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1. Introduction

Affine-variety codes were introduced by Fitzgerald and Lax in [10] and provide a way to represent any linear code as an
evaluation code for a suitable polynomial ideal. Unsurprisingly, this rather general description does not provide immediately
any efficient decoding algorithm. The lack of an efficient decoding algorithm is one of the main drawbacks of this nice
approach, which has unfortunately still not received the attention it deserves, with few exceptions [11,33]). Some Grébner
basis techniques have been proposed in [10] to decode these codes, which may be efficient depending on the underlying
algebraic structure.

General error locator polynomials are polynomials introduced by us in [31] to decode cyclic codes. Their roots, when
specialized to a syndrome, give the error locations. They can be used to decode any linear code, if it possesses them. Giorgetti
and Sala in [15,16] have found a large family of linear codes possessing such polynomials. When the general error locator
polynomial admits a sparse representation, the decoding for the code is very fast. Experimental evidence (and theoretical
proofs for special cases) suggests their sparsity in many interesting cases [29,32,3,19,20].

We report several other approaches on decoding linear and cyclic codes with Grébner bases, [2,1,14].

In this paper we generalize our formerly proposed locator polynomials to cover also the multi-dimensional case and
hence the affine-variety case. By adapting the Grobner techniques in [10,31,16], we can prove their existence for any affine-
variety code. Excluding this introduction, this paper contains the following sections.

- In Section 2 we recall definitions and properties for affine-variety codes, stratified ideals (a special class of zero-
dimensional ideals), general error locator polynomials and the Hasse derivative.
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- InSection 3 we summarize the decoding proposed in [ 10] and we propose several alternatives, discussing their merits and
drawbacks, especially taking into consideration the underlying geometric situation. In particular, we introduce the notion
of “ghost points”, which are points added to the variety to play the role of non-valid error locations. This way we can
define a first generalization of general error locator polynomials to the multivariate case (Definition 3.9), which provides
afirst decoding strategy. We also introduce evaluator polynomials (Definition 3.10) that permits a second strategy. While
the existence of evaluator polynomials can be proved directly using the theory of stratified ideals, unfortunately in this
section we lack the theoretical background to prove the existence of these multivariate locators.

- In Section 4 we extend the results in [31] for stratified ideals to cover also the “multi-dimensional case”, that is precisely

the theoretical background that we need for any multivariate generalization of general locators. Unexpectedly, there is
no obvious “natural” way to extend the core notion of stratified ideals. We present three generalizations in Definitions 4.4
and 4.5. We discuss their implications and provide some preliminary results.
Given a zero-dimensional ideal we can consider an order on its elimination ideals with a decreasing number of variables.
By choosing two consecutive elimination ideals I and I’, we have a natural projection from V(I) to V(I). At this stage,
we highlight the role of two natural numbers: the maximum degree of some special polynomials in suitable Grobner
basis of I’ and the maximum number of extensions to V(I) for points in V(I’). It is convenient to present these values as
functions, respectively, n (Definition 4.3) and ¢ (13). Section 4 ends with the statement of Proposition 4.13, which is the
main result claimed in this section (but not proved here). Proposition 4.13 is, in some sense, the multivariate analogue
of Proposition 2.5 on stratified ideals, and shows that for our ideals 1 and ¢ coincides in this setting.

- Section 5 is devoted to the long proof of Proposition 4.13. This proposition describes some features of the Grébner basis of
(the elimination ideals of) a zero-dimensional radical ideal J. The proof is constructive and relies on iterated applications
of some versions of the Buchberger-Mbller algorithm. To be more precise, we can start from the vanishing ideal of a single
point. For any monomial ordering it is trivial to determine its Grébner basis. In particular, ¢ and 7 coincide. By adding
more points, the shape of the Grébner basis becomes more complex, but we can follow what happens to the leading
terms, if we are only interested in the variable involved in the projection V(I) — V(I’). When we have added enough
points, we will get again J, since J is radical. To apply the Buchberger-Moller algorithm, we need to add the points one
by one. The difficult part is choosing the point in such a way that n and ¢ grow exactly by the same amount.

- Unfortunately, our result in the multidimensional case, Proposition 4.13, is not as strong as our result in the one-variable
case, Proposition 2.5. In Section 6, it does allow us to prove the existence of our first generalization of locators in
Theorem 6.1, but we show that better locators can be found, as in Definition 6.2. We discuss with examples a new
decoding strategy by applying these locators, but again for the moment we are unable to prove their existence, since
they use multiplicities. This will be done in the next section.

- In Section 7 we develop the theory for generalizing stratified ideals to the multivariate case with multiplicities.

As usual, we are interested in suitable Grobner bases of elimination ideals of some zero-dimensional ideals. First, we
introduce the notion of stuffed ideals (Definition 7.1), which basically means that the roots of some polynomials in these
Grobner bases have the “expected” multiplicity. We give a constructive method (“stuffing”) to obtain stuffed ideals from
special classes of ideals (in particular, radical ideals will do). Our main results here are Theorem 7.4, that ensures that
the desired shape of our Grébner bases is unchanged under stuffing, and Theorem 7.6, that ensures the existence of our
sought-after locators (in our Grébner bases).

- In Section 8 we compute some examples from different families of affine-variety codes. In particular, we formally
determine the shape for multivariate locator polynomials in the Hermitian case, for any q¢ > 2 and t = 2 (Theorem 8.3),
both in our weaker version and in our stronger version.

- In Section 9 we provide further comments and draw some conclusions.

2. Preliminaries

In this section we fix some notation and recall some known results.

We denote by F, the field with g elements, where q is a power of a prime, and by n > 1 a natural number. Let (F,)" be
the vector space of dimension n over FF,. Any vector subspace C C (F,)" is a linear code (over Fy).
From now on, we denote by K any (not necessarily finite) field and by K its algebraic closure.

For any ideal I in a polynomial ring K[X], X = {x1, ..., Xm}, we denote by V(I) its variety in K. For any Z C K" we
denote by {(Z) the vanishing ideal of Z, £(Z) C K[X].

For any f € K[X] and any term order > on K[X], we denote by T(f) the leading term of f with respect to >. We assume
the reader familiar with the standard theory of Grobner bases, see e.g. [25,28,27]. When we have fixed the polynomial ring
and the term order, we write GB(I) for the (unique) reduced Grébner basis of I.

We briefly recall the notion of “block order”, since it is less frequently met in literature. Let X = {xq,...,X;;} and
Y = {y1,...,y:} be two variable sets. Let <x and <y be two orders, on the monomials of X and on the monomials of
Y, respectively. We can define an order <= (<x, <y) on the monomials of X U Y (block order) as follows:
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The definition of a block order for more variable sets is a direct generalization.
Iff € K[X,y], withy > X, we can write f as

f=ay*+ - +ay+a, withag € K[X]anda, #0.
Then we say that a, is the leading polynomial of f.

2.1. Affine-variety codes

Letm > 1and I C Fy[X] = Fy[x1, ..., Xm] be an ideal such that
X —x, %) — x5, .. X0 —xm) C L.

Let V(I) = {Py, P, ..., Py}. Since I is a zero-dimensional radical ideal, we have an isomorphism of F, vector spaces (an
evaluation):

¢: R=Fylx1,....xnl/l —> (F)"
o= (fP),....f(Pn).

Let L € Rbe an IF, vector subspace of R of dimension r.

Definition 2.1 ([10]). The affine-variety code C(I, L) is the image ¢ (L) and the affine-variety code C1 (I, L) is its dual code.

If by, ..., br is alinear basis for L over Iy, then the matrix
bi(Py) bi(Py) ... bi(Py)
br(Pl) br(PZ) br(Pn)

is a generator matrix for C(I, L) and a parity-check matrix for C+(I, L).
Theorem 2.2 ([10]). Every linear code may be represented as an affine-variety code.

From now on, g, m, n, I and L are understood to be defined as above.
Forany 1 <i < m, 7; denotes the natural projection 7; : (Fq)™ — Fq, such that 7;(xy, . . ., Xp) = X;.

2.2. Stratified ideals

In this subsection we summarize some definitions and results from [16].

Let] C KI[4, 4, 7] be a zero-dimensional radical ideal, with variables 8§ = {sq,..., sy}, A& = {a1,...,a.}, T =
{t1, ..., tx}. We fix a term ordering < on K[4, A, 7], with § < A < 7, such that the 4 variables are ordered by
a <ap < ---<a.

Let us define the elimination ideals Jy = JNK[$], Jsa = JNK[S, al, ..., Jsa,..0y =JNK[S,a, ..., a1] =
JNK[S, Al

We want to view V(J5) as a disjoint union of some sets. The way we define these sets is linked to the fact that any point
P in 'V(Js) can be extended to at least one point in V(J 4, ). But the number of all possible extensions of P in V(Js ,,) is
finite, since the ideal is zero-dimensional, so we can partition 'V(Js) in sets such that all points in the same set share the
same number of extensions. We denote by A(L) the maximum number of extensions in V(Js,,) for any P € V(Jy). The
same principle applies when we consider the variety of another elimination ideal, e.g. V(Js.4,.....a,)- We can partition it into
subsets such that all points in the same subset share the same number of extensions in V(Js a,.....ap.a5_,)- The maximum
number of extensions is denoted by A(h — 1).

We write our partitioning in a formal way, as follows:

V(Js) = U £k, with
Sl ={(s1.....5v) € V(Js) | Fexactly I distinct values a.", ..., a "
S.t. (51, ..., 5, 8) € V(Jsa)s 1 <€ <1I;
V(Js.ap..op) = Urh D xh=1 2 < h < L, with
Z‘,"’l ={(G1,...,5n,8L,...,8n) € V(Js,a,..a,) | I exactly I distinct values
a8 St (S1y .. SNy L. hy B € V( sapan )y 1< €<}

For an arbitrary zero-dimensional ideal J, nothing can be said about A (h), except that A(h) > 1forany 1 < h < L.
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Fig. 1. A variety in a stratified case.

Definition 2.3 ([16]). With the above notation, let | be a zero-dimensional radical ideal. We say that ] is stratified, with
respect to the + variables, if:

() A(h) =h,1<h <L, and
b) ST #B1<h<L, 1<I<h
To explain conditions (a) and (b) in the above definition, let us consider h = L and think of the projection
7T V(Js,a) = V(Js). (1)

In this case, (a) in Definition 2.3 is equivalent to saying that any point in V(Js) has at most L pre-images in V(Js ,,) via 7,
and that there is at least one point with (exactly) L pre-images. On the other hand, (b) implies that, if for a point P € V(Js)
we have |7 ~1(P)| = m > 2, then there is at least another point Q € V(J;) such that |7 ~'(Q)| =m — 1.

Example 2.4. Let § = {s1}, A = {aj,az,a3} (L = 3)and T = {ty}suchthat § < A < T andas < ay < ai.
Let us consider § = J4(Z) C C[s1, a3, a2, a1, t1] withZ = {(1,2,1,0,0),(1,2,2,0,0), (1,4,0,0,0), (1,6,0,0,0),
(2,5,0,0,0), (3,1,0,0,0), (3,3,0,0,0), (5, 2,0,0, 0)}. Then:
'V(J,g) = {13 25 37 5}
V(sa) =1{(1,2), (1,4),(1,6),(2,5), (3, 1), (3, 3), (5, 2)}
v(]8,33,32) = {(]5 27 ])7 (15 2, 2)(]7 47 0)9 (]7 67 0)7 (2, 57 0)7 (35 19 0)7 (37 35 O)s (57 27 0)}

V(Us.a3.3.01) = {(1,2,1,0),(1,2,2,0)(1,4,0,0),(1,6,0,0), (2,5,0,0), (3, 1,0, 0), (3, 3,0, 0), (5, 2,0, 0)}.
Let us consider the projection 7w : V(Js,.,) — V(Js). Then:

Z7'{shi=1, 7' @hl=1,  I77'@3hl=2, |Ixz7'{1l=3,

) Zf = {2,5}, Zg = {3}, 23 = {1} and Zf’ = ¢, i > 3. This means that A(L) = A(3) = 3 and 2,3 is not empty, for
I = 1, 2, 3. Thus the conditions of Definition 2.3 are satisfied for h = L = 3 (see Fig. 1). In the same way, it is easy to verify
said conditions also for h = 1, 2, and hence the ideal ¢ is stratified with respect to the » variables.

With the above notation, an immediate consequence of Theorem 3.6 in [15] (Theorem 32 in [16]) is the following
proposition.

Proposition 2.5. Let < be any lexicographic term order with 8 < A < 7 anda; < a;_1 < --- < aj. Let ] be a stratified ideal
with respect to the 4 variables. Let G = GB(J). Then G contains one and only one polynomial g such that:

geK[S,al, T =a.
2.3. Root multiplicities and Hasse derivative

Definition 2.6. Let g = Y, aix' € K[x]. Then the n-th Hasse derivative of g is " (g) and the n-th formal derivative of g
ic oM
isg™, where

™(g) = : ax™ and g™ =n! : aix' "
o™ (g) Z(r)l g Z e

i



C. Marcolla et al. / Journal of Pure and Applied Algebra 216 (2012) 1533-1565 1537

We can note that g™ = nl¢®™ (g). In a field with characteristic p, it is more convenient to use the Hasse derivative, because
n! =0foralln > p.

Note that 9@ (g) # ¢V (¢ (g)).

Definition 2.7. Lletg € K[x],g # 0,P € Kand g(P) = 0. The multiplicity of P as a root of g is the largest integer r > 1
such that

W@ P) =¥ =0 for0sksr-—1

x=
The following theorem is well-known, see e.g. [21].
Theorem 2.8. Let g, f € K[x] and let g be irreducible. Then
gl = glo“(f) foro<k=<r—1.
As a consequence of the previous theorem when g = (x — P) for any P € K, we have

x—P)|f w(")(f)| P=0 foro0<k<r—1.
X=

2.4. General error locator polynomials

Let C be an [n, k, d] linear code over Fq with correction capability t > 1. Choose any parity-check matrix with entries
in an appropriate extension field Fyu of g, M > 1. Its syndromes lie in (]qu)”"‘ and form a vector space of dimension
r =n — kover Fy. Let o be a primitive n-th root of unity in Fou.

Definition 2.9. Let .£ be a polynomial in [F4[S, x], where S = (s1, ..., ;). Then £ is a general error locator polynomial of

Cif

(1) LGS, %) =x" +a;_1x "1 + - - - + o, with g; € F[S],0 < j < t — 1, that is, £ is a monic polynomial with degree t with
respect to the variable x and its coefficients are in Fy[S];

(2) given a syndrome s = (Sy,...5;) € (Fuu)", corresponding to an error vector of weight 4 < t and error positions

{k1, ..., k,}, if we evaluate the S variables at s, then the roots of L(s, x) are exactly {a®1, ..., ok, 0}, where the
multiplicity of 0is t — pu.

Given any (correctable) linear code C, the existence of a general error locator polynomial is not known. In [31] the authors
prove its existence for any cyclic code and recently in [15,16,13] its existence has been proved for a large class of linear
codes.

We can extend Definition 2.9 to the case when there are also erasures.

Definition 2.10. Let .£ be a polynomial in Fy[S, W, x],S = (s1,...,s)and W = (wy, ..., w,), where v is the number of
occurred erasures. Let 2t + v < d. Then £ is a general error locator polynomial of type v of C if

(1) LS, W,X) = X" 4+ a;_1x* ' + - - - + ag, with g; € Fy[S, W], for any
0 <j <t — 1,thatis, £ has degree v w.r.t. x and coefficients in F¢[S, W1,

(2) for any syndrome s = (51, ..., S;) and any erasure location vector
w= (wy, ..., w,), corresponding to an error vector of weight u < 7 and error locations {k1, ..., k,}, if we evaluate
the S variables at s and the W variables at w, then the roots of .L£(s, w, x) are {1, ..., o**, 0}, where the multiplicity
of Ois T — u.

For the benefit of readers unfamiliar with simultaneous correction of errors and erasures, we sketch how it works. When
some (say v) symbols are not recognized by the receiver, the decoder treats them as erasures. The decoder knows the
positions of these erasures iy, . .., i,, which means in our notation that the decoders knows the erasure locations grouped
for convenience in the erasure location vectorw = (iy, . .., w,) = (&', ..., ™). A standard result in coding theory is that
it is possible to correct simultaneously v erasures and t errors, provided that 2t +v < d.

