refer the
reader to [McD74, Ch. XVI] for the general theory.

An important example of an infinite Hensel ring is the ring of p–adic integers, denoted Zp∞ . For
details on the construction and properties of p–adic numbers we refer the reader to [Coh89, Ch. 8].
The ring of p–adic integers is a unique factorization domain with M = (p). We can construct Galois
extensions of Zp∞ in a way similar to the Galois extensions of Zpa above (see [CS95]). Namely, we
put GR(p∞, l) = Zp∞ [y]/(f), where f is a monic irreducible factor of degree l of Xpl−1− 1. (Such
an f can be obtained by lifting the factorisation of Xpl−1 − 1 from Zp[y]). Such a Galois ring is
again a Hensel ring with M = (p). The canonical projections from Zp∞ to each Zpa , a ≥ 1 can be
extended in a natural way to projections from GR(p∞, l) to GR(pa, l).

2.3 Laurent series

We will use the following fact without further mention.

Proposition 2.10 If f, g ∈ R[X], f is monic and deg(g) ≤ deg(f), then g/f ∈ R[[X−1]].

Proof. If d = deg(f) then f = Xd(1 + fd−1X
−1 + . . . + f0X

−d) = Xd(1 − h) say, and (1 −
h)−1 = 1 + h + h2 + . . . ∈ R[[X−1]]. Thus 1/f ∈ X−dR[[X−1]], and if deg(g) ≤ d, g/f ∈
Xdeg(g)−dR[[X−1]] ⊆ R[[X−1]]. 2

As usual, R((X−1)) denotes the ring of Laurent series in X−1. For i ∈ Z and F ∈ R((X−1)), Fi is
the coefficient of Xi in F and we extend the degree function on R[X] by δ(F ) = max{i : Fi 6= 0}
for F 6= 0, with the convention δ(0) = −∞. Thus F =

∑
i≤δ(F ) FiX

i and δ(FG) ≤ δ(F ) + δ(G).
The ring of Laurent polynomials R[X−1, X] is a subring of R((X−1)).

4



As in [Nor95], we prefer to study finite and linear recurring sequences by exploiting R((X−1))
as an R[X]–module (i.e. to let R[X] act on R((X−1)) by multiplication in R((X−1))), rather
than using R[[X]] and reciprocals of polynomials. [Thus we avoid defining linear recurrences using
reciprocals. (Writing f∗ for the reciprocal of f ∈ R[X], it is easy to find polynomials f, g with
(f + g)∗ 6= f∗ + g∗.) We also avoid an additional order function on R[[X]] and ‘linear feedback
shift–registers (LFSR’s)’.]

We note that the theory and resulting Algorithm MP of [Nor98] is both simpler and more general
than the LFSR approach of [RS85]. Also, the algorithm reduces to the monic version of Algorithm
MP of [Nor95] when R is a field.

Thus we index R–sequences negatively: the letter s denotes the infinite sequence s0, s−1, s−2, . . .
of elements of R, so that the generating function of s is Γ(s) =

∑
i≤0 siX

i. We will also use the
fact that R((X−1)) = R[[X−1]]⊕XR[X].

We say that f ∈ R[X] annihilates s if (f · Γ(s))i = 0 for all i ≤ 0, and write Ann(s) for the set of
all polynomials f which annihilate s. Clearly f ∈ Ann(s) iff f · Γ(s) ∈ XR[X] and s is a linear
recurring sequence iff Ann(s) 6= (0). By a minimal polynomial of s, we mean a monic annihilating
polynomial of s which has minimal degree amongst all monic annihilating polynomials of s, and
we write Min(s) for the set of minimal polynomials of s. (In fact Ann(s) is an ideal, and when R
is a field, it is generated by a minimal polynomial of s.) The degree of a polynomial in Min(s) is
called the complexity of s. For any polynomial f we define

β(f, s) =
δ(f)∑

i=1

(fΓ(s))iX
i.

