109,353 research outputs found

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    Evaluation of estimation approaches on the quality and robustness of collision warning system

    Full text link
    Vehicle safety is one of the most challenging aspect of future-generation autonomous and semi-autonomous vehicles. Collision warning systems (CCWs), as a proposed solution framework, can be relied as the main structure to address the issues in this area. In this framework, information plays a very important role. Each vehicle has access to its own information immediately. However, another vehicle information is available through a wireless communication. Data loss is very common issue for such communication approach. As a consequence, CCW would suffer from providing late or false detection awareness. Robust estimation of lost data is of this paper interest which its goal is to reconstruct or estimate lost network data from previous available or estimated data as close to actual values as possible under different rate of lost. In this paper, we will investigate and evaluate three different algorithms including constant velocity, constant acceleration and Kalman estimator for this purpose. We make a comparison between their performance which reveals the ability of them in term of accuracy and robustness for estimation and prediction based on previous samples which at the end affects the quality of CCW in awareness generation

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases
    • …
    corecore