To be consistent with our notation, we may refer to a polynomial in Definition 2.9 also as a general error locator polynomial
of type 0.

For a code C, the possession of a polynomial of each type 0 < v < d might be a stronger condition than the possession of
a polynomial of type 0, but in [31] the authors prove that any cyclic code admits a polynomial of any type v, for 0 < v < d.
In [16] the existence of general error locator polynomials (of any type) for a large class of linear codes was proved, but it is
still unknown whether such a result holds for general linear codes.
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3. Decoding the affine variety code with the Cooper philosophy

3.1. The approach by Fitzgerald and Lax

In [10] a decoding technique was proposed following what is known as the “Cooper philosophy”. Although this
terminology has been established only recently [24], this decoding approach has a quite wide literature, e.g. [5,7,4,6,8].
We describe this technique for affine-variety codes, as follows (see Section 2.1). Let C (I, L) be an affine-variety code with
dimensionn — r and letI = (gy, ..., g,). Let L be linearly generated by b4, ..., b;. Then we can denote by];‘fc the ideal
(F L is for “FitzgeraldLax”)

.t
Jee CFlS1, oy St Xets ooy Xemy - ooy X115 -+ -5 X1, €15 -+ -5 €] = T[S, X, ..., X1, E]
where!
t
Ct __ q—1
IS = (1) ey (it Xim) = 5, A =1} e hensy ). 2)
— 1sj=t 1<j<t
J=1 1=p=r
Let <s be any term ordering on the variables s, ..., s, and < be the lexicographic ordering on the variables X, ..., X,
such that
Xt,l <lex *** <lex Xt,m <lex * " <lex xl,] <lex * " <lex X],m-
Let <g be any term ordering on the variableseq, ..., e;.

Then let < be the block order (<s, <jex, <g). We denote by gcffc a Grobner basis ofj;‘fe with respect to <. In [10] we can
find a method describing how to find the error locations and values, by applying elimination theory to the polynomials in

9"
Example 3.1. Let C = C*(I, L) be the Hermitian code from the curve y*> +y = x
{1, x, v, x*, xy}. The eight points of the variety defined by I are

Py =(0,0), P,=(0,1), P3=(1,a), Py= (1,0®), Ps = (a,a), Ps= (at,0?), P; =(a’ a), Py = (a?, a?),

3 over F, and with defining monomials

where « is any primitive element of Fy4. It is well-known that C corrects up to t = 2 errors. The ideal ]}C;fc C
Fals1, ..., S5, X2, Y2, X1, Y1, €1, €2] is
c.2 4 4 4 4 3 3 2 3
Jre = ({7 = %0, % = X0, y7 — Y1, 5 —ya. 65 — Le; — Ly +y1 — x5,

2 3 2 2
Y5+ Y2 — X5, €1+ ey — Sq, €1X1 + €3Xy — Sy, €1y1 + €22 — S3, €1X] + €3X; — Sg, €1X1Y1 + €2X3Y2 — Ss5}).

Typically the Grébner basis of j;’fﬁ that has been obtained using the block order < contains a large number of polynomials
and most are not useful for decoding purposes. We would have to choose a polynomial in Fy[S, x; 1] that, once specialized
in the received syndrome, could be used to find the first coordinates of all the errors. It is important to observe that in this
situation we do not know which polynomial is the right one, because after the specialization we can obtain a polynomial
which vanishes identically.

3.2. Rationale for our decoding ideals

The approach presented in the previous section shares the same problem with other similar approaches [9,22,4].
In the portion of the Grobner basis corresponding to the elimination ideal Is 4, ,, one should choose a polynomial g in
Fq[S, ;11 \ F4[S], specialize it to the received syndrome, and then find its x; 1-roots. The problem is that it is not possible to
know in advance which polynomial has to be chosen, and there might be hundreds of “candidate” polynomials. Let us call
ideal ];’fc the “Cooper ideal for affine-variety codes” (the convenience for this historically inaccurate name will be clear in a
moment) and the “Cooper variety” its variety.

The same problem is present in the ideal for decoding cyclic codes presented in [9], which we will call the “Cooper ideal
for cyclic codes” (although again its formal definition was first presented in [9]), where a huge number of polynomials can be
found as soon as the code parameters are not trivial. In this case an improvement was proposed in [4]. Instead of specializing
the whole polynomial, one can specialize only its leading polynomial, since it does not vanish identically if and only if the
whole polynomial does not vanish (by the Gianni-Kalkbrener theorem [12,17]). We could adopt exactly the same strategy
for the “Cooper ideal for affine-variety codes” and thus get a significant improvement on the algorithm proposed in [10].
This improvement would reduce the cost of the specialization, but would still require an evaluation (in the worst case) for
any candidate polynomial. In Section 7 of [4] a more refined strategy has been investigated, that is, the vanishing conditions

110 speed up the basis computation we can add [xf_[ - Xj. } 1<j<¢, to the ideal.
1<t<m
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coming from the leading polynomials were grouped and a decision tree was formed. In the example proposed there, this
resulted in a drastic reduction of the computations required to identify the right candidate. Unfortunately, this strategy has
not been deeply investigated in the general case, but we believe that it is obvious how this could be done also for the Cooper
ideal for affine-variety codes, obtaining thus another improvement.

In [22] it was noted that the Cooper variety for cyclic codes contains also points that do not correspond to valid syndrome-
error location pairs and thus are useless. In [31] the authors enlarge the Cooper ideal in order to remove exactly the non-valid
pairs, which we call “spurious solutions”. The new ideal turns out to be stratified (although the notion of stratified ideal is
established later in [16]) and hence to contain the general error locator polynomial, thanks to deep properties of some
Grobner bases of stratified ideals, which is the only polynomial that needs to be specialized. We are now going to explain
how this improvement can be obtained also for the Cooper variety for affine-variety codes.

We define several modified versions of the Cooper ideal for decoding affine-variety codes. We summarize what we are going
to do:

- In Section 3.3 we define a decoding ideal (8) that is able to correct any correctable error, even not knowing in advance
the number of errors.

- However, in Section 3.4 we show why this decoding ideal does not necessarily contain locator polynomials that play the
same role of generator error locator polynomials for cyclic codes. Still, these weak forms of locators (Definition 3.9) can
be used to decode.

- In Section 4 we develop the commutative algebra necessary to show the existence of weak locators, with Section 5
devoted to the long proof of the main result, and then in Section 6 we will finally be able to define a set of multi-
dimensional general error locator polynomials (see Definition 6.2). We define a suitable ideal containing this set as we
show in Theorem 7.6.

3.3. Decoding with ghost points

Note that Fitzgerald and Lax consider the possible error locations as t points in 'V(I), that we call P,,, ..., P,,, but they
denote their components dropping the reference to o, thatis, P, = (X1, ..., X,m) for 1 < | < t. We adhere to this notation
from now on.

We observe that in the Cooper ideal (2) there is not any constraint on point pairs. But we want that all error locations are
distinct. We have to force this, i.e., any two locations Py = (Xj,1, -+ -, Xjm) and Ps, = (X1, .. ., X,m) must differ in at least
one component. So we add this condition:

H (¥, —x )" ' =1 =0 for1<j<k<t.

1<t<m

In fact, ifo € Fy, thena # 0 <= 97! = 1. Therefore, the product ]_[Klgm((xj,L — X,)97! — 1) is zero if and only if at
least for one ¢ we have (x;, — x ) =1, ie, Xj. 7 Xk, and thus Py; # Py, Our ideal becomes

t
Jot =<{Zejbp(xj,1,...,xj,m)—sp} ,{ef_l_ll e
=1 1<p=r ==
(@G xmbizasy [ @ = %0 = 1) . (3)
==t Lizizm 1<j<kst

Remark 3.2. Ideal/]\;ji can be used to correct and it will work better than jjfjé, since its variety does not contain spurious
solutions. However, we cannot expect that J ;é contains polynomials with a role similar to that of the generic error locator
in the cyclic case, because | fcé still depends on the knowledge of the error number.

In the following we modify (3) to allow for different-weight syndromes.

(a) First, we note that inj[\;’é the following condition is verified

el =1 withj=1,....t
This is equivalent to saying that exactly t errors occurred, which are e, ..., e € IF;‘ We must allow for some e; with
j=1,...,ttobeequal to zero. We would obtain a new ideal where the conditions ej‘?fl = 1 are replaced with e]‘? =g

foranyj=1,...,t.
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(b) We recall the changes made to the Cooper ideal in [31] for cyclic codes. We consider the error vector

e=(0,...,0,e,0,...,0,¢,0,...,0,e,,0,...,0) withu <t,
k1—1 kq ] ky 11717ku
wherek;, ..., k, are the error positionsande; ... ., e, are the error values. We consider the j-th syndrome and we obtain
the following equation
M .
> e =s;. (4)
I=1
(For the n-th root codes in [15,16] the formulae are slightly more complicated.) To arrive at the desired equation
[ .
S et =5 (5)
=1

we have to add the “virtual error position” k defined as o = 0 VYo € F. Using the location z; = & (and so the “virtual
error location” is a* = 0), Eq. (5) becomes

m t m t t

si=Y a@i+ Y a@) =Y a@i+ Y e =) e@).
I=1 I=p+1 =1 I=p+1 =1

We can rephrase what we did by saying that we are using 0 as a ghost error location, meaning that if we find v zero roots

in the error location polynomial, then & = t — v (v error locations are ghost locations and so they do not correspond to

actual errors).

Let us come back to the affine-variety case. The error vector is

—~
(@]
~—

e=(0,...,0,e4,0,...,0,¢,0,...,0,¢,,0,...,0).
o1—1 Poq Poy Po, N—1-oy
The valid error locations are the points Py, = (X1, ..., X;m), 1 < < . The equation corresponding to (4) is
Iz Iz
o= e, (Po) =) eby(Xi1, ... Xm). (6)
=1 =1

We want a sum like (5), something like s, = Zfz] eib, (P,,). In order to do that, we would need ZL“H eh,(Ps) =0,
for some convenient ghost points {P,,},.+1<i<:. Actually, we can use just one ghost point, that we call Py. But it must not lie
on the variety, otherwise it could be confused with valid locations. In particular, we cannot hope to use always the ghost
point Py = (Xo,1,...,X,m) = (0...,0),since (0...,0) could be a point on the variety. For example, the Hermitian
curve x : x9*t1 = y9 4 y contains (0, 0) for any q.

Let Py be a ghost point. Not only we need to choose P outside the variety, but we must also force e; = 0 for the error
values in Py, since we cannot hope that b, (Py) = 0 for each p. With these assumptions, we obtain

Iz t
Spo = eby(x1,....xm) + Y eby(Po)
=1

I=p+1

w ¢
Zesz(Xm, e Xm) + Z 0b,(Py)
=1

I=p+1

I
Mzz

eho (X1, ..., Xim)- (7)

1

(d) For us a ghost point is any point Py € (F,)™ \ V(I). Depending on the variety, there can be clever ways to choose Py.

Definition 3.3. LetPy = (X 1, ..., Xom) € (Fg)™\ V(). We say that Py is an optimal ghost point if thereisal <j <m
such that the hyperplane x; = X, ; does not intersect the variety. We call j the ghost component.

In other words, for any optimal ghost point there is at least a component not shared with any variety point. See Fig. 2
for an example.

Remark 3.4. The advantage of using optimal ghost points is that it is enough to look at any ghost component in order
to discard non-valid locations.

If a curve is smooth and maximal (e.g., an Hermitian curve), it will probably intersect any hyperplane and so no optimal
ghost point will exist in this case.
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(Fg)?

Fig. 2. In the first picture we have a optimal ghost point with two ghost components. In the second, a non-optimal ghost point.

(e) We are ready to define a new ideal, summarizing the above argument.
We start from equations (7):

t
E ejb,(Xj1, ..., Xjm) —Sp
= 1<p<r

We choose a ghost point Py = (Xg.1, - - ., Xo.m) € V(I). We need to find a generator set for the radical ideal I vanishing
on V(I) U {Py}. The easiest way of doing this is to start from any Grébner basis G of I and to use the Buchberger-Moller
algorithm (see [23,26]) to compute the Grobner basis G’ of I'. We will summarize the Buchberger-Moller algorithm in
Theorem 5.1. Let G’ = {g}}1<n<,’. We can insert in our new ideal the following polynomials

{811, m) fiznsy -
1<j<t
In our new system we put {ef = e;}, because there can be zero values (corresponding to ghost locations). We enforce
(Xj,15 .- -» Xjm) 7 P for all j corresponding to actual error locations. In order to do that, when e; # 0 we must have at

least one component of P, different from that of Py, that s, &; [ [, <, ((qul - xo’t)q_l — 1) = 0. So we can add

{ej 1_[ ((Xj.t - XO,t)q_1 - 1)} .
1<j<t

1<t<m
On the other hand, when e; = 0 we want (x; 1, .. ., Xj ) = Po. To enforce it, we add
-1
[@ = D@ = %00} 5er
1<t<m

Finally, if two points correspond to valid locations then they must be distinct. However, if at least one is a ghost point,
then this requirement does not hold:

iejek [T (@ =% = 1)} :
1<j<k<t

1<t<m
We denote by J$* the ideal in Fylsy,...,sr, Xe,.... X1, er,....e], with Xy = {x11,...,x1m}, ..., X0 =
(X1, .. Xem) St
t
Gt — . . . q )
L= Zejbp(x],l,...,x,,m) - S, e _ef}liiir’
= 1=p=r
-1
fgr s im hiansy @7 = DG =200}
1=t 1<t<m
{ej 1_[ (4. _Xo‘l)q o ])} ’ {ejek 1_[ (., —Xk,t)q - 1)} > (8)
1<t<m 1<j<t 1<t<m 1<j<k<t

Since I = ({g;}
of JSt.

1<h<H) contains the field equations, we may add them to reduce the computation of the Grébner basis

3.4. Weak locator polynomials

We would like to define some locator polynomials for affine-variety codes that play the same role as those in
Definition 2.9. We would expect to find them in our ideal (8). These locators might look like

Li(S, X1y oo %) =X+ a1X 4 -+ +ap, 9)



1542 C. Marcolla et al. / Journal of Pure and Applied Algebra 216 (2012) 1533-1565

with a; € Fg[S, X1, ...,%-1],0 <j < t — 1, that is, £; is a monic polynomial with degree t with respect to the variable x;
and its coefficients are in Fg[S, X1, .. ., X;—1]. We would also want the following property.

Given a syndrome s = (51,...5,) € (Fq)", corresponding to an error vector of weight 4 < t and u error locations
X115, - X1,m) 5., K1, ..., X, m), if we evaluate the S variables at s and the variables xq, ..., X1 at X; 1, ..., X} i1
forany 1 < j < p, then the roots of £;(s, X; 1, ..., X;i—1, X;) are either {xy;, ..., X ;}, when . = t,0r {X1;, ..., X, Xo,i},
when u < t — 1. Apart from the actual location components and possibly the ghost component, polynomial «£; should not
have other solutions.

To show that a polynomial of this kind does not necessarily exist in *Cf we consider the following examples.

Example 3.5. Let us consider an MDS code C = C*(I, L) [5, 1, 5] from the plane curve {y° —y* +y> —y* +y —x =
0} N {x — 1 = 0} over F; and with

L={y—-3.y" -1y’ +3,y' =1}, vl ={1. 1, (1,2), (1,3), (1,4, (1,5}
It is easy to see that C can correct up to t = 2 errors. Let us consider the lex term-ordering with s; < s; < 3 < $4 < 55 <
Xo < Yo < X1 <Y1 < ey <eqinlFy[sy, o, S3, Sa, S5, X2, ¥2, X1, Y1, €1, €2] . ldeal]f*‘ is generated by

(el —eney—enxi— L= 1y =y +¥i =y +¥i =105 = Y3 +¥s = Y3 +¥5 — Y2,

ey +Y +Y =21+ 2) ey +y +ys — 202 +2) — s e — 1D — DS — D),

e1(3y] — 2y] + 33 +3y1) + e2(3y5 — 2y3 + 33 + 3y2) —s2, 13y} —yi —2) + e2(3y5 —y3 — 2) — 53,

er(=y1+ 2y —¥i =3y +3) Fea(—y5 + 2y, —¥5 =32 +3) —sa e (i — D° = DL - 1),

erea((x1 —x2)° — D((y1 = y2)° = 1), (€§ = Dxa — 1), (€ — Dya, (¢§ — D(x1 — 1), (e§ — Dyn),

where the ghost point is Py = (1, 0). The reduced Grébner basis G with respecttos; < $; < 53 <S4 <S5 < Xy < Y2 <
X1 <Y1 < ey < eq has 27 elements and the new locators are £1(S1, ..., S5, X2) = Ly and L(S1, ..., S5, X2, ¥2) = Ly (see
the Appendix for polynomials a and b):

Ly=x—1 and Ly, =y*+ya+b.
We can note that .£, does not play any role, because all x’s are equal to 1. So to apply the decoding we evaluate only £y, at
s and we expect to obtain the (second) components of error locations. We show it in two cases:

- We suppose that two errors occur at the points Py = (1, 1) and P, = (1, 2), both with error values 1, so the syndrome
vector corresponding to the error vector (1, 1,0,0,0) iss = (2, 1, 0, 0).
In order to find the error positions we evaluate £,, in s. We obtain two different solutions £,, (s, y) = ¥y —3y+2=
(y — 2)(y — 1), that identify the two error locations.