We now extend these definitions to cover the case of a finite sequence as in [Nor98]. For m ∈ Z,
m ≤ 0, we denote by s|m the finite sequence s0, s−1, s−2, . . . , sm of elements in R. The generating
function of s|m is Γ(s|m) =

∑
m≤i≤0 siX

i. A polynomial f ∈ R[X] annihilates s|m if (fΓ(s|m))i =
0 for all i such that m+δ(f) ≤ i ≤ 0. We denote by Ann(s|m) the set of polynomials that annihilate
s|m. Note that any polynomial of degree at least 1−m is vacuously in Ann(s|m). Also, we have
Ann(s) ⊆ Ann(s|m− 1) ⊆ Ann(s|m).

By a minimal polynomial of s|m, we mean a monic annihilating polynomial of s|m which has min-
imal degree amongst all monic annihilating polynomials of s|m. The set of all monic polynomials
will be denoted by Min(s|m). Note that any s|m has a monic annihilating polynomial e.g. X1−m

and hence has a (monic) minimal polynomial. The unique degree of the polynomials in Min(s|m)
is called the complexity of s|m.

In the case of a finite sequence, we define

β(f, s|m) =
δ(f)∑

i=1

(fΓ(s|m))iX
i.

From the definition of an annihilating polynomial, we see that f ∈ Ann(s|m) iff fΓ(s|m) =
β(f, s|m) + F for some F ∈ R[X−1] with δ(F ) < m + δ(f).

Example 2.11 As an exercise for the reader, we observe that if m = −1, s0 is not a unit in R
and s−1 is not divisible by s0, then s0X − s−1 ∈ Ann(s|m), but the complexity of s|m is 2.

We conclude by collecting here a few technical results needed below. The following lemma is
straightforward.

Lemma 2.12
(i) If f ∈ Ann(s), then fΓ(s) = β(s| − δ(f))
(ii) For any m ≤ −δ(f) we have β(f, s|m) = β(f, s| − δ(f)).
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The next lemma is [Nor95, Corollary 3.25] which holds, with the same proof, for arbitrary R. We
include the proof for the convenience of the reader.

Lemma 2.13 Let f, g ∈ Ann(s|m). If δ(f) + δ(g) ≤ 1−m then fβ(g, s|m) = gβ(f, s|m).

Proof. We have fΓ(s|m) = β(f, s|m) + F for some F with δ(F ) ≤ m + δ(f)− 1, and gΓ(s|m) =
β(g, s|m) + G with δ(G) ≤ m + δ(g) − 1. Then fgΓ(s|m) = gβ(f, s|m) + gF = fβ(g, s|m) + fG,
hence fβ(g, s|m)− gβ(f, s|m) = gF − fG. For the degrees we have δ(fβ(g, s|m)− gβ(f, s|m)) =
δ(gF − fG) ≤ m + δ(f) + δ(g) − 1 ≤ 0. But fβ(g, s|m) − gβ(f, s|m) ∈ XR[X], so we can only
have fβ(g, s|m)− gβ(f, s|m) = 0. 2

3 Codes and decoding

3.1 Alternant codes

Definition 3.1 (Alternant codes) Let d ≥ 2, N = N(R) and T be a subring of R. Suppose
that α = (α1 . . . , αn) and y = (y1, . . . , yn) are such that {α1 . . . , αn} is subtractive and yi ∈ N for
1 ≤ i ≤ n. If

H =




y1 y2 . . . yn

y1α1 y2α2 . . . ynαn

y1α
2
1 y2α

2
2 . . . ynα2

n
...

...
...

y1α
d−2
1 y2α

d−2
2 . . . ynαd−2

n




(1)

then the alternant code of length n and alphabet T defined by H is the T–module

A(α, y, d) = {c ∈ Tn : Hctr = 0}.

As usual, H is called the parity check matrix.

Example 3.2 When R = GF (qa) and T = GF (q), we obtain the usual notion of an alternant
code, see e.g. [MS77, Chapter 12]. Indeed, the natural projection induces a T–homomorphism of
codes

A(α, y, d) → A(α, y, d),

where α, y have the obvious meaning.

Theorem 3.3 The minimum Hamming distance of A(α, y, d) is at least d.

Proof. We use the classical argument. If there were a codeword of weight d − 1 or less, having
the positions of the non–zero entries among i1, . . . , id−1 say, then the homogeneous system Ax = 0,
where A consists of columns i1, . . . , id−1 of H, would have a non–trivial solution. But we will show
this system can only have the trivial solution.

