We give an introduction to discrete functional analysis techniques for
stationary and transient diffusion equations. We show how these techniques are
used to establish the convergence of various numerical schemes without assuming
non-physical regularity on the data. For simplicity of exposure, we mostly
consider linear elliptic equations, and we briefly explain how these techniques
can be adapted and extended to non-linear time-dependent meaningful models
(Navier--Stokes equations, flows in porous media, etc.). These convergence
techniques rely on discrete Sobolev norms and the translation to the discrete
setting of functional analysis results