- We considers = (0, 4, 4, 0, 1) corresponding to (0, 0, 0, 4, 0), so only one error occurs in the point (1, 3). Evaluating £,
ats we obtain £, (S, y) = ¥? — 3y = y(y — 3).Also in this case we obtain a correct solutions (0 is the ghost component).
So the above choice of £y and «£,, seems correct.

Now we consider the above code but with a different ghost point. Also in the following example, we take an optimal ghost
point.

Example 3.6. Let us consider the same MDS code C = C*(I, L) as in Example 3.5. In this example we choose the (optimal)
ghost point Py = (0, 0). The ideal J$* is generated by

(€] —ei, e — e, Xiy1 = Y1, %0Y2 = Y2, X1 — X1, %5 — X2, )5 — Vi + Vi =y +yi =y,

Y=YV =Y +Ys — Vo ey Y Y =2+ 2) ey +y; Y — 21 +2) =51,

e1(3y] — 2y7 + 3y7 +3y1) +e2(3y; — 23 + 3y5 +3v2) — 52, e13y] —¥i — 2) + 23y —y; —2) — 53,

(=Y + 21 =¥ = 31 +3) + ey +2y; =3 = 3y +3) —sa e (6] — DOS - ),

(x5 — 1(¥3 — D erea((x = x)° = D((y1 = ¥2)° = 1), (€5 — Dixa, (€3 — Dya, (€5 — Dy, (€F — Dyn),
The reduced Grobner basis G with respectto s; < S, < S3 <S5 <S5 <Xy <Yy < X1 <Y1 < €3 < ey has 27 elements and
the new locators are £1(8, xy) = Ly and £($, X2, ¥2) = Ly, where 8§ = {s1, ..., ss} (see the Appendix for ¢ and d):

Ly=x"—x and Ly =y +yc+d (10)

Also in this case £, does not depend on any syndrome, so to apply the decoding we just specialize £, (S, X, ¥). We would
like that the solutions of £, (s, X, y) = 0 are exactly the second components of error locations, but this is not always the
case. Let us consider the same errors as in Example 3.5:
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- We suppose that two errors occur at the points P; = (1, 1) and P, = (1, 2), with both error values 1, so the syndrome
vector corresponding to the error vector (1, 1,0, 0, 0) iss = (2, 1, 0, 0). In order to find the error positions we evaluate
£y in's. We obtain three different solutions

Ly 1Ly) =y =3y +2=(y—D(y—2),
Ly(5,0,y) =y* =3y —3=(y+2)°

In this case, we are lucky, because (0, 5) is not a point coordinate and so we can discard y = 5 finding the two error
locations.

- We consider s = (0, 4, 4, 0, 1) corresponding to (0, 0, 0, 4, 0), so only one error occurs in the point (1, 3). Evaluating
£,y in's we obtain

Ly 1L,Y) =y —y+1=(y=3)(y+2),
Ly(6,0,) =y* —y=y(y—1).

In this case we have four possible solutions (1, 3), (1, 5), (0, 0) and (0, 1). But only three are acceptable, which are (1, 3),
(1,5) and (0, 0). To individuate those corresponding to the syndrome vector s, we must compute the two syndromes
and we will see that (1, 3) and (0, 0), are correct. In this case, the above choice of £, and £, is unfortunate.

One might think that the unpleasant behaviour of (10) is due to the degenerate geometric situation. Unfortunately, this
is not entirely true, as next example shows (we end this long example with a horizontal line).

Example 3.7. Let us consider the Hermitian code C = C*(I, L) from the curve y*> + y = x> over F4 and with defining
monomials {1, x, ¥, x*, xy}, as in Example 3.1. It is well-known that C can correct up to t = 2 errors. Let us consider the lex
term-ordering withs; < -+ < X, <y, < X1 <Yy1 < ey < eqinFysq, so, S3, S4, S5, X2, ¥2, X1, V1, €1, €2]. ldeal];'fc is

4 4 4 4 3 3 2 3.2 3

(X] =X, Y] =YV, % — X2, ¥ — Yo, e — 1,65 — L,yi +¥1 — X1, ¥; + Y2 — X3,
2 2

e;+ ey —S1, e1Xp+exXy — Sz, ey +exya —S3, €e1X] + €xx; — Sy,

e1X1y1 + €2X2)2 — Ss),

and the reduced Grébner basis G (with respect to <) has 53 elements.

The authors of [10] report 119 polynomials because they do not use lex but a block order, which is faster to compute but
which usually possesses larger Grobner bases. In G N (F4[S, x2] \ F4[S]) there are 5 polynomials of degree 2 in x, and these
are our candidate polynomials:

85 = Xp%S5 + Xp(S55455 + S5535257 + 535251 + SaS3S1 + 4535352 + S45352 + SaS + 535357 + s35%)+
3 23 2 333 3.3 32302 | 3c.3 1 o3 232 | 222
535 8553535 + 555752 + 5353551 + 545351 + Sis3537 + 535383 + S350 + 54838 + 545+
545352 + S45253 + 535551 + 535557 + 5353 + 5351
81 = Xp%s4 + Xa(S255 + S351 + S1 + $55353) + 5255 + 525357 + 5352 + 54535555 + 545353 + $257 + S,
83 = Xp%53 + Xp(S35351 + S4535357 + S4535% + $35257) + 5255 + S55352 + 52535251 + $353525% + Sas3Si+
$45351 + 35352 + 525353 + 5352
— %2 2 3 22y 4 202 2, 3 2 2 3.3 3, 3
2 = X2°S) + X2(5452S1 + $457 + 54+ 5251) + S455 + 54535287 + 545352 + 545257 + 535557 + $3S5 + $381
2 22 3y 4 2 37,720
81 = X2°(51) + Xa(5557 + 5257) + $45251 + S457 + 5557,

Of course, there are other similar polynomials in ];'fc N (F4[S, x2] \ F4[S]) and they may be found for example by computing
Grobner bases with respect to other orderings. It is immediate that the leading polynomials are just {sq, ..., S5}. Suppose
that we receive a syndrome s = (51, ..., Ss). If it is zero, then no errors occurred. Otherwise, we might follow the most
obvious way to correct, that is, we might substitute s in all g;’s, until we find one which does not vanish identically. The
improvement introduced by Caboara and Mora translates here in checking only the leading polynomials, i.e. checking which
of the syndrome components s; is non-zero. Since clearly at least one is non-zero, with a negligible computational effort we
are able to determine the right candidate.

Let us now follow our proposal. Ideal ]f * is generated by

{X? — X1, Y? — Y1 X§ — X2, y‘z‘ — Y2, e‘f — e, e‘z‘ — ey, }’%X1 +J’% + yix1 + )1 +X?+

X1, Y3% + Y5+ Vaxa + V2 + X5 + X2, Y7 +Y1X3 + Y1+ X1, Y3 + Vx5 + Y2 + X35, e+

e — S1, e1X1 + €%y — Sz, e1y1 + €22 — $3, e1X% + 23X — S4, e1X1y1 + €2X2)2 — s,

er((x1 — 1> =D — D= D,ea((xa— D> = D((y2 — D3 = 1), (&3 — D% — 1),

e —D(y1— 1, — DX — 1), (€3 — D(y2 — 1), ere2((x1 — x2)> — D((y1 —y2)> — D}

where the ghost point is (1, 1) (note that 13 # 12 4 1).

The reduced Grobner basis G with respecttos; < s, < S3 <S4 <S5 < X3 <Yy < X1 <Y1 < €3 < eq has 32 elements and
the new locators are £1(s1, ..., S5,X2) = Ly and L£,(S1, ..., S5, X2, ¥2) = Ly, that are the polynomials of degree two in,
respectively, x, and y;:
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Ly = X* +X(525253 + 53 + 515355 + 35353 + 5153 + S554 + S15254 + S5 + 5352 + 53)+
352 + 525355 + S15355 + $25253 + $25355 + 1525353 + $352535% + S15353 + 38255+
255 + $753S4 + S35354 + S15354 + 25354 + 35354 + 354 + S1S3S3 + S353 + S15253+
383+ 53 + 575355 + 535353 + 5353+ 5383 + 55 5155 +55 + 1

Ly = Y2 + V(3 + 5152 + 525353 + 5253 + 53) + X(525355 + 515355 + 52525352 + 525354 + S254+
15354 + $35354) + Sa + 2535355 + 35455 + S3S5 + S35 + S1535353 + S355 + SAS3SIS5+
53575254 + 57525354 + S15254 + S353 + 3 + 15355 + S155 + 35353 + 5253 + 5353 + 53 + 1.

We can apply the decoding in this way: we specialize £, (s, x) tos for any received syndrome. If the syndrome corresponds
to two errors, then we expect that the roots of L, (S, x) are the first components of error locations and the roots of £, (S, X, ¥)
are exactly the second components of error locations. But it is not always true, we show it in three cases:

- We suppose that two errors occur at the points P = (o, @ + 1) and P; = (@ + 1, ), with both error values 1, so the
syndrome vector corresponding to the error vector (0,0,0,0,0,1,1,0)iss = (0, 1, 1, 1, 0).
In order to find the error positions we evaluate £, in s and we obtain the correct values of x, in fact:

LxGX) =X Fx+1=x—a)x— (@+1).

Now we have to evaluate .£,, in (s, X). We obtain four different solutions

LyG o, )=y +y+1=((y—a)(y—(@+1)
LyGa+1,y)=y4+y+1=((y—a)(y— (@+1).

But this is a problem for us, because all these solutions are curve points: («, @),(o, @ + 1),(a¢ + 1, @),(¢ + 1, @ + 1).
Only two are the correct locations. To individuate those corresponding to the syndrome vector s, we must compute the
two syndromes and we will see that (o + 1, &), (o, @ + 1) are correct. This method of try-and-see works nice because
the code is small, but soon it becomes unfeasible. So the above choice of £, and £y, is unfortunate.

- We suppose that the syndrome is (« + 1, 0, «, 0, 0), corresponding to the error vector (1, «, 0, 0, 0, 0, 0, 0). So two
errors have occurred and their values are 1 and « in the point, respectively, P; = (0, 0) and P, = (0, 1). In order to find
the error locations we evaluate £, in s and we obtain £4(S, X) = x*> + x = x(x — 1), then we evaluate Ly in (s, 0) and

(S, 1) and we get £,y(S, 0,y) = Ly (s, 1,y) = y? +y = y(y — 1). The equations
Lx(S, X) = Lyy(S, 1,y) = °ny(§a 0,y)=0 (11)

have four possible solutions: (0, 0), (0, 1), (1, 0) and (1, 1). Since the points (1, 0) and (1, 1) do not lie on the Hermitian
curve, then only one solution couple is admissible: {(0, 0), (0, 1)}. This situation is better than the above case, because
we can immediately understand what the correct solutions of system (11) are. This happens by chance and in any case
the solutions of equation £,(S) = 0 are not what we want.

- Finally we considers = (¢« + 1, + 1, 1,  + 1, 1) corresponding to (0, 0, « + 1, 0, 0, 0, 0, 0), so only one error occurs.
Evaluating £y and £y, respectively, in s and (S, X), we obtain

{A@w=%+1 (12)

Ly@ 1L,Y) =y +(@+Dy+a=(y—D(y—oa.

In this case we are extremely lucky because the two polynomials £ and L, answer correctly: the solutions of system
(12) are (1, 1), which is the ghost point, and (1, «), which is the error location.

Remark 3.8. Since, in Example 3.7, the curve equation has all coefficients in F,, the ideal ];’; actually lies in
F,[s1, S2, S3, Sa, S5, X2, V2, X1, Y1, €1, €2]. This is a special case of a more general fact: for any affine variety-code and any
decoding ideal that we are considering in the whole paper, all polynomials defining these ideals have no coefficient different
from {1, —1}, except possibly for the polynomials defining I. Therefore, if it is possible to have a basis for the ideal I with all
coefficients in a smaller field, then any of its Grobner bases will have elements with the same coefficient field, which means
that the basis computation will be much faster.

Since polynomials like £, and £, in Example 3.7 contain the right solutions (together with unwelcome parasite
solutions), they deserve a definition. See Section 2.1 for our notation.

Definition 3.9. Let C = C1(I, L) be an affine-variety code. Let 1 < i < m.
Let Py = (Xo.1, ..., Xo,m) € (Fg)™ \ V(I) be a ghost point. Let

t; = min {t, [{#;(P) | P € V() UPp}|},

and let #; be a polynomial in Fg[S, X4, ..., x;], where S = {s1, ..., s;}. Then {#}1<i<n, is a set of weak multi-dimensional
general error locator polynomials of C if for any i
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o Pi(S,X1,...,X) = xf"—i—ati,le"_] +- - -4ag, witha; € Fy[S, x1, ..., %-1],0 <j < t;—1, thatis, # is a monic polynomial
with degree t; with respect to the variable x; and its coefficients are in Fy[S, x1, ..., Xi_1];

e given a syndrome s = (51,...5.) € (Fy)", corresponding to an error vector of weight i < t, u error locations
X1,1, - X1,m) 5+ -+, K1, - -+, X m). If we evaluate the S variables at s and the variables (x4, .. ., x;_1) at the truncated
vectors ¥ = (Xj.1, ..., %ji—1) for 0 < j < u, then the roots of P;(s, X, X;) contain:

— either (X, | X" =%, 0 < h < u} (when u < t),
—or{Xni | X' =%, 1<h<pu}(whenpu=t),
plus possibly some parasite solutions.

Note that the difference between {Xy; | X = ¥, 0<h< w}and {Xp; | X = ¥, 1<h< u} is that the latter set does not
consider the ghost point.

Now we consider an alternative strategy to calculate the error locations, using the weak multi-dimensional general error
locator polynomials and some other polynomials in ideal ]f £,

Since it is convenient to know in advance the error number and the error values, we provide the following definition
for a general correctable linear code. Let C be an [n, k, d] linear code over I, with correction capability t > 1. Choose any
parity-check matrix with entries in an appropriate extension field Fou of Fg, M > 1. Its syndromes lie in (]qu)""‘ and form
a vector space of dimension r = n — k over If,.

Definition 3.10. Let & € Fy[S, e], where S = {s1, ..., s;}. Then & is a general error evaluator polynomial of C if

o £(S,e) =aet +a_1et" 1+ .- + ag, with aj € F4[S],0 <j < t,thatis, & is a polynomial with degree t with respect to
the variable e and its coefficients are in Fq[S];

e Givenasyndromes = (s, ...5;) € (Fyu)" corresponding to an error vector of weight .« < t and withey, ..., e, as error
values, we evaluate the S variables at s, then the roots of & are the error values ey, . .., e, plus 0 with multiplicity t — .

The importance of & lies in fact that the error number is u if and only if
e#1eG) and e Y fg(s).

The ideal ],f’[ N K[S, eq, ..., e] is easily seen to be stratified, as follows. There is a bijective correspondence between
correctable syndromes and correctable errors (i.e., errors of weight 7 < t)andsoifwefix 1 <l <tand1 <s <t —Ilwe
can always find [ error values ey, .. ., e that have s extensions at level e, 1. So we can apply Proposition 2.5 and obtain the
existence of &:

Theorem 3.11. For any affine-variety code C = C*(I, L), the general error evaluator polynomial exists.