The matrix A is vanderMonde with determinant det(A) = yi1yi2 . . . yid−1

∏
1≤j<k≤d−1(αik

−αij ) ∈
N since all yij ∈ N and {α1, . . . , αn} is subtractive. The result now follows from Lemma 2.1. 2

BCH and Reed–Solomon codes are particular cases of alternant codes and we can also specialize
R to Galois and p–adic rings:

Example 3.4 (BCH codes over a Galois ring) To define a BCH code of length n over a Ga-
lois ring T = GR(pa, l1), we take an extension ring R = GR(pa, l) such that l1|l and n|pl − 1.
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Then there exists γ a primitive nth root of unity in R (see [McD74, Theorem XVI.9]). Actually,
by Theorem 2.9 γ is the lift of a primitive nth root of unity in GF (pa), hence the order of γ is n.

In the definition of alternant codes we put yi = (γb)i−1 for some b ≥ 0, and αi = γi−1 for 1 ≤ i ≤ n.
Since γ has order n, by Corollary 2.6, α1, . . . , αn are distinct and {α1, . . . , αn} is subtractive. We
then obtain the classical form of the parity check matrix for a BCH code of length n and designed
distance d:

H =




1 γb (γb)2 . . . (γb)n−1

1 γb+1 (γb+1)2 . . . (γb+1)n−1

...
...

...
...

...
1 γb+d−2 (γb+d−2)2 . . . (γb+d−2)n−1


 (2)

The code is cyclic and the generator polynomial is the product of the distinct minimal polynomials
of γb, γb+1, . . . , γb+d−2 over T [X]. This construction coincides with that of [Sha79].

Example 3.5 (Reed–Solomon codes over a Galois ring) These are defined like BCH codes,
except that now the alphabet T of the code is R, which is taken to contain the nth roots of unity.
In [Bla75], Reed–Solomon codes over R = Zpa of length n|p − 1 are defined in a slightly different
way, namely γ ∈ Zpa is taken to be an element of Zp of order n in Zp. The parity check matrix is
as in (2). The order of γ in Zpa is not necessarily n, but a multiple of n, and therefore these codes
are not necessarily cyclic. (See e.g. [IPE97, Example 1, p. 1018].) The order of γ is still n, so
again, by Corollary 2.6, α1, . . . , αn are distinct and {α1, . . . , αn} = {γ0, . . . , γn−1} is subtractive.
Hence these Reed–Solomon codes are alternant codes as well. Moreover, they are a particular case
of the generalised Reed–Solomon codes we will introduce below in Example 3.7.

Example 3.6 (BCH codes over the p–adic integers) Cyclic codes over the p–adic integers
were introduced in [CS95]. To construct a BCH code of length n and designed distance d over
T = Zp∞ , we consider a Galois ring R = GR(Zp∞ , l) where n|pl−1. The n simple roots of Xn−1
over GF (pl) lift to n simple roots of Xn−1 in GR(Zp∞ , l). By Theorem 2.9, the lift of a primitive
root will be primitive. We take γ a primitive nth root of unity in GR(Zp∞ , l) and construct the
parity check matrix of the code as in (2). Again, γ has order n, so by Corollary 2.6, α1, . . . , αn

are distinct and {α1, . . . , αn} is subtractive. The code is cyclic and the generator polynomial is
the product of the distinct minimal polynomials of γb, γb+1, . . . , γb+d−2 over T [X]. Note that by
projecting this code to Zpa we obtain a BCH code as in Example 3.4.

Example 3.7 (Generalised Reed–Solomon codes over finite rings) When T = R we will
call the alternant code a generalised Reed–Solomon code. We will assume that R is a finite ring.
As in [MS77, Ch. 10,§8.], we denote this code by GRSk(α, y), with k = n − d + 1. We will show
that GRSk(α, y) is a free R–module of rank k, its minimum distance is d and the dual code is
GRSn−k(α, y′), for suitably chosen y′.

By elementary row operations we get an equivalent form of H having the first d − 1 columns in
triangular form:




y1 y2 y3 . . . yk . . . yn

0 y2(α2 − α1) y3(α3 − α1) . . . yk(αk − α1) . . . yn(αn − α1)
0 0 y3

∏2
i=1(α3 − αi) . . . yk

∏2
i=1(αk − αi) . . . yn

∏2
i=1(αn − αi)

...
...

