60,080 research outputs found

    Error Graphs and the Reconstruction of Elements in Groups

    Get PDF
    Packing and covering problems for metric spaces, and graphs in particular, are of essential interest in combinatorics and coding theory. They are formulated in terms of metric balls of vertices. We consider a new problem in graph theory which is also based on the consideration of metric balls of vertices, but which is distinct from the traditional packing and covering problems. This problem is motivated by applications in information transmission when redundancy of messages is not sufficient for their exact reconstruction, and applications in computational biology when one wishes to restore an evolutionary process. It can be defined as the reconstruction, or identification, of an unknown vertex in a given graph from a minimal number of vertices (erroneous or distorted patterns) in a metric ball of a given radius r around the unknown vertex. For this problem it is required to find minimum restrictions for such a reconstruction to be possible and also to find efficient reconstruction algorithms under such minimal restrictions. In this paper we define error graphs and investigate their basic properties. A particular class of error graphs occurs when the vertices of the graph are the elements of a group, and when the path metric is determined by a suitable set of group elements. These are the undirected Cayley graphs. Of particular interest is the transposition Cayley graph on the symmetric group which occurs in connection with the analysis of transpositional mutations in molecular biology. We obtain a complete solution of the above problems for the transposition Cayley graph on the symmetric group.Comment: Journal of Combinatorial Theory A 200

    Metric intersection problems in Cayley graphs and the Stirling recursion

    Full text link
    In the symmetric group Sym(n) with n at least 5 let H be a conjugacy class of elements of order 2 and let \Gamma be the Cayley graph whose vertex set is the group G generated by H (so G is Sym(n) or Alt(n)) and whose edge set is determined by H. We are interested in the metric structure of this graph. In particular, for g\in G let B_{r}(g) be the metric ball in \Gamma of radius r and centre g. We show that the intersection numbers \Phi(\Gamma; r, g):=|\,B_{r}(e)\,\cap\,B_{r}(g)\,| are generalized Stirling functions in n and r. The results are motivated by the study of error graphs and related reconstruction problems.Comment: 18 page

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201

    Reconstruction of permutations distorted by single transposition errors

    Get PDF
    The reconstruction problem for permutations on nn elements from their erroneous patterns which are distorted by transpositions is presented in this paper. It is shown that for any n≥3n \geq 3 an unknown permutation is uniquely reconstructible from 4 distinct permutations at transposition distance at most one from the unknown permutation. The {\it transposition distance} between two permutations is defined as the least number of transpositions needed to transform one into the other. The proposed approach is based on the investigation of structural properties of a corresponding Cayley graph. In the case of at most two transposition errors it is shown that 32(n−2)(n+1)\frac32(n-2)(n+1) erroneous patterns are required in order to reconstruct an unknown permutation. Similar results are obtained for two particular cases when permutations are distorted by given transpositions. These results confirm some bounds for regular graphs which are also presented in this paper.Comment: 5 pages, Report of paper presented at ISIT-200

    Matrix Completion on Graphs

    Get PDF
    The problem of finding the missing values of a matrix given a few of its entries, called matrix completion, has gathered a lot of attention in the recent years. Although the problem under the standard low rank assumption is NP-hard, Cand\`es and Recht showed that it can be exactly relaxed if the number of observed entries is sufficiently large. In this work, we introduce a novel matrix completion model that makes use of proximity information about rows and columns by assuming they form communities. This assumption makes sense in several real-world problems like in recommender systems, where there are communities of people sharing preferences, while products form clusters that receive similar ratings. Our main goal is thus to find a low-rank solution that is structured by the proximities of rows and columns encoded by graphs. We borrow ideas from manifold learning to constrain our solution to be smooth on these graphs, in order to implicitly force row and column proximities. Our matrix recovery model is formulated as a convex non-smooth optimization problem, for which a well-posed iterative scheme is provided. We study and evaluate the proposed matrix completion on synthetic and real data, showing that the proposed structured low-rank recovery model outperforms the standard matrix completion model in many situations.Comment: Version of NIPS 2014 workshop "Out of the Box: Robustness in High Dimension
    • …
    corecore