Proof. We apply Proposition 2.5 to the stratified ideal ]f*f N K|S, eq, ..., e]. It is enough to take g with T(g) = af with
A=1{ey,...,e;}and § =S. O

Using &, we know not only 7, but also the t error values. In order to exploit this information, we can consider a
straightforward generalization of weak multi-dimensional general error locator polynomials (see Definition 3.9) where the
locators are actually ¢ € Fy[S, e, X1, . . ., xi—1]. We do not give a long definition for these, since we think it is obvious.

We consider again Example 3.7 to show two alternative strategies.

Example 3.12. Let us consider the Hermitian code C = C*(I, L) from the curve y*> + y = x> over F, and with defining
monomials {1, x, y, X, xy}, as in the Example 3.7. The reduced Grébner basis G ofjf*f with respect to lex withs; < s, <
S3 <S4 <S5 <€ <e <Xy <Yy <X <yihas33elementsand the general error evaluator polynomial & is

2 32, 3 332 1 32 1 2222 1 2o 23 2
& =e” 4 esy + 5355 + 5,5351 + 545557 + 5457 1+ 54535557 + 54535557 + 54535281+
2 3 233 4 2 3 32
54535257 + 545287 + 545, + $35587 + S3 + $355S1 + 5381 + 55571
In G there are also these polynomials:
2 2
P =X +x545; +eay+ b, and gy =Xq + Xz + Gy,

where ay, by, ¢x € TF4[s1, S2, S3, S4, S5] (see the Appendix for the full polynomials). Now we change the lex ordering to
S] < -+ < S5 < ey <€ <Y, < X <Y < X1.In the new Grébner basis we have other two polynomials 3’; and

&y-

Py =Y +y(ss352+s;+ 1) +ea +b, and g =y1+y2+0,
whereay, by, ¢, € F4[sq, S, 3, Sa, S5](see the Appendix for the full polynomials). We can decode as follows. First we evaluate
&(s) and we find two error values eq, e; (when T = 1, one is zero).

- If the syndrome corresponds to two errors, then the roots of 5 (s, €, x) are the first components of error locations,
- else if s corresponds to one error, we specialize g,(s, e, X1, X2) in (s, ez, 1), where 1 is the ghost component, and again
the root of g,(s, ez, 1, x;) is the first component of the error location.
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Similarly we use {Pye and g, to find the second location components. Let us explain in detail the above-mentioned decoding
with the help of the three cases of Example 3.7.

- s =(0,1,1,1,0) is the syndrome vector corresponding to the error vector (0, 0, 0, 0, 0, 1, 1, 0). Evaluating & in s we
obtain: &(5) = e? + 1, so two errors have occurred and their values is 1. In order to find the error positions we evaluate
P¢ and J’y" in (s, 1) and we obtain

PEE D=2 4+x+1=x—a)x— (¢ +1))
PEE D=y +y+1=(y—a)(y—(a+1).

The system 2; (S, 1) = j’j(E, 1) = 0 have four possible solutions: («, o), (¢ + 1, + 1), (¢ + 1, &) and («, & + 1). But
only two solution pairs are admissible: {(«¢ + 1, &), (o, « + 1)} and {(«, @), (¢ + 1, « + 1)}, since both @ and & + 1 must
appear as first components (and as second components). We are in the same ambiguous situation as in Example 3.7.

- Now we consider the syndrome s = (@ + 1,0, «, 0, 0), corresponding to (1, «, 0, 0, 0, 0, 0, 0). Evaluating & in s we
obtain €(s) = (e — 1)(e — «), so two errors have occurred and their values are 1 and «. In order to find the error
positions we evaluate #; and ?ye in(s, 1) (orin (s, @))

PEE D) =fG @) =x and £;6, 1) =[G a) =y +y=y(y— 1.

The solutions of the system f(s, 1) = f,(s, 1) = 0 are {(0, 0), (1, @)}, in this case we find the correct error positions.
Note that this case is an ambiguous situation in Example 3.7, while here it is not.

- Vectors = (¢ + 1, + 1, 1, « + 1, 1) is the syndrome corresponding to (0,0, @ + 1, 0, 0, 0, 0, 0). We evaluate & and
we get §(5) = e® + (a + 1)e. So only one error occurred and its value is o 4+ 1. We evaluate g, and gin(, o+ 1,1),
where 1 is the first ghost component, and we have

&GS, a+1,1)=x+1 and g6 a+1,1) =y, +o.

Therefore the error location is (1, «).

Now we consider another type of decoding, using & and taking polynomials fromfﬁ;é as in (3). First, we evaluate &(S) to
know the number of errors. We do not need their values. Instead, we compute the Grébner basis of ideal]}c’j, withl <t <t
and we collect polynomials in Fy[S, x] and [Fy[S, y]. For example,if two errors occur we use sy < S < $3 < $4 < S5 < X <
Yy <Xy <yi<ey<ejand---s5 <y, <---toget,fort =2,

fox = X2+ X(S351 + 545553 + 4S5 + $257) + S2S3 + S55352 + S25352 + S2535281 + 53535287 + S35+

$4535% + $45353 + S45351 + SaST + S35351 + S2525% + 535383 + $355 + 5254

Foy = ¥? + Y(53 + 54535255 + $45353 + 545251 + 5351 4 5357 + 5357 + 57 + 1) + 53 + 5553535+
S55355 + S553 + S3S353S7 + S35357 + S353 + S5 + S3S3535% + S25255 + 2535551+
$4535251 + SaS35253 + S4S352 + 3 + 535357 + 5355 + 53 + 1
andfort =1

fix=x+ szsf and f;, =y+ sgsf.

The decoding with {f, x, fo.y, fi.x. f1,y} is obvious.
These polynomials are not the ideal polynomials yet, because again we may find parasite solutions (except with t = 1).

In the previous examples we have used some polynomials as weak multidimensional general error locator polynomials,
as for example £, and £y, in Example 3.7. It is not obvious that such polynomials exist for any (affine-variety) code. To
prove this, we need to analyse in depth the structure of the zero-dimensional ideal J$*. This ideal turns out to belong to
several interesting classes of zero-dimensional ideals, defined as generalizations of stratified ideals. These ideal classes are
rigorously studied in Section 4, where it is claimed in full generality that the sought-after polynomials can be found in a
suitable Grobner basis. Section 5 is devoted to the proof of this claim. In Section 6 we will come back to the coding setting.

4. Results on some zero-dimensional ideals

Our aim in this section is to describe the structure of the reduced Grobner basis for some special classes of zero-
dimensional ideals which are generalizations of stratified ideals. We suggest that the reader have a look at [31], since now
we are generalizing our argument in [31].

First we provide a generalization of the material in Section 2. In this section ] C KI[4, A, ..., 41, 7] is a zero-
dimensional ideal, with 8§ = {s1,...,sn}, 4 = {aj1,...,8mhj = 1,...,L, T = {t1, ..., tx}. We fix a block order <
onK[&, A, ..., A1, T, with8 < A; < -+ < A1 < T, such that within A; we use lex with aj1 < aj, < -+ < ajn ( for
any j). Let A and A;; denote the affine spaces A = KNTMHK and 4;; = RN+HmL=+,
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With the usual notation for the elimination ideals, we want to partition V(Js) according to the number of extensions in
V(Js.a,.,), similarly to what done in Section 2.2 in the one-variable case, that is, when m = 1. The additional complication
here is that the a variables are not L any more, but rather they are collected into L blocks, each block having m variables.
Since we order the a variables first according to their block (block +4; is the least) and then within the block from the least
to the greatest, their first index denotes the block and their second index denotes their position within the block itself. So,
the least a variable is a; ; and the greatest is ay p.

The members of the partition of 'V (Js) will be called {2,“} (similarly to the previously defined EIL). The maximum number
of extensions will be called n(L, 1) (compare with A(L)).

Remark 4.1. Itis essential to count the number of extensions in 'V (/s o ,) discarding their multiplicities. In the definition of a
stratified ideal we required radicality, so in that case multiplicities did not arise. However, in our following multidimensional
generalizations of results and definitions from Sections 2.2-2.4, we must drop radicality and so we have to be very careful
when handling multiplicities.

In the general case, if we consider block j and variable a; ;, we partition V(J .. A3 ....a;) Into subsets {Eli.i+1} according
to the number of extensions to V(Js 4,...., AJL158], 1500058153, i11), thatis, adding the next variabfe aj i+1. The maximum number of
extensions will be called n(j, i+ 1). We meet a spec1al case when we consider the last variable in a block (i.e., i = m), since

in that case we extend from V(Js ... Aj 1.8 1...a1m) 10 V(5. AL Aj_1.3).1.....0;moai_1.1 )- HOWever, no confusion will arise if we

follow our convention of naming the partition members according to the added variable, so they are called {E{ _1’1} in this
case, even if their union is V=V(J; 4, ). Coherently, n(j — 1, 1) denotes the maximum number of extensions
for points in V.

A formal description of the above discussion goes as follows, where [, j and m are integers such that > 1,1 <j < Land
1<i<m:

,,,,, Aj_1,a] 1sees@jm

Z‘,L‘l ={(s1,...,8n) € V(Js) | A exactly I distinct values afl), ce, 5;1,)1

St (1, - .y 88,80)) € V(Jsa,) With 1< € <),

i1 _ (s sz = = =
X —{(517 e SNS ALY, s L e 8115 - - 8itm) € V(s A |
.. _(1 -
d exactly I distinct values a; ]), R a]q s.t.forany1 < ¢ <1
(517 ceey gNs éL,'ls ceey éL,I‘)‘lv ceey 5j+1.17 ceey 5j+1,HI7 é(e])) € ’V(]J,AL ..... A ],3‘_1)
Js j+1-9).
j=1,...,L -2,
Ef~f_{(- v 3 3 3. 3. 3. 3. i
=101, -, SN, 8L 15 -5 BLmy -+ -5 @i 1,10 - - > Bj1,m> Bj,15 - - - 5 @ji—1) 1N
=(D =
VU s AL Ay 18,1085 1) | Fexactly [ distinct values a a;,...,a;; S.t.
_ ~ - NONT
(Sl, c.-y SNy AL Ty - aL,m, ey aj+1,], ey aj+1,m, aj‘1, cees 81, aj,i ) 1S 1N

v(]J,AL ..... a‘%j.;.],aj,] ..... ajvi)‘lfefl}v 122,,m,]:],,L—1

The maximum number of extensions at any level, which is #(j, i), plays an important role for our approach and therefore
deserves a precise definition. Before defining it, we need an elementary result.

Fact 4.2. Given ], there is a set of natural numbers {n(j, l)}u<L such that

1<i<m

(i) v =GV Ep

(i) VUs,ap ... aL,)—u,“'“)z““ i=1,...,m—1;

(i) V(Jg.a,) = UV S

(V) VUs,ap.otjpr) = Un(] 1)2] Li=1,.., L2

(V) 'V(.]/K(AI_ < AjE158, 1500 ajl) un(th)E]H_l i=1,. —1,]':1,,,,,[,—1"
i) »

(v (l”);é@Vl—l omYj=1,...,L

Proof. Since I is zero-dimensional ideal, V(I) is finite and so any variety projection V.= V(Js 4, ) has a

PRRRERR VY = VS AL Aj-%—lsaj,l ..... aji—1
finite number of points. Obviously V is the union of the corresponding 2{‘1, which means that there can be only a finite
number of non-empty E{” and so we use the notation 7(j, i) to denote the largest I such that E{’l is non-empty. O

Definition 4.3. The level function of ] (with respecttothe Ay, ..., 4 variables)is the functionn : {1...L}x{1...m} - N
satisfying Fact 4.2.

We want now to generalize our previous definition of stratified ideals (Definition 2.3) to the multivariate case, but
dropping radicality (see Remark 4.1). It turns out that there are two ways of doing it: we have a weaker notion in the next
definition and two stronger notions in the subsequent definition.
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Definition 4.4. Let | be a zero-dimensional ideal with the above notation. We say that | is a weakly stratified ideal if

D£Y for1<I1<n@i,1<i<m 1<j<L

Being weakly stratified means that when considering the elimination ideal at level (j, i) (block j and variable a; ;) if there is
a variety point with [ > 2 extensions then there is another point with [ — 1 extensions.

The following definition of multi-stratified ideal is given at variable-block level, rather than at a single-variable level.
It contains two conditions: there is at least one point with exactly j extensions and there are no “gaps” in the number of
extensions ( for any integer 1 < | < j there is at least one point with [ extensions). So it is exactly the multidimensional
analogue of the definition of stratified ideals, except that we drop the radicality. Unfortunately, this straightforward
generalization does not guarantee the existence of polynomials playing the role of “ideal” locators, and so in the same
definition we provide an even stronger notion “strongly multi-stratified ideal”.

Definition 4.5. Let ] be a zero-dimensional ideal with the above notation. Let us consider the natural projections

s V(Usa) —> VUs)

7t VUsapogrt) = VUsap o) J=1,...,L—1
pj : V(.]J,,AL,...,AjJr].Aj) — 'V(.]Aj)s .]: 17 ey L.
Ideal J is a multi-stratified ideal (in the A, . .., 4 variables) if

(1) forany 1 <j <L—1landforany P € V(Js 4,....4;.,) We have that |nj’]({P})| <j.
Moreover, for any s € V(J5) we have that |n[1({§})| <l