...
...

...
0 0 0 . . . yk

∏k−1
i=1 (αk − αi) . . . yn

∏k−1
i=1 (αn − αi)




So far we did not need any divisions, we only subtracted from some rows of H other rows multiplied
by suitable constants. Since R is finite, by Proposition 2.4 the set N(R) coincides with the units of
R, hence all yi and all differences αi−αj are units. We can therefore apply further row operations,
including division by units, and bring H to a standard form H = (Id−1|A) for some matrix A. As
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usual, a generator matrix can be obtained as G = (−Atr|Ik). The rows of the generator matrix are
linearly independent hence they are a basis for the module. By Theorem 3.3 we know the minimum
distance is at least d. Any row of G is a codeword of weight d, hence the minimum distance of the
code is exactly d.

The proof that the dual of GRSk(α, y) is GRSn−k(α, y′), for suitably chosen y′, is similar to the
one for fields ([MS77, Theorem 4, Ch. 8]). For the two codes to be orthogonal, it suffices that
y′ satisfies the system of n equations in n − 1 unknowns

∑n
i=1 yiy

′
iα

j
i = 0, j = 0, . . . , n − 1. The

determinant of any n − 1 columns of the matrix of the system is vanderMonde and it is a unit.
Putting for example yn = 1 and solving the system by Cramér’s rule, we get a solution y with all
the yi’s units.

3.2 A key equation

For decoding alternant codes we follow the main steps of algebraic decoding of alternant codes
over finite fields. Suppose that the codeword c is received as r = c + e. We have to find the error
vector e given the syndrome vector Hrtr = Hetr.

We will assume henceforth that d = 2t + 1 ≥ 3 and that the number of errors is w = wtH(e) ≤ t.
Let i1, i2, . . . , iw be the positions of the errors. As usual, αi1 , . . . , αiw are called the error locations
and ei1 , . . . , eiw the error magnitudes. We will treat the syndrome vector as a finite sequence.

Definition 3.8 (Syndrome sequence) The syndrome sequence of the error e is the finite se-
quence s|m, with m = 1− 2t, defined by:

si =
n∑

k=1

ekykα−i
k =

w∑

j=1

eij yij α
−i
ij

.

Definition 3.9 (Error polynomials) We define the error–locator and –evaluator polynomials
by

σe =
w∏

j=1

(X − αij ) and ωe =
w∑

j=1

eij yij

∏
k=1,...,w

k 6=j

(X − αik
).

If we know the coefficients of σe and ωe then we can find the error locations by finding the roots of
σe in R. From the definition of the error–locator and error–evaluator polynomial we get, for each
unknown eij a linear equation in R:

eij σ
′
e(αij )yij = ωe(αij )

Let us put aj = σ′e(αij )yij and bj = ωe(αij ), so that the equation is ajeij = bj . We know that a
solution of this equation does exist (we assumed the number of errors is at most t), hence aj |bj .
Moreover, we can easily check that aj ∈ N(R), hence the equation cannot have more than one
solution. This means that the quotient bj/aj is well defined and that we can compute the error
magnitudes as:

eij = ωe(αij )/(σ′e(αij )yij ). (3)

Remark 3.10 In the classical literature σ∗e and Xδσe−1−δωeω∗e are called the error–locator and the
error–evaluator polynomial respectively.

We first set up an equation in R[[X−1]]:
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Definition 3.11 (Key equation) Let G =
∑

m≤i≤0 GiX
i ∈ R[X−1]. We say that (f, h) ∈

R[X] × XR[X] is a solution of the key equation defined by G and Xm−1 if f is monic, δ(h) ≤
δ(f) ≤ −m and

G ≡ h/f mod Xm−1. (4)

A solution (f, h) is called minimal if δ(f) is minimal.

Remark 3.12 Equation (4) is an analogue of the usual key equation in R[[X]], see e.g. [MS77,
Eqn. (68), p. 366]. A simpler, equivalent criterion for (f, h) to be a solution of Equation (4) is
that δ(fG − h) < m + δ(f) in R((X−1)) (i.e. that (f, h) ‘realize’ G0, . . . , Gm in the terminology
of [Nor95]), but we have given an equation in R[[X−1]] to reflect the usual one.

