11,902 research outputs found

    Weak order for the discretization of the stochastic heat equation driven by impulsive noise

    Full text link
    Considering a linear parabolic stochastic partial differential equation driven by impulsive space time noise, dX_t+AX_t dt= Q^{1/2}dZ_t, X_0=x_0\in H, t\in [0,T], we approximate the distribution of X_T. (Z_t)_{t\in[0,T]} is an impulsive cylindrical process and Q describes the spatial covariance structure of the noise; Tr(A^{-\alpha})0 and A^\beta Q is bounded for some \beta\in(\alpha-1,\alpha]. A discretization (X_h^n)_{n\in\{0,1,...,N\}} is defined via the finite element method in space (parameter h>0) and a \theta-method in time (parameter \Delta t=T/N). For \phi\in C^2_b(H;R) we show an integral representation for the error |E\phi(X^N_h)-E\phi(X_T)| and prove that |E\phi(X^N_h)-E\phi(X_T)|=O(h^{2\gamma}+(\Delta t)^{\gamma}) where \gamma<1-\alpha+\beta.Comment: 29 pages; Section 1 extended, new results in Appendix

    Introduction to discrete functional analysis techniques for the numerical study of diffusion equations with irregular data

    Get PDF
    We give an introduction to discrete functional analysis techniques for stationary and transient diffusion equations. We show how these techniques are used to establish the convergence of various numerical schemes without assuming non-physical regularity on the data. For simplicity of exposure, we mostly consider linear elliptic equations, and we briefly explain how these techniques can be adapted and extended to non-linear time-dependent meaningful models (Navier--Stokes equations, flows in porous media, etc.). These convergence techniques rely on discrete Sobolev norms and the translation to the discrete setting of functional analysis results

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    A Posteriori error control & adaptivity for Crank-Nicolson finite element approximations for the linear Schrodinger equation

    Get PDF
    We derive optimal order a posteriori error estimates for fully discrete approximations of linear Schr\"odinger-type equations, in the L(L2)L^\infty(L^2)-norm. For the discretization in time we use the Crank-Nicolson method, while for the space discretization we use finite element spaces that are allowed to change in time. The derivation of the estimators is based on a novel elliptic reconstruction that leads to estimates which reflect the physical properties of Schr\"odinger equations. The final estimates are obtained using energy techniques and residual-type estimators. Various numerical experiments for the one-dimensional linear Schr\"odinger equation in the semiclassical regime, verify and complement our theoretical results. The numerical implementations are performed with both uniform partitions and adaptivity in time and space. For adaptivity, we further develop and analyze an existing time-space adaptive algorithm to the cases of Schr\"odinger equations. The adaptive algorithm reduces the computational cost substantially and provides efficient error control for the solution and the observables of the problem, especially for small values of the Planck constant
    corecore