,,,,,

Moreover, there iss € V(Jg) s.t. lnL_]({E})I =1L

Forany 1 <j <L letZ = pj(V(])). We say that ideal ] is a strongly multi-stratified ideal (in the A4, ..., /41 variables)
if (1) holds and

~~~~~

Moreover, forany T C Zjs.t. 1 < |T| < Lthereisans € V(J) s.t. pj(n[1({§})) =T.

Again, in the previous definition, we do not count multiplicities.

Remark 4.6. For any zero-dimensional ideal J with the above notation, let Z = Z;. Once py(V(J)) = p;(V(])) for any
1 < j,j/ < L, we obviously have pj(nL’]({E})) C Z. Assuming this, (1) and (3) could be replaced by saying that there is a
bijection between the sets of ,0]'(7'[,__1 ({Q})) and all (non-empty) subsets of Z with up to j elements (and a similar condition
at level L).

We note the following obvious fact.

Fact4.7. Let m > 1.If] is a strongly multi-stratified ideal then J is a multi-stratified ideal.
Let m = 1. If] is a multi-stratified ideal then J is a weakly stratified ideal. If | is radical, then J is a multi-stratified ideal if and
only if ] is a stratified ideal.

The next two examples clarify (in the case m = 1) the notions of multi-stratified ideals and of weakly stratified ideals.

Example4.8. Let 8§ = {81}, A = {81’1}, Ay = {82‘1}, sothatm = 1,and 7 = {tl}. Let] = .Z(Z) C Cl[sq, azi,ai, t] with
Z ={(0,0,0,0),(0,1,1,0),(0,2,2,0)}. The order < iss; < az,1 < a;,1 < t; and the varieties are

'V(.]Jf) = {0}= V(]/-K,azj) = {(Oa 0)7 (07 l)a (07 2)}7 'V(.]Jf,azj,a]ﬂ) = {(07 07 0)7 (07 17 1)5 (07 27 2)}

Let us consider the projection 7, : V($5,4,,) — V(gs). Then |7r2’]({0})| = 3. We have Zi’] = {0} and Z?‘] =,
%’] = . Son(2, 1) = 3 and] is not a weakly stratified ideal (neither a stratified ideal).

Example 4.9. Let 8 = {s1}, A1 = {a1.1}, A2 = {az1}, A3 = {a31}, T = {4y} sothatm = 1. Let] = L(Z) C
C[S], as 1,a21, a1, t1] withZ = {(0, 1, 0, 0, 0), (0, 2, 1, 1, 2), (2, 2, 2, 0, 0)} The order < is S1 <031 <Oy <0a1 < tl
and the varieties are

'V(.]J) = {0» 2}a v(.]{f,agvl) = {(03 1)7 (0» 2)5 (27 2)}5

’V(.]Jf,a&],azj) = {(09 19 0)7 (07 27 1)9 (27 27 2)}5

’V(]J,a:{],az_],a]_]) = {(07 ]7 0» O)a (Ov 27 1» 1)3 (27 27 27 0)}‘

Let us consider the projection 73 : V(Js,a,,) — V(s). Then |5 '({0)] = 2 and |75 '({2D)| = 1,50 33" = {0},

f’l = {2} and (3, 1) = 2, but 231 = (. Similarly, n(2, 1) = n(1, 1) = 1. SoJ is a weakly stratified ideal that is not
multi-stratified (and not stratified).
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However, if m > 2, a weakly stratified ideal is not necessarily a multi-stratified ideal and, vice versa, a multi-stratified
ideal is not necessarily a weakly stratified ideal, as shown in the following example.

Example 4.10. Let 8 = {s1, s;, s3}, A1 = {am, alqz}, Ay = {32’1, 62,2}, Az = {33,1, a3,2}, T = {t;} sothatm = 2.
Let | = £(Z) C C[sy, s2, 83, 83,1, @32, @2,1, @22, a1,1, 81,2, t1, t2], with Z = {(0,0,1,1, 1,1,1,3,1,1, 1), (0,0, 1, 1, 2,
1,3,1,2,1,1), (0,01,1,3,0,0,2,1,1,2), (1,1,2,2,1,2,1,0,0,0,1), (1,1,2,0,1,1,1,0,1,2, 1), (1,1,2,0,
1,1,0,1,0,0,1), (2,3,0,3,3,1,0,1,1,1,2)}. The order <is s; < s < S3 < G371 < @32 < G271 < Gy < Q11 <
1,2 < tp and the varieties are
V(Js) ={(0,0,1), (1, 1,2), (2,3,0)},
V(J&,«Ag) :{(07 Os 15 17 1)7 (Oa Oa 15 17 2)7 (05 Oa 17 ]7 3)5 (13 17 27 27 1)3 (17 17 27 0» 1)5 (27 37 0» 35 3)}7
V(s,45.4,) ={(0,0,1,1,1,1,1),(0,0,1,1,2,1,2),(0,0,1,1,3,0,0), (1,1,2,2,1,2, 1), (1, 1,2,0,1, 1, 1),
(1,1,2,0,1,1,0),(2,3,0,3,3,1,0)},
v(.]&d%g,d%z,#%]) :{(Oa 05 15 1’ ]7 ]7 19 35 1)’ (07 Oa 15 15 2’ ]7 27 19 2)5 (07 07 1s 15 35 O’ 07 27 1)5 (13 ]7 27 2, 15 25 1’ 07 O)a

(1,1,2,0,1,1,1,0,1),(1,1,2,0,1,1,0,1,0), (2,3,0,3,3,1,0, 1, D}.
Let us consider the projection 73 : V(gs,45) = V(Is).
Then |73 ({(0,0, D} =3, |7; ' ({(1, 1,2 = 2and |73 ' ({(2,3,00})] = 1.
Similarly, if we consider my : V(g 5,.45,4,) — V($s,45), then |n’]({(1, 1,2,0, 1)})|isequal to 2 and forother P € V(g 5,4,)
we have that |7, '({P})] = 1.

Finally, if we consider 71 : V(§s,43,45,4;) — V($,43,4,), thenforany P € V(g4 4, 4,) we have that |n]’1({P})| = 1and
so J is multi-stratified.

It is easy to see that] is not weakly stratified. In fact, if we consider a projection w31 0 V(3sa31.030)
V(5.a3,), then s ({(0 0,1,D}) = {(0 0,1,1,1), (0,0,1,1,2), (0,0,1, 1, 3)} Ty ({(1 1,2,2)}) = {(1 1,2,2, 1)},
n32({(1 1,2,0}) ={(1,1,2,0, 1)}, 75 ({(2 3,0,3)) ={(2,3,0,3,3)}.S0 = {(0, 0, 1, 1)}, but Zz

Proposition 4.11. Let ] be a strongly multl-stratlfled ideal then ] is a weakly stratifi ed ideal.
Proof. Forany 1 <i <mandforanyj=1,...,L — 1, let us consider the natural projection

7Tj,l' : V(JJ,AL ,,,,, 'A’j+1’§j,1~'"'5j,i) — V(.]/K,:A)_ ..... =>4’j+1v5j.1 ..... 5j,i71)'
We will also use p; and 7r; as in Definition 4.5.
To avoid complications, we consider only the case 2 < i < m — 1, being the modifications in the i = 1 and i = m obvious.
The first fact that we note is that n(j, i) < j, because if the pre-images at block level contain at most j elements then at

variable level they cannot contain more. Let 2 < [ < 5(j, i) such that Z" i # (. It is enough to show that E 1 #F 0.
LetR, P and Q such thatQ € 2{ Q=(3,AL.. d’°;+1a Bt -5 8jim1),
P=(3, A,L,.. , A1), R=Gj1,...,31),50 Q (P, R).
Then T ({Q}) ={(Q, A1),...,(Q, A} and all A,’s are distinct.
Let F1, ..., e V(Ja].,%m,aj.m) suchthat (Q, A¢, I7) € V(Js, 4, Aj).The I';’s do not have to be distinct. Forany 1 < ¢ <[
at least one such I, must exist. We choose one I forany £.So {(Q, A1, I7), ..., (Q, A, I} C nj_l(I_J) and
{(R, A, T)}1<e<1 C PV (s .. A g.4))- Let
T ={(R A1, 1), - o (R A, Tin))-
ThenT C pj(V(Js,ap,...ap 1,40 ad [T =1—=1<n(j,) -1 <j—-1
Since J is strongly multi-stratified, there is Pe V(3,4 ) such that

.....

..... AH_]
T = p(r  (PY), so ;' ((PY) = (LR A, 1), -y (PR A, i)
This implies that {(P,R, %1), ..., (P,R, A1)} = 7;;'({(P, R)}), and so ] # f, as all A;’s are distinct. O

Let <jex be the lexicographic term order such that 4, <1ex s <jex Arand i1 <pex - <iex Gjm,forany 1 <j <L
Let <5 be a term order on § and <4 a term order on 7. Let < be the block order <= (<s, <jex, <7). We are now
assuming that ] is any zero-dimensional ideal is K[ 4§, «4y, ..., 41, T]. Let G = GB(J). It is well-known that the elements of

G N (K[S, AL, ..., A1] \ K[$]) can be collected into non—empty blocks {G'}1<j<;, Where?
G' =GN (K[, A1\ K[8])

and, for1 <j<L-1,
G =GN (K[, AL - .., A1, A\ KIS, A, ..., Al

2 [31] we use the notation G;.
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Then we denote by G, G4 G»Tand G/, 1 <j <L, 1 < i < m, respectively, the sets:

Gl =GN (K4, a1l \ K[8])

G’j’l = G N (K[’S, a]_,], ceey a]_'j] \ K[g, aL,1, R a,_’,‘_l])

GMl= GN (K8, AL, ..., A, 1] \ KIS, AL, ..., Aja])

Gj’l =GN (K[/S, AL, ey g"ej...], aj,l, ey aj’i] \K[’S, J\)L, ey *A’j-Hs aj,l, ey aj,l-_1]).
In other words, let g be any polynomial in G’. Then:

e g contains the variable a; ;,
e g does not contain any greater variable (i.e. no variables in blocks ;1 . . . 1 and none of the remaining variables in the

j-th block Qjit1y - s aj,m),
e g may contain lesser variables (the § variables, the a variables contained in blocks L, . .., j — 1 and the lesser a variables
in the same block: a; 1, ..., aji—1).

As the ideal under consideration is assumed zero-dimensional, the sets G/ are non-empty. The polynomials in any G/ can
be grouped according to their degree § with respect to a; ;.
For us it is essential to know the maximum value of § in G’*', that we call

¢(j. 1) (13)
So we can write:
GH=U0G, j=1.... L i=1,....m withG, #0.
but some Gé’i could be empty. In this way, ifg € Gg’i we have:

o g € K[8, AL, ..., A1, a1, ..., aji—11[8j,i] \ K[S, AL, ..., Ajr1, 81, .., 8ji—1]
e deg, (g) = 4.

Note that we can view ¢ as a function ¢ : {1...L} x {1...m} — N, that s, as a function with exactly the same range of 7.
Ifg € G}, then we can write uniquely g as

5-1
g—a(;a i T as—1a;; +---+ao,

with a; € K[8, Ay, ..., A1, 8j1, ..., 8j,i—1]. And as is the leading polynomial of g.

We name the elements of Gfs' accordmg to the term order of their leading terms, i.e. G = {g]('g 1o i) }, with
5 \c

T(g3.,) < T(g') 4y forany h.

We note the following lemma.

Lemma4.12. Foranyj=1,....Landi=1,....,m Gl = (g, .} ie. there exists only one polynomial in GJ|; , such

that deg,,, = ¢ (J. D).

Proof. From elementary properties of Grébner bases of zero-dimensional ideals, for any variable a;;, G must contain a
polynomial g with leading term a J ;» for some k > 1. Note thatg € G’ because variable a]’-fi is present in g and any greater
variable cannot be present. If there isag € G with degaj_i g > k, then a;;|T(g) and so g can be removed (recall that G is

reduced). As a consequence, g has the highest possible degree in a;;,i.e. k = ¢ (j,i),and sog = gj(.?(j,m. O
We are ready for the main result of this section (whose proof is given in Section 5). Compare with Theorem 32 in [16].

Proposition 4.13. Let G be a reduced Grébner basis of a radical weakly stratified ideal ] with respect to < as previously described.
Let V(J) C A.Thenforanyj=1,...,Landi=1,..., m
G = LEYPGH with
1. ¢(j, 1) = n(j, i), ie. ¢ is the level function of J;
2.G'# (ZJforanyl <8 <¢(j,i);

J,i
3. Gm H= {gj (i), 1}, i.e. there exists only one polynomial in GH

4. we have that
(@) _ :(1 i)
(gj ¢ (), 1) :

Note that it is the radicality that ensures 1., but in later situations we will have 1. also without radicality.

{(j. Such that deg, = ¢ (j, i);
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5. Proof of Proposition 4.13

5.1. Preliminaries of proof

To prove Proposition 4.13 we use this classical theorem:
Theorem 5.1 (Buchberger-Moller, [23,26]). Let H' C H be ideals in K[Vy, ..., V] such that:

(i) there is a K-linear map 0 : H — K s.t. ker(9) = H’,
(ii) there are WV field elements {B}1<k<n C K s.t. (Vx — Br)H C H' for 1 < k < W, thatis, 0 ((Vy, — Bx)f) = 0 forallf € H.

Let W be a strictly ordered Grébner basis of H relative to a term order <, then a Grébner basis W' of H' w.r.t < can be constructed
as follows:

(1) compute g = 0(g) forallg e W.
(2) ifag = 0 forall g, then W = W', which happens if and only if H = H and 6 = 0 in Homg (H, K).
(3) otherwise, let g* be the least g such that ag # 0.

We have W = W; U W, U W3, with

oW ={glg<g'l
o Wy ={(Vi— fug" | 1<k <N},
-W3={g—ﬁg*|g>g*}-

Remark 5.2. In the proof of Theorem 5.1, the hypothesis (ii) is used only to prove that W, C H’. Therefore, Theorem 5.1
still holds if we replace (ii) with a much weaker hypothesis, that is,

(iii) there are ¥ field elements {Bi}1<k<n C K s.t. (Vi — Br)g* € H', 1 < k < N, where g* is as in (3).

Remark 5.3. Let G be a Grobner basis of an ideal I with respect to a term ordering > and let g1, g € G be such that
T(g1)|T(g2). Then G\{g,} is again a Grobner basis of I. Therefore, any time there is a redundant basis element, we can remove
it.

From the remainder of this section, we fix 1 <i <mand 1 <j < L, and we extend the projection

P/ v(]J,AL ..... Aj_‘_],aj,] ..... aj,i—lvaj,i) - v(]J,J’oL ..... Aj.;.],aj,] ..... aj,i—l) (]4)

to

o VM N+ L—pmi-1

Coherently, we consider only the variable a;; in the block A;.

Remark 5.4. To simplify the notation in the proof, we use t as a symbol with a special meaning, as follows. We introduce
7 to single out the contribution of variable a; ;. Any non-zero element of K[S, 4y, ..., #4jt1, aj 1, - - ., 8j,;—1] may be written
as T and we use = to express this unconventional identification. For example, a; ; = 7 and 1 = 7 butalso ra;; = v and
ap1aji ~ taj; # T and 513;2,1- ) ra]?’i & aL,zaﬁi.
Let H be a zero-dimensional ideal in K[S, Ay, ..., A1, @1, - - -, ajil-

Let W be its Grébner basis. Denote with R

W = WQ(K[S, AL, ..., Aji‘l, A1y aj,,-]\K[S, AL, ..., Aj+1, A1, aj,i,l]) andW = WO(K[S, AL, ..., cAj+'l, a1,
aji—1]), so that W = W U W. With the t notation, we have

Wa{r,....t} and W C (tai+rt,....ta,+7, 18} +Ta;+1....}
In the same way we can denote

H=HN IS, AL .., Ajr1, 815 -» 8 \KIS, AL, - .., Ajs1, 811 - - -5 8ji—1])
and H = H N (K[S, Ap, ..., Ajr1s @i1s -0 855 1))

Remark 5.5. Suppose we want to compute the ideal H' from H by adding a point Q = (P,3;;), with P =
(1,...,5n, a1, - .., 8ji—1). We apply Theorem 5.1 to compute W’ from W using the point evaluation 6(g) = g(Q). In
this case it is easy to see that we can take as §; the i-th component of Q. There are two distinct cases:

(1) either forallg € W,g(Q) = g(P) =0,

(2) or there exists g € W such thatg(Q) = g(P) # 0.

The first case implies g* € W, the second case implies g* € W. Since these are logically distinct, we can conclude that there
are only two (distinct) cases:

(1) either forallg € W,g(Q) = g(P) = 0, and this happens if and only if g* € W,

(2) or there exists g € W such that g(Q) = g(P) # 0, this happens if and only if g* € w.
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5.2. Sketch of proof

Let us consider g = gj(”z(j,i)’] and A = n(j, i).
Let] = J N (K[S, AL, ..., Aj1, 81, ..., aj]). Since V() C A], and I is radical and zero-dimensional, I = L(V(I)) =

1w, Smce] is weakly- stratlfled we will have X' # @i forall 1 < k < A.
Our proof needs several steps:

e Step I.
We consider P, € Z‘]i‘i, P, € Z‘é‘i and 7 asin (14). We are interested in the leading terms of the Grobner basis of £ (7r =1 (P;))
and of 4(w ' (P;) U ~1(P,)). However, the exact knowledge of these leading terms is unnecessary and it is sufficient for
us to determine their expression in the t notation. We perform this step in Section 5.3.

e Step IT. 3
Generalizing the previous argument, in Section 5.4 (Lemma 5.6) we take any 2 < t < A and consider any point P, in 2,’1’1

forall 1 < h < t. We describe the leading terms of the Grébner basis of £(w ~1(P;) U - - - U w~1(P;)). Since we need an
induction on the number of points to prove Lemma 5.6, we give an intermediate lemma: Lemma 5.7.

e Step ITI.
As the leading terms of the Grébner basis of £( ~'(P;) U --- U ~!(P,)) are already in the desired shape, in Lemma 5.9
we show that adding more points does not change the shape of the leading terms of the Grébner basis, as long as the
points come from some X} with h < A.

5.3. First part of the proof

We use the approach of Remark 5.5.

e LetP; = (51,...,5v.,31,.... 8 1) € 2/ and H = 4(;r~"(P;)) be the vanishing ideal of 7 =1 (P;).