Lemma 3.13 Suppose given an alternant code with parity check matrix H and designed distance
2t + 1. If w = wtH(e) ≤ t and s|1 − 2t is the syndrome sequence, then (σe, Xωe) solves the key
equation defined by Γ(s|1− 2t) and X−2t.

The proof that (σe, Xωe) solves our key equation (defined by Γ(s|1 − 2t) and X−2t) is similar
to [MS77, Ch. 12,§9], and is omitted. However, the minimality of the solution (σe, Xωe) is not
obvious and will be proved in Section 4. We will also show that, unlike in the case of a field, the
key equation does not necessarily have a unique solution. Nevertheless, it will turn out that any
minimal solution can be used for determining the error polynomials and hence the error.

The connection between the key equation and minimal polynomials becomes clear from the follow-
ing lemma:

Lemma 3.14 The pair (f, h) ∈ R[X]×XR[X] is a minimal solution of the key equation defined
by Γ(s|m) and Xm−1 ⇔ δ(f) ≤ −m, f ∈ Min(s|m) and h = β(f, s|m).

Proof. ⇒: This is an easy consequence of the definitions. ⇐: This is similar to the proof of
[Nor95, Proposition 2.6] and is omitted. 2

Hence we can concentrate on finding minimal polynomials.

4 Characterization of minimal polynomials

The purpose of this section is to characterize the (monic) minimal polynomials of the finite (and
infinite) sequences which can be written as finite sums of geometric sequences. In particular, the
syndrome sequence of an alternant code is of this type.

Let w ≥ 1 and a1, . . . , aw, γ1, . . . , γw non–zero elements of R, with γ1, . . . , γw all distinct. For the
moment we will not impose other restrictions on the γi’s. We define the sequence s by:

si =
w∑

j=1

ajγ
−i
j for all i ≤ 0.

Let m = 1− 2w, so s|m is the finite sequence consisting of the first 2w terms of s.

Throughout this section, we set σ =
∏w

j=1(X − γj).

The following is a more general form of Lemma 3.13. The proof is similar.

Lemma 4.1 The polynomial σ satisfies:
(i) σ ∈ Ann(s)
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(ii) σΓ(s) = Xω where ω =
w∑

j=1

aj

∏
k=1,...,w

k 6=j

(X − γk)

(iii) σ′(γj) =
∏

k=1,...,w

k 6=j

(γj − γk) for j = 1, . . . , w

(iv) ω(γj) = ajσ
′(γj) for j = 1, . . . , w

(v) β(σ, s| − w) = Xω.

Theorem 4.2 If zj ∈ R are such that zjaj = 0 for j = 1, . . . , w, then f =
∏w

j=1(X − γj − zj) ∈
Ann(s).

Proof. Let u be the sequence given by ui =
∑w

j=1 aj(γj + zj)−i for i ≤ 0. By Lemma 4.1,
f ∈ Ann(u). If zjaj = 0 for 1 ≤ j ≤ w, then si =

∑w
j=1 ajγ

−i
j = ui for i ≤ 0 and so f ∈ Ann(u) =

Ann(s). 2

Note that with the assumptions so far, σ is not necessarily a minimal polynomial for s. For example,
in R = Zp2 , let w = 2, a1 = a2 = 1, γ1 = 1 + p, γ2 = 1 + 3p. Then si = (1 + p)−i + (1 + 3p)−i =
2− 4ip = 2(1 + 2p)−i and σ = (X − 1− p)(X − 1− 3p) annihilates s, but so does X − 1− 2p.

Lemma 4.3 Let f ∈ Ann(s|m) with δ(f) ≤ w. Then f(γj)ajγjσ
′(γj) = 0 for j = 1, . . . , w.

Proof. By Lemma 2.13 we have fβ(σ, s|m) = σβ(f, s|m) since δ(f) + δ(σ) ≤ 2w = 1 −m. By
Lemmas 2.12 and 4.1, β(σ, s|m) = β(σ, s| − w) = Xω. Hence fXω = σβ(f, s|m). Evaluating this
identity at γj we get f(γj)γjω(γj) = 0 since γj is a root of σ. Using Lemma 4.1(iv) we get the
identity we are looking for. 2

For the remainder of this section, we will assume that {γ1, . . . , γw} ⊆ N(R) is subtractive.

Theorem 4.4 The following assertions are equivalent:
(i) {f ∈ Ann(s|m) \ {0} : f of minimal degree} = {rσ : r ∈ R \ {0}}
(ii) Min(s|m) = {σ}
(iii) {a1, . . . , aw} ⊆ N(R).

Proof. (i) ⇒ (ii) When there are monic polynomials among the elements of Ann(s|m) of minimal
degree (as is the case in (i)), these polynomials are exactly the elements of Min(s|m).

(ii) ⇒ (iii) Suppose without loss of generality that a1 is a zero–divisor, with z1 6= 0 such that
a1z1 = 0. By Theorem 4.2, f = (X − γ1 − z1)

∏w
j=2(X − γj) = σ − z1

∏w
j=2(X − γj) ∈ Ann(s|m).

The polynomial f is monic, of the same degree as σ but distinct from σ, so that (ii) fails.

(iii) ⇒ (i) Let f ∈ Ann(s|m) be non–zero and of minimal degree. Then δ(f) ≤ δ(σ) = w. By
Lemma 4.3, f(γj)ajγjσ

′(γj) = 0 for 1 ≤ j ≤ w. All of the factors in this expression except
f(γj) are in N(R), so the relation simplifies to f(γj) = 0. Since {γ1, . . . , γw} is subtractive by
Lemma 2.3, there is some g ∈ R[X] such that f = g

∏w
j=1(X−γj) = gσ, and g must be a constant

since deg(f) ≤ w. 2

In particular, the assertions in the theorem above always hold when R is a domain.

We note that Theorem 4.4 does not apply to the sequence of Example 2.11 since it is not a sum of
geometric sequences.

Theorem 4.5 Let R be a local ring, γj be distinct for 1 ≤ j ≤ w and let µ ∈ Min(s|m). Then

µ = σ =
w∏

j=1

(X − γj).
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Proof. From Lemma 4.3 we know µ(γj)ajγj

∏
k=1,...,w

k 6=j

(γj−γk) = 0. Since {γ1, . . . , γw} is subtractive,

all γj ’s and all differences γj−γk are in N(R). Hence the previous relation simplifies to ajµ(γj) = 0.
Since aj 6= 0, this implies µ(γj) is a zero–divisor and so µ(γj) = µ(γj) = 0 for j = 1, . . . , w. Since
the γj are distinct, σ|µ. Now µ is monic and of minimal degree, δ(µ) = δ(µ) ≤ δ(σ) = w, so µ = σ.

2

Corollary 4.6 If R is a domain or R is a local ring and the γj are distinct for 1 ≤ j ≤ w, then
(i) the complexity of s and of s|m is w and (ii) σ ∈ Min(s) ⊆ Min(s|m).

The next Corollary follows from Theorem 4.2 and Corollary 4.6 (i).

Corollary 4.7 If R is a local ring, γj are distinct for 1 ≤ j ≤ w, and zi ∈ R are such that aizi = 0
for 1 ≤ j ≤ w then

∏w
j=1(X − γj − zj) ∈ Min(s).

The following theorem characterizes the polynomials in Min(s|m) and Min(s) when R is a Hensel
ring, and in particular when R is a finite local ring.

Theorem 4.8 If R is a Hensel ring and the γj are distinct for 1 ≤ j ≤ w, then µ ∈ Min(s|m) iff
µ =

∏w
j=1(X − γj − zj) for some zj such that zjaj = 0 for j = 1, . . . , w.

Proof. The sufficiency of the condition is Corollary 4.7. We now prove that the condition is
necessary. Let µ ∈ Min(s|m). From Theorem 4.5 we know µ =

∏w
j=1(X − γj). The factors

of µ are pairwise coprime because the γj are distinct. We can therefore lift µ and factor µ as∏w
j=1(X − γj − zj) with zj ∈ M . We still have to prove that zjaj = 0. From Lemma 4.3 we know

that µ(γj)ajγj

∏
k=1,...,w

k 6=j

(γj − γk) = 0. Evaluating µ(γj), we get:

−zjajγj

∏
k=1,...,w

k 6=j

(γj − γk)
∏

l=1,...,w

l 6=j

(γj − γl − zl) = 0

Since all γi are distinct, by Lemma 2.5 all differences γj − γk are units. Also all γj − γl − zl are
units and all γj are in N(R), hence the relation above simplifies to zjaj = 0. 2

Corollary 4.9 If R is a domain or R is a Hensel ring and the γj are distinct for 1 ≤ j ≤ w, then
Min(s|m) = Min(s).