Then 7T_1(P1) = {Gy,... ,§N,5L,1, . ,5]',,'7],5]‘_1‘)}. The basis W = GB(H) is W = {s; — S1,...,58 — Sn, ap1 —
api...,aj; — aj}. Using our notation we have

TW) ={r,..., 7, a}. (15)
e We consider a point P, € Eé’i that, with abuse of notation,> we write P, = (51, . .., Sy, aLi,...,aji—1). We can write
< 5 = e
=(S1,...,SN, 8L 1.+, 81i 1,
2Py = Q= N, aL1 j,i—1,8;; )
Q =(S1,...,5N, a1, -+, 8ji—1, a;_i))

* We add the point Q.

Using Theorem 5.1 we can build W’ from W in (15). If Vg € W g2(Q1) = 0,then 7 (Qy) € V(H) But 7 (Q1) = P,
and V(H) = {P;},s0 P; = P, and |7 ~'(P,)| = 3, which is impossible because P, 2’ Therefore, for Remark 5.5,
gteWw.
So the Grobner basis W' = W; U W, U W3, where
-Wy={ge w | g < g%} because g* € W,sowehave Wi={r,...,t}andTWy) = {7, ..., 7}.
- W5 is composed by the following polynomials
g%(s1 —51),...,8%(sn —Sn)
g*(ar1 —5L 1) .., 8%(aji—1 — 3ji-1)
g (a]l - a )
-Ws={g- gg(ffjf)g* g >g).
We have T(Wz) = {‘L’ ey T, taj,,-} and T(Wg) - {‘L’, el T, aj.i} and aji € T(W3). With T(W3) - {'L', e, T, aj’,-}

we actually mean that T(Ws) is a subset of a set S such that S = {7, ..., 7, a;;}. We will write similarly from now
on without any further comment. Observe that TW') = {r,..., 7, ta;;, a;;}. By Remark 5.3, we have TW’) =
{r,....7, 4}

* We add the point Q,.
Let* W := W’ and let us use agam Theorem 5.1.
We have to find a polynomial g* € W such that g*(Q,) # 0. Of course g* ¢ W because 7 (Q;) = 7 (Qy) = P,. Thus
g e Wandg* = =aji+T.
W' is formed by W = W; u W, L W5, where

3 Where we do not imply that the components of P, are the same as those of Py, although we use the same symbols.

4 With “let W := W’ we mean that in this proof step we remove all elements in set W and instead we insert into W all elements from W'. After that,
we remove all elements from W’. We also forget the values of g* and Wy, W5, W3.
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-Wy={r,..., 1},
- W2 = WZ,] U W2'2 where
Wo1=1{g"(s1—51),...,8%(n —5n), &% (a1 —ap1), ..., & (aj,i-1 — 8j,i—1), SO

T(Wz,l) =~ {raj,,, .. 'L'ajl}
W2 = {g"(aji — )} = T(W,;,) = { ik
- W;=40.
So
TW) ={r,....7.Taj;,.... Taj; a ). (16)

5.4. Second part of proof

If A < 2, we have finished our proof. Otherwise, i.e. A > 3, we want to prove, using induction on t with 1 <t < A, the
following

Lemma 5.6. The Grobner basis W of H = £(x~'(P;) U --- U~ '(P,)), where 1 < t < A and Py is any point in )" for
1 < h < t,is such that

TW) = {T,..., T, T8, ..., T8 - - - s ra;;], e ra;;], aj ). (17)
Proof. The Grobner basis with t = 1 and t = 2 were just shown in (15) and (16) respectively.
By induction we suppose to have t — 1 points {Py, ..., P,_1} and to have a Grébner basis W such that:

TW)={r,...,7, T8} ..., T8 ..., ra;;z, R ta;;z, a;;l}. (18)

Now we can prove the t-th step. In order to do it, we prove the following lemma, with its long proof between horizontal
lines.

Lemmab5.7. [et3 <t < AandP; € 2{'1' withw='(P;) = {Q1, ...,Q;}. Forany 1 < u < t — 1, let H" be the vanishing ideal

H' = 4@ 'PHU---Un ' (P) U{Qi, ..., Q) and
H = 4@ '(PHU---Urn~ 1 (Py)).
Let WY be its reduced Grobner basis, then

T(W") has the same structure as T(W) in (18).

Proof. Let P, = (S1,...,5n,3L1, -, @,i—1). Since P, € X", then
-G 5.3 5. 5D
=(51,..- Ay e 8ji

Q] (51 » SN, AL, 5 @ji 'l?ajyj)

= = = i)

_ Q= (1,...,5v, a1, ..., 8i-1,8;)
T 1(P[): ’ N LR N J,i
sz(51,---,§N,5L,1,~--,5j,i—1,5;,[,-))

We prove the lemma by induction on u.

(a) We know that W is as in (18). We add point Q; to H°.
Using Theorem 5.1 we can build wi from WO as usual. We adopt the “W, W’” notation. If Vg € W £(Q1) = 0, then
mT(Qy) € V(H) But 7(Q;) = P and 'V(H) {Py, ..., Pr—1},50 Py = Py for somel <k<t—1and |7 '(P)| =k+1
which is impossible because Py € E“ Therefore, for Remark 5.5, g* € w.
So the Grobner/l:zasw W' is formed by the union of these sets:
-Wi={geW|g<g*}Sinceg* € WthenTW;) = {r,..., 1},
- W2 = W2,1 @) W2’2 where
Wa1=1{g"(s1 — §1), .o, 8%y —sn), g% (ap1 — A1), ..., 85 (aji-1 — 8ji—1)s
soT(Wy ) = {t,..., T}
Wyp = {g"(ai — a V) = T(W,,) = (ray).
-Wy={g— 5((%11))g* | g > g*} and so the leading terms of W3 are those in T(W), except possibly for 7.

Therefore W! = W’ has the same structure of W° = W in (18) (because Ta;j; is already present in (18)).
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(b) We add the point Q, to H' and we compute W?2.
Let W := W’ and we use again Theorem 5.1.
We find g* € W such that g*(Q;) # 0. We are sure that g* & G because 7 (Q;) = 7(Q;) = P;, and so g* € G. We can
claim:
Claim T(g*) = 7aj;.

Proof. The Gianni-Kalkbrener theorem [12,17] says that there exists a polynomial g € W such that

g(P,a) =g, ...,5n, a1, ..., 8ji—1, @) 7 0 in K[aj;]

and the solutions of g (P, aj ;) are exactly the extensions of P;. In V(H) we have only one extension of P; (which is Q;),
so the degree of g w.r.t. aj; mustbe 1andso g = ta;; + 7.

Let g be the smallest polynomial of this kind. We have that g* = g, because g(Q;) = 0, g(Q2) # 0 and all smaller
polynomials vanish at Q;. O

So W’ is the union of
-Wi={geW|g<g}

Since g* = 7a;; + t thenTW,) = {7, ..., 1} or TWy) = {7, ..., 7, T8j;, ..., Taji}
- W, = Wzy] U Wz.z where

Wy =1{g"(s1 —51),...,8"(sn —5n), 8% (a1 —ap1), - .-, &% (ai—1 — @i}

soT(Wa,1) = {Taji, ... Tajih Waz = (g% (ajs — 3, 7)} = T(Wa) = {ra?,}.
-Ws;={g—- ﬁ((%z;)g* | g > g*} so the leading terms of W3 are those in T(W), except possibly for t and ra; ;.

If t = 3, we have that a ; € T(W), and so any leading term ra ; can be removed (by Remark 5.3) and we obtain again
that the structure of W/ W? is as in (18). Otherwise (t > 4) the leading term ra ; remains and we still have the
structure of (18).
(c) We proceed inductively on u until we are left to add the point Q;_;.
(d) We add Q;_1.
Inthiscase H = 4(x ' (Py)U---Umr " (P,_1) U{Qy, ..., Q_»}) and W2 has (by induction on u) the structure of (18).
Let W = W' 2and W = W'~ i . We apply Theorem 5.1.
We have to find g* € W such that g*(Q;—1) # 0. Exactly as before, g* ¢ W. We know that T(g") = ta[ ~2_To prove it
we might use the Gianni-Kalkbrener theorem [12,17] repeating the reasoning of our Claim on page 1554
So W’ is the union of the following sets:
-W;={geW|g<g*)SinceT(g") = ta;?,
TWy) = {1, ..., T, Taji, ..., Tajis .- -, raﬁf’, e ra}f} or possibly also ra}jz e T(Wy),
- W2 = WZ,] U W2'2 where
Wa1={g"(s1 —51),...,8"(sn —5n), g% (ar1 —ar1), ..., 8" (aji-1 — 3ji-1)}
Wy, = {g*(ajl (hq))}
8(Qr+1) % *
_W3 {g g(Qr+1)g |g>g}
Since g* = 7aj; 24 ..., wehave T(W, ;) = {ra“ . [72} and T(W,5) = {r [_]}.
But in the Grobner basis W in (18) there exists a polynomlal g suchthat T(g) = a'> 1. So T(g)|ra ! and we can remove

the new term. Hence T(W’) does not change and it remains as in (18).

Lemma 5.7 is proved. O

Now we know T(W!~1), which are the leading term for the basis of H = 4(m " '(P)) U --- Uz~ '(P_1) U{Q1, ..., Q_1}).
We can acld the point Q; and we use our “W, W' notation. Using Gianni-Kalkbrener’s theorem we may prove as usual that
T(g*) = a . So the leading terms of

g°(s1 —51),...,8 (v —5n). g (a1 — 1), - .., &7 (agim1 — @jim1)

are all of the type Ta;;l. while g*(aj; — 5;,?) = aj; + -+, so its leading term is a;,. The new leading terms are

1,1
{ra]tl L Ta}?l, a;.i}. Therefore (Remark 5.3), the structure of W’ becomes the same as in (17), because there are no other
new terms, since {g > g*} = 0.

This concludes the proof of Lemma 5.6. O
Corollary 5.8. With the above notation, if H = 4(m ' (Py) U --- Um~1(P,)), then

TW) = {t,...,7T,Taji ..o\ Ty ..., T ]Al L raffl, afi} (19)
Proof. Apply Lemma 5.6 witht = A. O
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5.5. Third part of the proof

Lemma5.9. Let {(m~'(P)) U---Un™! (PA)) D H D ] be a radical zero-dimensional ideal. Suppose that the leading terms of
its reduced Grobner basis satzsfy(l9) LetPye 0 1 <h< AandletH = 4(V(H) U~ (Py)).
Then 4(r~'(Py) U---Um~1(P,)) D H D H' D] and the leading terms of its reduced Grébner basis satisfy (19).

Proof. We use our “W, W' notation, so that W = GB(H) and W' = GB(H'). Let us take a point’® Py =
S1y-eos SN, 3L1s---»8j-1) € Xy wWith1 < k < A.
Qi =1,---55n, a1, - - -’Ej,i—l’gﬂ))
7'[7](P‘k) =
Q= (51,...,5v,aL1,-..,8ji-1,a J(’j)

* We add the point Q.
We build W’ using Theorem 5.1. We | know that g* € w (asin (a) of Lemma 5.7). So W' = W; U W, LI W3 where
- Wy ={r,..., 1}, becauseg* € W.SoT(Wl) ~{r,..., 1},
- W2 = W2,1 U W2,2 where
Woi1=1{g"(s1 —51),....8"(sn —5n), &% (a1 —ap1), ..., 8% (aji-1 — 3ji-1),
SO T(Wz,l) = {T, ceey 'L'}.
Wa, = {g"(aji — a;)} soT(Wy2) = {Tay}.

-Ws;={g— gg,%]))g* | g > g*} and so the leading terms of W3 are those in T(W), except possibly for new t’s.

Therefore the structure of W’ is the same as that of W.
* We add Q,41 with2 <r + 1 < k. We assume, using induction on r, that W verifies (19).
Let W := W’ and we use again Theorem 5.1.
To construct W’ we have to find g* € W such that g*(Q,,1) # 0. Exactly as in case (d) of Lemma 5.7, T(g*) = Ta;;. So
W’ = W; U W, LU W3, where
-Wi={ge w | g < g*} whereT(g*) = ra;i.

SoT(Wy) ={r,..., 7,78, ..., Taji .. -, rajr’,-_l, e ra}’?l} or possibly also
taj; € T(Wy),
- W, = W2,1 U Wz’z where
Wy =1{g"(s1 —51),....8"(sn —5n), g% (a1 —ap1), - .-, &% (aji-1 — @i}
Wro = {g*(ajl - 7(r+l))}
- Wi ={g - gg%j‘f)g* lg > g}
Now
- Ifr +1 < k < A — 1, then the structure of T(W’) does not change. In fact T(W’) = T(W;) U T(W,) U T(W3), where
-TWy) ={t,..., T, Tajj ..., T8} ---, raf_1 e tajr;l} or possibly also
taﬁi e T(Wy),
- T(Wz) = T(Wz 1) U T(Wz,z) where T(Wz,l) = {Ta}:i, ey Ta}’i} and
T(W,,) = {ra r+l}.
- The leading terms of W3 are those in T(W) with degree (in a; ;) at least r 4 1, plus possibly some terms in T(W) of
degree r, that is, those greater than T(g*).
- Ifr+1= AthenT(g") = Tafi_l, so the leading terms of
g°(s1 —51), ..., 8" (sn —5n). g (a1 — 1), - .., &7 (ajim1 — @ji-1)
remain ra.A’1 but
g*(ajl - a ) = Ta; +
Since in W there is a g such that T(g) = aﬁi and T(§)|raf,, then (Remark 5.3) the structure of W’ does not change and
verifies (19). O

We reiterate Lemma 5.9 starting from H = 4( ~'(P;)U- - -Ux ~1(P,)) and adding all the sets 7 ~!(P,) until all points in V(J)
have been added. When we obtain J, we will have that its leading terms satisfy (19), so point (1) and (2) of Proposition 4.13
are proved. In particular, (19) proves also (3) and (4).

The proof of Proposition 4.13 is complete.

5 With our usual abuse of notation.
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6. Multi-dimensional general error locator polynomials

The following theorem ensures that our weak multi-dimensional general error locator polynomials (see Definition 3.9)
exist for any code.

Theorem 6.1. Let C = C*(I, L) be an affine-variety code with d > 3. Then

(i) jf 't is a radical strongly multi-stratified ideal w.r.t. the X variables.
(ii) A Grébner basis of JS* contains a set of weak multi-dimensional general error locator polynomials for C.

Proof. (i) We recall that]f*t istheidealin Fy[s1, ..., S, X¢, ..., X1, €1, ..., €] asdefined in (8). We set H :]f*f.We want
to show that H is a radical strongly multi-stratified ideal with respect to the X variables. The radicality of H is obvious
since it contains the field equations for all variables.

Let us consider 7rj and p;, 1 < j < t as in Definition 4.5

e : V(Hs x,) — V(Hs), 7t V(Hs x,,...x) = V(Hs x,,...x1)
p] : (V(H5,X[,.AA,)(j+1.)(j) — rV(HX])7 ]: 15 sy L.

By Definition 4.5, H is a strongly multi-stratified ideal with respect to the X variables if:
(a0) LetZz; = pj(V(Hg,xt,“.,xjH,xj)). thenZ; = Z; forany 1 < j # j < t.In this case we use Z = Z;. Since the locations are
only V(I) U {Py}, then Z = V(I) U {Po}.
(al) Let1 <j<t—1.ForanyT C Zwith 1 < |T| < j, thereisv € V(Hs .. x,,) such that |,o]-(nj_1{'17})| =T.
(a2) Moreover, forany T C Z,1 < |T| < t thereis s € V(Hs) such that pt(nt_l{§}) =T.
(b1) Forany 1 <j <t — landforanyu € V(Hsx,, . x.,,x) we have that Iyrjfl({u})| <jJ
(b2) Moreover, for any s € 'V(Hy) we have that |nf1({§})| <t.
Lets = (54, ..., S:) be a correctable syndrome corresponding to an error e of weight u < t.Let Q be a pointin V(H)
corresponding to s. We have

Q:(517-varsAtv-"7A1zélv-"7ét)'

We note that for any permutation o € S;, there is a € V(H),

Q=CG1---,5,Act), - - - » As(1)> Ba(1)s - - -+ Ea(D))- (20)

So (20) gives immediately (a0).
We want to prove (al) and (a2). Let 1 <j <t—1landletT C Z,1 < |T| <j.Let k = |T|. There are two cases to
consider: either P e Tor Py ¢ T.
- Py € T.Let Q € V(H) corresponding to an error with weight i = t — j + k — 1. Thanks to (20) we can assume that
Q=CG1,-..,5, A, .. . A1, Aj, AL e, L8
where {A;, ..., Aj; 1} are t —jelements in Z that are different from Py, {4}, ..., A} are (j — k+ 1) Py’sand (k — 1) is
the number of the elements of T different from Py. Letu = (51, ...,5:, Ary - . ., /_\j+1). At this point, we will obviously
have pj (' (u)) =T.
- Py ¢ T.LetQ € V(H) corresponding to an error with weight 4 = t — j + k — 1. Similarly to the previous case,

thanks to (20), we can assume that Q = (51, ...,5,A¢, ..., Ajir1, Aj, ..., A1, €1, ..., &), where (A, ... ,Ajyq} are
(t — j) elements of V(I) = Z \ {Po}, {A;, ..., A1} contains (j — k) points equal to Py and k points forming T. Let
u=G1,....5. A ..., Aj1), then we have p;(m; ' (u) =T.

The proof of (a2) is similar and is omitted.
To prove (b1) and (b2) it is enough to observe that if t — j locations (including possibly the ghost point) are fixed, then
at most j distinct locations can exist for that error.

(ii) Since H is strongly multi-stratified, H is weakly stratified ( for Proposition 4.11), and so we can apply Proposition 4.13.
As weak locators, we take #; = gt(,l){(t,i),l' where ¢ (t,1) = n(t,i) < tand T(H) = xf". In fact, the number of possible
extensions is bounded by both t; and |{77;(P) | P € 'V(I) U Py}|. The first condition of Definition 3.9 is satisfied.

In order to prove the second condition we note that #;(s, X1, ..., X;_1, X;) has among its solutions the X;'s such that
(X1, ..., X;) are the first i components of an error location corresponding to s (or Py ; value). O

We can summarize our findings so far.

Using weak locators does not work because (S, X1, ...,%;) depends also on i — 1 x-variables. Thus, the point