This result says intuitively that to find a minimal polynomial for the infinite sequence si =∑w
j=1 ajγ

−i
j it suffices to know the first 2w consecutive terms of the sequence and to compute

their minimal polynomial. This result is well–known over fields, but its extension to rings is not
trivial.

Remarks 4.10
(i) A result similar to Theorem 4.5 is proven for Galois rings in [IPE97, Proposition 3 and the
discussion following it]. Our result is more general since it is valid for arbitrary local rings, does
not rely on the fact that the minimal polynomial has at least as many roots as the number of errors
and that it is obtained by a particular algorithm. Nor do we use the theory of Linear Systems over
a finite ring, [McD84].
(ii) Theorem 4.4 gives a different proof of the necessary and sufficient condition for the unicity of
σ given in [IPE97, Appendix]. Our result holds in a more general context, as noted in the previous
remark.
(iii) Lemma 4.3 can also be proved by Linear Algebra arguments, using [McD84, Theorem I.29].
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5 Decoding algorithms

We continue our discussion on decoding alternant codes begun in Section 3, applying the new
results proven in Section 4. We will consider two types of rings: domains and local rings.

The sequence of syndromes is of the same form as the sequence considered in Section 4, putting
γj = αij and aj = yij eij for 1 ≤ j ≤ w. From Lemma 3.13, Lemma 3.14 and Corollary 4.6 we
know that the error locator polynomial is a minimal polynomial for the syndrome sequence.

First we consider the case when R is a domain. For {α1, . . . , αn} to be subtractive, it is enough
that the αi’s are distinct, since there are no non–trivial zero–divisors in R. We know from Theo-
rem 4.4 that the error locator polynomial is the only monic minimal polynomial for the syndrome
sequence. Algorithm MR of [Nor95] computes for any sequence s|m over a domain, an annihilat-
ing polynomial f (not necessarily monic) of minimal degree and the corresponding β(f, s|m). But
again, from Theorem 4.4, we know that for a syndrome sequence, such a polynomial f must be the
error locator multiplied by some non–zero constant. Hence, after applying algorithm MR to the
sequence of syndromes we divide the output polynomials f and β(f, s|m) by the leading coefficient
of f obtaining thus σe and Xωe. The whole algorithm has quadratic complexity. We proceed as
in the classical (field) case: we compute the roots of σe, which are of the form αi1 , . . . , αiw

, giving
the error locations. Then we compute the error magnitudes as eij = ωe(αij )/(σ′e(αij )yij ).

Next we will consider the case of an alternant code A(α, y, d) over a local ring R. We make
the additional assumption that α1, . . . , αn are distinct. The definition of alternant codes only
requires {α1, . . . , αn} to be subtractive, which is in general a weaker condition than α1, . . . , αn

being distinct. For finite rings, however, the two conditions are equivalent (see Corollary 2.6).
Note that all the codes in Examples 3.4, 3.5, 3.6 as well as the codes in Example 3.7 for R local
satisfy the property that α1, . . . , αn are distinct.

We will also assume that for the ring R there is an algorithm of quadratic complexity (O(m2))
which computes a minimal polynomial for any sequence s|m of syndromes. We know that such
algorithms exist for any sequence when R is a field (the well–known Berlekamp–Massey algorithm),
R = Zpa (see [RS85]), and more generally, any finite chain ring, in particular Galois rings (see
[Nor98, Algorithm MP ]). We do not know whether such an algorithm exists for other local rings,
for example for Hensel rings which are either infinite or have a non–principal maximal ideal.

We remark that the algorithm of [IPE97] is valid for a Galois ring, but may involve searching, so
we do not know if it has quadratic complexity. See [IPE97, Conclusions, p. 1019].

From Corollary 4.7 we know that when some of the error magnitudes are zero–divisors the minimal
polynomial is not unique. None of the algorithms above is guaranteed to find the error locator
polynomial, but from Theorem 4.5, any minimal polynomial µ satisfies µ = σe =

∏w
j=1(X − αij ).

Hence we have an even simpler method of finding the error locations. Namely, once we have some
minimal polynomial µ (given by its coefficients), all we have to do is find the roots of µ in K. From
Theorem 4.5, they will be of the form αi1 , . . . , αiw , and i1, . . . , iw give the positions of the errors.
We can then compute σe as σe =

∏w
j=1(X − αij ). To find the roots of µ over the field K we can

either use factorization algorithms for our particular K, or test the value of µ at α1, . . . , αn.

We summarise our proposed decoding algorithm for an alternant code with parity check matrix H
and designed distance 2t + 1 over a local ring R.

Algorithm 5.1 (Decoding an alternant code over a local ring)
Input: r = (r1, . . . , rn), the received vector, containing at most t errors.

Output: c = (c1, . . . , cn), the nearest codeword.

0. Let m = 1− 2t.
1. Compute the syndrome sequence si = (Hrtr)1−i, m ≤ i ≤ 0. If s|m = (0, . . . , 0), return r.
2. Compute a minimal polynomial µ for the sequence s|m.
3. Compute the roots αi1 , . . . , αiw of µ in K. Then the errors occurred at positions i1, . . . , iw.
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4. Compute σe =
∏w

j=1(X − αij ).
5. Compute σ′e and ωe = β(σe, s|m)/X.
6. Set e = (0, . . . , 0) and for j = 1, . . . , w, put eij = ωe(αij )/(σ′e(αij )yij ). Return r − e.

An example of our decoding procedure follows:

Example 5.2 (cf. [IPE97, Example 2, p. 1019]) Let R = GR(9, 2) = Z9[y]/(y2 + y + 2) and
γ = 2− y. The successive powers of γ are 2 + 4y, 3 + y, −1, y + 7, 5y + 7, 8y + 6 and 1 i.e. γ is
a primitive 8th root of 1. Let C be the BCH code of length 8, alphabet Z9 and designed distance 5
defined using γ as in Example 3.4.

For the error e = (0, 3, 0, 0, 0, 0, 6, 0), we have the syndrome sequence 3, 3y, 3, 3. Algorithm MP
computes the minimal polynomial µ = X2−yX−y, [Nor98, Example 7.12]. Thus µ = X2−yX−y =
µ, which has roots γ and γ6 in K = GF (3)[y]/(y2 + y + 2) = GF (9).

We compute σe = (X − γ)(X − γ6) = X2 + 5yX + 8y + 6 and σ′e = 2X + 5y. Multiplication gives
ωe = 3X. The error magnitudes are:

e2 = 3γ/(γ(2γ + 5y)) = 3/(1 + 3(y + 1)) = 3(1− 3(y + 1)) = 3

and
e7 = 3γ6/(γ6(2γ6 + 5y)) = −3/(1− 3(2y + 2)) = −3(1 + 3(2y + 2)) = −3 = 6.

Thus our algorithm returns the 0 codeword, as expected.

Remark 5.3 Another method of computing the error locations once we have a minimal polynomial
of the syndromes is proposed in [IPE97] for BCH and Reed–Solomon codes over a Galois ring. It
involves computing the roots of a minimal polynomial in R and then determining which powers of
γ differ from these roots by a zero–divisor (cf. Theorem 4.8).

Our computation of the roots of µ in K is more efficient than the computation of roots in R. If
we do it by searching, our approach requires the values of µ at n points (viz. α1, . . . , αn), whereas
the approach of [IPE97] requires the values of a minimal polynomial at npl(a−1) points in the worst
case (all the lifts of α1, . . . , αn). Finding the roots of a polynomial f ∈ R[X] by lifting requires the
computation of the roots of f in K in the first place.

The algorithms we described can decode, in particular, the examples of alternant codes we presented
in Section 3. Namely, for decoding BCH codes over the p-adic integers (Example 3.6) we use the
algorithm for domains described at the beginning of this section. For decoding BCH and Reed–
Solomon codes over a Galois ring (Examples 3.4 and 3.5) and for generalised Reed–Solomon codes
over a finite chain ring (Example 3.7), we use Algorithm 5.1.
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