(S,%1,...,%—1) € V() has the right multiplicity if and only if t; = 1. If this fail, it is very likely to have parasite solutions.

On the other hand, if we use the general error evaluator polynomial &, we can proceed in two ways (see Example 3.12), but
both require an additional choice to discover parasite solutions. With non-trivial codes, this choice is very computationally
expensive.

The strategy we propose here is to force point (S, X1, ..., x;_1) € V(I) to have the right multiplicity. See Definition 3.9
for the t;’s.
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Definition 6.2. Let C = C1(I, L) be an affine-variety code.

Let Py = (X0,1, ..., Xom) € (Fg)™ \ V(I) be a ghost point. For any 1 < i < m, let .£; be a polynomial in F¢[S, x4, ..., X;],

where S = {s1, ..., s;}. Then {£i}1<i<m is a set of multi-dimensional general error locator polynomials for C if for any i

o Li(S,Xq,...,%) = xf" + ati,le"_] + -+ ap, g € Fg[S, xq, ..., x_1] for 0 < j < t; — 1. In other words, .£; is a monic
polynomial with degree t; with respect to the variable x; and its coefficients are in Fg[S, X1, .. ., Xi_1].

e Given a syndrome § = (51,...5,) € (Fy)", corresponding to an error vector of weight 4 < t and p error locations
(X1,1, - X1,m) 5 - -+, X1, -+, X m). If we evaluate the S variables at s and the variables (x4, ..., x;_1) at the truncated
locations X = (Xj,1, ..., Xjj—1) forany 0 < j < u, then the roots of £Li(5, %, x;) are {xp; | =%,1<h< 1} when

w = t,and {xy; | X'=%,0<h< i) when o < t — 1. That is, the polynomial .£;(5, ¥/, x;) does not have parasite
solutions.

Note that the number of distinct first components of error locations could be lower than u and t;.
To show how multi-dimensional general error locator polynomials can be applied, we redo the example on p. 155 of [10].
We postpone for the moment the problem of the existence of these polynomials and of the method to compute them.

Example 6.3. Let us consider the Hermitian code C = C*(I, L) from the curve y? +y = x> over F4 and with defining mono-
mials {1, x, y, x%, xy}, as in the Example 3.7. Let us consider the lex term-ordering withs; < s, <53 <S4 <S5 <X <y3 <
X1 <Y1 < ey < eqinFy[sy, sy, 83, S4, Ss, X2, Y2, X1, V1, €1, €2].

We consider the ideal j*c*‘. In this ideal we are lucky enough to find the two multi-dimensional general error locator
polynomials that are £ 1(s1, ..., S5, X2) and £ >(s1, .. ., S5, X2, ¥2), which are respectively the polynomials £, and £,
of degree two in x; and y,. In this case t; = t; =t = 2 (ay, by, a,, by, ¢, are in the Appendix).

Ly =% +Xxa,+by and Ly =y +ya, +xb,+g¢
Also in this example, we consider the three cases of Example 3.7.

- We suppose that two errors occurred in the points Ps = (@, + 1) and P; = (@ + 1, @), so the syndrome vector
corresponding to (0,0,0,0,0,1,1,0)iss = (0, 1, 1, 1, 0). In order to find the error positions we evaluate £, in s and
we obtain the correct values of x, in fact £4(5, %) = x> +x+ 1 = (x — a)(x — (¢ + 1)). Now we have to evaluate Ly in
(s, @) and in (S, o + 1). Also in this case we obtain the correct solutions (with the highest possible multiplicity)

LyG, o, y) =y +a=(y—(@+1)?
LyG a+1ly)y=y+a+1=(y—a)

- We consider the syndrome (@ + 1, 0, «, 0, 0), corresponding to the error vector (1, «, 0, 0, 0, 0, 0, 0), we obtain
L3, x) =% and L£,,(.0,y) =y"+y=y(y— 1.

The solutions of the above system are (0, 0), (0, 1). Also in this case the solutions of the equation £,(S) = 0 are correct.
- Again, when there is only one error of value « + 1 in the third point, we have the correct answers, in fact

Lo+, a+1,T,a+1,1,%x) =x>+1=(x+ 1)
Lyl@+lLa+LLa+ L, 1L, Ly =y +(@+Dy+a=(y—D(y—a.

so the solutions are (1, 1), which is the ghost point, and (1, @) i.e. the coordinates of the right location.

The main difference between £y,L£y, of Example 3.7 and £y, £y, of this example is that now we do not have spurious
solutions, that is, now the roots of our locators are exactly the error locations and no more ambiguity exists.

As evident from the previous example, multidimensional general error locator polynomials are very convenient for
decoding. However, to prove their existence we cannot use the theoretical methods developed so far, because these methods
do not deal with multiplicities. In the next section we will develop more advanced theoretical methods, that will permit to
construct ideals where these polynomials lie and can be easily spotted.

7. Stuffed ideals

Let G be a reduced Grobner basis of a radical weakly stratified ideal J as in Proposition 4.13. From now on we consider
the ordering as in Proposition 4.13. In this section we fix 1 <i < mand 1 < j < L and we consider the projection

T V(J&AL,M,A}'JH,aj,l,“‘.ajj,],aj,i) - (V(]S,ALA,.AA,AJ'JF],aj,l,m,a];,;l)

We consider the variable a; ; in block A;.
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Let R = K[8, AL, - .., Aj+1, 8.1, - - - » aj.i—1]- Let g be a polynomial in G** such that the degree ina;; of g is A = ¢ (j, i) =
n(j, 1). By Proposition 4.13, we know that this polynomial exists and it can be assumed to be monic in R[a;;]. Let P, € 2}1"
where1 <h < A — 1, then

g(Pn, aj;) = afi + aA_1aﬁi_1 + -+ ap € K[aj;] wherea; € K.

We are interested in solutions of the equation

g(Py, @) = 0. (21)
Since Py, € Z‘j’i, there exist distinct Qy, ..., Q such that 7 ~'(P,) = {Q1, ..., Qx}, with Q; = (Py, ;) forany 1 <[ < h. So
M, - .., Apare some solutions of (21). But there exist other A —h solutions (counting multiplicities) of (21), say Ap41, - - -5 Aa-
There are two cases:
(a) It may be that Apy; & {Aq, ..., Ap} for some L In this case, point (P, Apy) is not an extension of Py, because (Pp, Apyj) &
V8, AL oAy 1,2 1,21 1,a,;)» AN SO Apy is @ parasite solution.
(b) But it may also be that {Api1,...,Aa} C {A1, ..., Ap}, depending on the multiplicities of the {Aq, ..., A4}. In this case,

if we solve (21), we have exactly the extensions and we are not confused by parasite solutions.

We want to change slightly our variety in order to force case (b). To do that, we need that the sum of multiplicities of
{Ai}1<i1<n isequal to A. To increase the multiplicity of any A;, we can use the Hasse derivative (see Section 2.3 and in particular
Theorem 2.8).

Definition 7.1. Let K C R[aj ;] be a zero-dimensional ideal such that V(K) C A;;. Let A = n(j,i). Let G = GB(K) and

g= gg). We say that K is stuffed if forany 1 < h < A — 1 and forany P, € E{;’i, the Eq. (21) has h distinct solutions in K.

Definition 7.2. LetH C K[V, ..., Vy]beazero-dimensionalideal. Letn > 1.Letf € HandQ € V(H)whereQ = (P, V y).
Let ¥4 : H —> K such that

() = eV (f(P, v,N>)|V

N=VN

and let H(@Y = ker ;. We define inductively 9, : HI""1 — K such that
() = ™ (f(P, VJV))|

V=V

and we write H/®™ = ker 9.

We note that H@ 1 is an ideal. In fact, if f € H®1 g € K[Vy]and V, € V(f) then we claim that
V() (V) = eV (NVAIEVN) + V@ (Va)f (V) = 0.

In fact, oV (f)(V 5) = 0, since f € ker9¥; andf(V ) = 0, since V, € V(f). Inductively, we can similarly prove that H/®"!
is an ideal.

Let us consider a zero-dimensional ideal K C &R[a;;]. It is convenient to call our variables also as {V;,...,Vy} =
SUALU..., A1 U{aj1,...,a},insuchawaythatV; < --- < VyandVy = a;;.
We suppose that G = GB(K) satisfies (19), that is
TG = {t, ..., T, Voo, TV, TV L TV VS

and 7 is any elements in V; < --- < V,y_1. In particular there is a polynomial g € G/ s.t. T(g) = a4 = Vv .
Foreach1 < h < A — 1 we perform the following operations:

(a) Ifforany P, € E{," Eq. (21) has h distinct solutions in K, we do nothing. Otherwise, we take any P, € Ef," such that (21)
has more than h solutions.

(b) We consider Q = (P, V ) which is any extension of P,. We want to compute H!22=" In order to do that, we iteratively
compute ker 9, (see Definition 7.2) fromn = 1ton= A — h.

(c) For any such n, we apply Theorem 5.1 to H = H'®" 1 and H' = HI®" so that H = ker 9,. The hypotheses of
Theorem 5.1 are trivially satisfied, because 9, is K-linear and ker ©,, is an ideal. In the subsequent step (d), we get ready
to apply Theorem 5.1. B B B B

(d) We consider the pointQ = (Vq,...,Vy) = (P,3,;) withP = (Vq,...,Vy_1) = S1,...,5v, a1, ..., 8ji—1), Q isa
solution of ideal H. To apply Theorem 5.1, we consider the smallest polynomial g* € W, with W = GB(H), such that

Dn(g*) # 0, that is,<p<")(g*((P,vN)),v L #0

We compute W’ from W. To apply Theorem 5.1, we need to identify 8;’s such that
(Vi — B)g*) =0 where1 <k < N,

where we consider the weaker form (iii) in Remark 5.2.
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We solve previous equation as follows

On((Vie — B)E") = (Vi — B)Pn(g*) =0 (1<k<~N—1)
= Py is the k-th component of Q.
On((Viy — Ba)E") = 2% (Q) + Vy0a(g") — BuPn(g®) =0

R _ g QAVatnE" _ Q) L 7
Bu = Un(g*) =@y T V-

Lemma 7.3. We claim that

* J,i
g eGl,

ie. T(g") = ra;i wheren—1<r<A-1.

Proof. Recall that we use ~ to express a unconventional identification (see Remark 5.4). If T(g*) = Ta}yi withr < n—1, then
D,(g*) =0.S0T(g*) = rajf_’i withr > n—1.However, r # A, otherwise we have already finished.Son—1<r < A—-1. O

(e) We build W’ using Theorem 5.1. By Lemma 7.3 we have that
Tg) =ta; n—1<r<A-1

So W’ = W; U W, U W5 where
-Wi={glg<g"}
SoT(W;) = {t,...,Taj;, ..., Ta); },or possibly also za]; € T(W).
- Wy, =W, 1 UW,, where W, 1 = {g*(s1 —$1), ..., &%(aj,i—1 — 8j,i-1),
SO T(Wz]) = {Ta;i, ey ra;i}.
Wa2 = {g%(aji — ﬁ;ﬁ) —8;,)}. Then T(W,5) = {raj;').
- Wy ={g— l;’rf(ifgg%g* | £ > g*} and hence the leading terms of W5 are those in T(W), except for z, ..., ra}’lfl and
possibly ra ;.
Therefore, the structure of W' is the same as that of W, except possibly if r + 1 = A. In that case
- TWy) = {t,...,Taj;,..., Taj;, Taj; ..., Taj; -}, or possibly also ta’y™' € T(Wy),
- T(W,) = T(W,,1) UT(W, ;) where T(W, ) = {ra®~!,..., ta%"!}
and T(Wzyz) = {rajAj .
- T(W3) = 0.
In the Grobner basis W in (19) there exists a polynomial g such that T(g) = af,-. So T(E)|tafj and we can remove the
new term. Thus T(W’) does not change and it remains as in (19). -
( f) Once all the above operations have been concluded, forany 1 <h < A — 1and forany P, € Zfl’l, (21) will have exactly
h distinct solutions and the resulting ideal will be stuffed.

We have thus proved the following theorem:

Theorem 7.4. Let K C R[a; ;] be a zero-dimensional ideal such that G = GB(K) verifies (19). Let g be the polynomial in G such

that T(g) = afl-, with A = n(j, i). We can obtain an ideal Kc R[a;i] such that

1K is stuffed.
2. GB(K) verifies (19).
3. V(K) = V(K).

Although, in Theorem 7.4 we obtain K as in the procedure above, there are other ways to obtain K , for example by
simultaneously increasing the multiplicity of more A;’s.
Note that, generally speaking, K will lose the radicality, but its Grobner basis will retain (19), which is what we need.

Theorem 7.5. If K and K are as in Theorem 7.4, then if K is, respectively, strongly multi-stratified, multi-stratified and weakly
stratified, then K is so.

Proof. The stuffing procedure does not change the number of pre-images at any level. 0O

Now, we are finally able to prove the existence of our multi-dimensional general error locator polynomials for any code.
Note that this is another constructive proof, since it tells us how to compute our polynomials, that is, simply by computing
a suitable Grobner bases of the corresponding stuffed ideal.

Theorem 7.6. Let C = C*(I, L) be an affine-variety code with d > 3. Letzf’t be a stuffed ideal of J<*. Then

(i) If*t is a strongly multi-stratified ideal with respect to the X variables.
(ii) A Grébner basis of JS** contains a set of multi-dimensional general error locator polynomials for C.

Proof. (i) We can use Theorem 7.5 and sojf*t is a strongly multi-stratified ideal.
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(ii) As locators we can take for any i
_ oM
Li= 8oy

where ¢ (t,i) = n(t,i) and T(L;)) = xf", t; = ¢(t,i) = n(t,1i), thanks to Theorem 7.4. So the first condition of
Definition 6.2 is satisfied. -
LetH = ]f’f and H = j,f". In order to prove the second condition we note that, since «£; is a polynomial of Hs x, ;. ...x ;

it will vanish at (s, x;, ..., X;), where s = (51,...,5;) and (s, Xy, ..., X;) can be extended to a point in V(H) = 'V(ﬁ).
Since H is stuffed, £;(s, X1, ..., X;_1, X;) has as solutions only the X;’s such that (x, ..., x;) are the first i components of
an error location corresponding to s (or Py ;). O

8. Families of affine-variety codes

In this section we consider some families of affine-variety codes.

8.1. SDG curves

We discuss codes from some curves introduced in [33].

Definition 8.1 ([33]). Let F; be a subfield of ;. A polynomial f in Fy[x] is called an (Fy, Fs)-polynomial if for each y € Fq
we have f(y) € F..

Proposition 8.2 ([33]). 1. The polynomial f(x) = b3x> + byx*> 4+ bix + by € F4[x] is an (F4, F)-polynomial if and only if
b(), b3 e, and bz = b%

2. The polynomial g(x) = byx” + - - - + b1x + by € Fg[x] is an (Fs, F»)-polynomial if and only if by, b; € Fa, by = b%, by = b2,
b5 = b% and b3 = bg

Let F = {f(x) + g(y) | f, g are (Fg, F)-polynomials , deg(f) = 4, deg(g) = 6}.
In [33] it is shown that the family # has 784 members and that each member of this family has 32 roots in (Fg)?. Let us
consider the polynomial § = f(x) +g(y), withf(x) = x*+x*+xandg(y) =y°+y°+y>+1,s0that§ € F.Letl = (4)and
],f 't be the ideal associated to the C = C(I, L) code over Fg that can correct up to t = 1 errors and with defining monomials

L={1,y,x ¥}
Ideal J$¢ is generated by:

8 8 7 4 2 6 5 3 2
X —x,¥7 —yi.e; — Lx]+x1+ X1+ +y1+ Y1+ Ler —s1,e1y1 — $2, e1x1 — 3, e1y] — sa}
and the reduced Grobner basis G with respect to the lex ordering withs; < s; <s3 <S4 <Xy <y; <eplis
7 8 4 2.2 3 6.5 5.6 3 4 2.6 6 6
{s] + 1,55 + 52,53 + 5357 + 5357 + 5,57 + 5557 + 5351 + 57, Sa + 5357, X1 + 5357, Y1 + $257, €1 + s1}
and then

6 6
GCZ =V1 +S3S1, Dcl = X1 +5251.

8.2. SDG surfaces I

We discuss codes from some surfaces introduced in [33].

Let F = {f(x) + g(¥) + h(2) | f, g, h are (F4, F,)-polynomials , deg(f) = deg(h) = 3, deg(g) = 2}.In [33] it is shown
that the family # has 96 members and that each member of this family has 32 roots in (F4)>. Let us consider the polynomial
8 =f(x) +g(y)+h@@),withf(x) =x3,g(y) =y*+y+1andh(z) = 2>+ 1,s0that§ € F.Let] = (§) and S be the ideal
associated to the code C = C*(I, L) over F, that can correct up to t = 1 error and with defining monomials L = {1, x, z, y}.
TheidealJ$** C Fyls1, S2, S3, S4, X1, Y1, 21, €1] is generated by {xi —x1, yi—y1, 2t —z1, €3 —1, g+f +h, e;—s1, e121—53, e1%1 —
Sp, e1y1 — S4} and the reduced Grébner basis G with respect to the lex ordering withs; < $; <S3 <S4 <X1 <y1 <27 < €1
is

3 4 4 2 32 | 32 2 2 2
{s7+1, 5452, S5 453, S5+ 5451 + 5357 + 5557, Y1 + 5457, Xq + 287, Z1 + 5357, €1 + 51},
then

2 2 2
L1 =X1+5257,  La2=Yy1+5457,  L3=121+535].
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8.3. SDG surfaces II

We discuss codes from another family of surfaces introduced in [33].

Let F = {Bx*z+B*x2>+f(x)+g(y)+h(@) | B #0,f, g, hare (F4, F,)-polynomials, deg(f) < 2, deg(h) < 3, deg(g) =
2}.In[33] it is shown that the family # has 576 members and that each member of this family has 32 roots in (F4)>. Let us
consider the polynomial § = x°z + xz> + f(x) + g(y) + h(z), with 8 = 1,f(x) = 1,g(y) =y* +y+land h(z) =23 + 1,
sothat g € F.Lletl = (9) andjf*t be the ideal associated to the code C = C*(I, L) over FF4 that can correct one error and
with defining monomials L = {1, z, z2, 3, x, y}.

The ideal [ C F4ls1, S, S3, S4, Ss. S6, X1, Y1, 21, 1] is generated by {x} — x1,y] — y1,2} —z1,€3 — 1,x3z; + x1z2 + f +
g+h,e; —s1,e1z1 — 3, elzl2 —S3, elzf — S4, €1X1 — S5, €1y1 — Sg, } and the reduced Grébner basis G with respect to the lex
ordering withs; < sy <S3 <S4 <S5 <S5 <X <Y1 <2z1 <eqis

{s? +1, 5‘21 + 52,83 + sgsf, Sy + 5351, 5‘5l + ss, sé + Sgs1 + sgszsf + sssgsf + sgsf + sf,

X1+ 5557, 1 + 5657, Z1 + 5257, €1 451}

and then

2 2 2
L1 =Xq +55$1, L2 =¥1 —I—SgS], L3 =124 —I—SzS].

8.4. Norm-trace curves

We now give an example for codes coming from a family of curves [11], which are a natural generalization of Hermitian
curves.
Let C = C1(1, L) be the code from the norm-trace curve x’ = y*+y?+y over Fg and with defining monomials {1, x, X, y}.
This code ([11]) can correct t = 1 error. Let J$* be the ideal generated by:
X} —x1.0] —y1.e] — 1er —s1,exq — 55, 1] — 53, ey — 54, X — ¥ — Y] —y1}

and the reduced Grébner basis G with respect to the lex ordering with s; < s, <53 <s4 <X; <y; <epis
7 8 26 A4 22 3, JA 6 6
{s1+ 1, 53 + 52, S3+ 5557, Sg +538T + SaS] + 5,57, X1 + 28], Y1 +Sas), €1 + 51}
Then
_ 6 _ 6
L1 = X1 + $257, Ly = y1 + 5457.

Observe that in all our examples so far no stuffing was required, because we were considering the case t = 1, which
clearly cannot contain multiplicities.

8.5. Hermitian curves

Let q be a power of a prime, then the Hermitian curve # over I is defined by the affine equation § : x4*1 = y9 4y Each
member of this family has n = ¢ points in Fp2 and it is well-known that the function space is generated by monomials.

In Example 3.7 we considered the case ¢ = 2 and t = 2, we now consider the code C corresponding to the case ¢ = 3
and t = 2. The defining monomials are L = {1, x, y, x*, xy, ¥?, x>}. As before, we choose as ghost point (1, 1).

Our ideal J$2 is generated by

{X? —Xl,}’? =Y, e? — ey, e§ - 927Xg —Xz,yg —Y2,Y?X1 —Y? +Yix1 =y —X? +X411,

VaXa = Y3 +YaXo — Y2 — X + X5 Y = Vi YT —y1 —yix] + XL Y3 — V3 Y5 — Y2 — yaxs + %5,

e+ e, — S1, €1X1 + €% — S, €1y1 + €2Y2 — 3, €1X] + €2X5 — 4, €1X1Y1 + €2X2y2 — S,

e1y; + exy5 — s e1x] + exx3 — 57, e1((x1 — D* = D((y1 — ¥ — 1, e2((a — D* = D((y2 — D = 1),

€} — D1 — 1), (€] = D(y1 — 1, (€ — Dz — 1), (6 — D(y2 — 1, erea((x1 — x2)° — D((y1 —y2)* — D}

We calculate the Groébner basis G with respect to the usual lex ordering withs; < --- <7 <X, <y, <X; <Y1 < e < ey.
The general error evaluator polynomial of € contains 134 monomials and it is reported in the Appendix.

The first weak locator &, contains 172 monomials, while the second weak locators &; contains 494 monomials (see
the Appendix for all polynomials). However, these polynomials are by far not random. Indeed, we can prove the following
general structure result forany g > 2 and t = 2.
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Theorem 8.3. Let p be any prime number and m € Nsuch that q = p™ > 2. Let C = C*(I, L) be any Hermitian code witht = 2
over Fy. Then all sets of multi-dimensional general error locator polynomials for C are of the form

{Ly=Ly=x+ax+Db, L1 =Ly =y +cy+d}

(L2 =Ly =y>+Ay+B, £1 = Lyy = x> + Cx+ D} (22)
witha, b, A, B € Fy[S], c,d € Fp[S,x] and C, D € F,[S, y].
Moreover,
q>2 — asy+ bs; = —sy4, (23)
qg>3 = As;+ Bs; = —s;. (24)
Letq > 2ands; =s, = 0. We have e; = —e;, X1 = X3, b = xf, a = 2x;.
Letq > 3ands; = s3 = 0. We havee; = —e;, y1 = Y2, B :y%,A = 2y1.
All the results above hold also for any set of weak multi-dimensional general error locator polynomials
{(Py=Py=x4+ax+b, P = Py =y*+cy+d} (25)

{(Pr=Py =y +Ay+B, P = P =x*+Cx+D)}

Proof. LetH = JS2 be the non-stuffed ideal for C and H its stuffed ideal as in Theorem 7.6. There are two Grébner bases of
H and H that are relevant for us. If the order has S < x, < y, then we get G, for H and G, for H. If the order has S <y, < x;
then we get G, for H and G, for H. As in Theorem 7.6, G, contains polynomials py € F¢[S, X,] and py, € Fy[S, x2, y>] such
that, once we replace x, with x and y, with y, we get a set of locators {£; = £y, L1 = Lx}.

The degree of p, in x; is, a priori, 1 or 2. However, since there are at least two points {P;, P,} on the curve with two different
x, then deg,, px = 2, since px must have two distinct roots once evaluated on a syndrome corresponding to a weight-2 error
with {P;, P,} as locations.

The degree of py  iny, is, a priori, 1 or 2. However, for any X € F,, there are at least two points {P; = (X, 1), P, = (X, ¥2)} on
the curve with j; # J,. Then deg,, py = 2, since it must have the two distinct roots {y1, y»} once evaluated on a syndrome
corresponding to a weight-2 error with {P;, P,} as locations.

The previous argument can be trivially adapted to show that deg,, (py) =2 and deg,, (py.x) = 2, where p, € Fy[S, y»] and

pyx € FylS, ¥2, xo] come from Ey, and so (22) is proved, except for our claim that all the coefficients of these polynomials
actually lie in the base field IFp,, which follows from Remark 3.8.
To prove (23), we first claim that

feH = f*eH. (26)

To see (26) we note that in the creation of H from H we only impose the vanishing of the first-order derivative at points of
V(H), but if we take any point Q € V(H) we have (see Definition 7.2 for 6;)

61(f%) = 2/ (Q61(f) = 06:(f) = 0.
Since sy — €1 — €3, S — €1X1 — €3X2, S4 — €1X3 — €xx5 € H, we have that
(51— e1 —e3)?, (52 — e1X1 — e2%2)%, (54 — e1x% — ezxg)z € H for (26). Passing from variables to values we observe that
51 =e1 + e, 5; = e1X1 + exXy, S4=e1X> + X3 (27)
and that
a=al) = —& +x), b = x:1%,.
So
— (X1 + %) (B1X1 + 82%2) + X1X2(81 + &) = —(21X% + &2X5), which proves (23).
In the same way, we can calculate the set of locators {£; = £, £1 = Lyx}.Ifq > 3, we have also s; — e; — e;, $3 —e1y1 —

exy2, S¢ — €1y — exy3 € H, so we have that (s; — e; — €2)%, (53 — e1y1 — €2)2)?, (es — e1y? — exy3)? € H for (26). Again, we
pass from variables to values, and we obtain

Si=e1+8, S3=eyi+eys 6=y + ey, (28)
and that

A=A®S)=—(+X), B=B(S)=2xi.
So

—(X1 + X2) (@171 + 82J2) + Y172(81 + &) = —(&1)] + €255) = As3 + Bs; = —ss.

The last part of theorem comes from direct computations, as follows.
From (27), in the case s; = 5, = 0, we note e; = —eé,, X; = X». And so
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1. Ifp=2thend = — (% + %) = 2% = 0and b = ;% = X°.
2. lfp # 2thena = —()_(] +)_(2) = 2)_(] — )_(1 = %.

From (28), if s; = s3 = 0 thene; = —e; and y; = y,. And thus

1. Ifp=2thenA=0eB =y

2.Ifp #2thenA=2y; = y; =% andB =y

Since in the proof so far we have used the relations on the syndromes coming from the non-stuffed ideal H, everything that
we proved up to now holds also for the weak locators. O

The locator 2, computed for the Hermitian code with ¢ = 3 and t = 2 is indeed of the form £, = £ = x> +ax+b,
with |a| = 82 and |b| = 91, so, for example when s; # 0, it is enough to evaluate a(S) and then we obtain b(S) as

St a(S)s;

S1

b(S) =
Also ; is as above, that is, of the form P = £, = y2 +cy+d.

Regrettably, we have not been able to compute explicitly £, and £ for ¢ = 3, due to the high computation cost of the
stuffing procedure.

9. Conclusions and open problems

Assuming we are able to compute the relevant Grobner basis, we have identified a very easy decoding procedure for
any affine-variety code: we evaluate our polynomials {.;}1<i<m in the received syndromes and we use some simple root-
finding to get the error locations. As it is traditional in coding theory, once we have the error locations we can directly get
the error values and hence the decoding problem is completely solved. This apparently idyllic situation is marred by two
serious issues:

e the computation of the associated Grobner basis can be quite beyond present means already for medium-size codes;
e even if we compute our locators, they could be so dense that their use would be impractical.

These two apparently different problems may have one common solution: to identify our polynomials without computing
any Grobner basis, but using the “structure of the code”. This is indeed a desperate goal, if tried for general codes, but we
believe that some code families have locators which are easy to describe explicitly and very sparse. Our belief stems from
our results in [32] (and [29]), where we explicitly give locators for families of cyclic codes, which apparently have no special
structure, simultaneously proving their sparsity (see also [3,19,20] for recent results on the structure of locators).

We then suggest the following problems.

Problem 9.1. For any q and t write formally {.£;} for the Hermitian code.

Problem 9.2. For any g, r and t write formally {.£;} for the code from norm-trace curves.

Problem 9.3. For any admissible parameter, write formally {.£;} for the codes from [33] curves.
Problem 9.4. For any admissible parameter, write formally {.£;} for the codes from [33] surfaces I.
Problem 9.5. For any admissible parameter, write formally {.£;} for the codes from [33] surfaces II.

An interesting problem comes from the definition of the t;’s in Definition 6.2. Clearly, we have t; < t only if any t points on
the variety have necessarily less than ¢ distinct values for their i-th component. For example, you might think of two parallel
lines in the plane (IFq)Z, x = a and x = b, any defining a Reed Solomon code. In this case, whatever t > 2 can be, we will
always have t; = 2. This example is very special, since the variety is reducible. We then ask the following problem.

Problem 9.6. To identify (easy to check) conditions on a curve and on the function space such t; = t for any i.

For special cases this is quite obvious. For example when t = 1 this is always true. It would be very nice to get a generalization
of the former problem.

Problem 9.7. To identify conditions on a curve and on the function space such either t; = t for any i or to find a
(projective?affine?) transformation of (F4)™ such that the same holds.

In [31] we studied also locators able to correct simultaneously errors and erasures (Definition 2.10). It is obvious how to
extend Definitions 3.9, 3.10 and 6.2 to cover also simultaneous error-and-erasure decoding. A suitable ideal modified from
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]f*f will again be strongly multi-stratified and so Theorem 8.3 can be extended accordingly, to cover the new case. We do
not give explicitly the related definitions and results, due to triviality of the extensions.

Our decoding works well with the case of one ghost point, which plays the same role as that played by zero in the zero-
free n-th root codes (being cyclic codes a special case). However, there is no reason why we should restrict to the use of
one ghost point, since a clever choice of multiple ghost points could give easier decoding. Indeed the geometric structure of
the union of V(I) and the ghost points influences the shape of the Grobner bases of our ideals and hence the shape of our
polynomials.

Problem 9.8. To identify a clever choice of (possibly) multiple ghost points, in order to minimize the corresponding locators.

We have recently known of a promising new approach to the decoding of one-point geometric Goppa codes [ 18], where
generic versions of locators are proposed. The nice idea behind it is that trying to correct all correctable syndromes forces
the locator polynomials to be dense, while it could be possible in some cases to identify a very large subset of syndromes
(generic syndromes) such that the locator for those is small.

Problem 9.9. To define rigorously sets of generic multi-dimensional locators.

Acknowledgements

The first two authors would like to thank their supervisor, the third author. For useful suggestions and discussions, the
authors would like to thank P. Fitzpatrick, O. Geil, T. Mora, M. Piva and C. Traverso.

Suggestions and criticism by an anonymous referee helped us greatly to improve the presentation.

This work has been partially presented at the Claude Shannon Institute Workshop in Cork (Ireland), May 2007 and the
Mini workshop on error correcting codes and network coding in Aalborg (Denmark), September 2007.

Some of these results are present in the second author’s PHD thesis [30].

We have run our computer simulations using the software package Singular http://www.singular.uni-kl.de.

Appendix

All the polynomials in the examples are available at the web page
http://www.science.unitn.it/~sala/affine

where also some programmes to test the examples can be found.
The programmes are actually scripts running either on Singular or on MAGMA

http://magma.maths.usyd.edu.au/magma/

One computation depends on an unpublished algorithm by A. Zanoni and the third author. This algorithm can sometimes
compute lexicographic Groebner bases faster than known methods and was developed specifically to solve the locator
determination problem. For a brief description see [25], p. 444-445.
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