96,306 research outputs found

    Generalization Properties and Implicit Regularization for Multiple Passes SGM

    Get PDF
    We study the generalization properties of stochastic gradient methods for learning with convex loss functions and linearly parameterized functions. We show that, in the absence of penalizations or constraints, the stability and approximation properties of the algorithm can be controlled by tuning either the step-size or the number of passes over the data. In this view, these parameters can be seen to control a form of implicit regularization. Numerical results complement the theoretical findings.Comment: 26 pages, 4 figures. To appear in ICML 201

    Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks

    Full text link
    Empirical studies show that gradient-based methods can learn deep neural networks (DNNs) with very good generalization performance in the over-parameterization regime, where DNNs can easily fit a random labeling of the training data. Very recently, a line of work explains in theory that with over-parameterization and proper random initialization, gradient-based methods can find the global minima of the training loss for DNNs. However, existing generalization error bounds are unable to explain the good generalization performance of over-parameterized DNNs. The major limitation of most existing generalization bounds is that they are based on uniform convergence and are independent of the training algorithm. In this work, we derive an algorithm-dependent generalization error bound for deep ReLU networks, and show that under certain assumptions on the data distribution, gradient descent (GD) with proper random initialization is able to train a sufficiently over-parameterized DNN to achieve arbitrarily small generalization error. Our work sheds light on explaining the good generalization performance of over-parameterized deep neural networks.Comment: 27 pages. This version simplifies the proof and improves the presentation in Version 3. In AAAI 202

    Boosting with early stopping: Convergence and consistency

    Full text link
    Boosting is one of the most significant advances in machine learning for classification and regression. In its original and computationally flexible version, boosting seeks to minimize empirically a loss function in a greedy fashion. The resulting estimator takes an additive function form and is built iteratively by applying a base estimator (or learner) to updated samples depending on the previous iterations. An unusual regularization technique, early stopping, is employed based on CV or a test set. This paper studies numerical convergence, consistency and statistical rates of convergence of boosting with early stopping, when it is carried out over the linear span of a family of basis functions. For general loss functions, we prove the convergence of boosting's greedy optimization to the infinimum of the loss function over the linear span. Using the numerical convergence result, we find early-stopping strategies under which boosting is shown to be consistent based on i.i.d. samples, and we obtain bounds on the rates of convergence for boosting estimators. Simulation studies are also presented to illustrate the relevance of our theoretical results for providing insights to practical aspects of boosting. As a side product, these results also reveal the importance of restricting the greedy search step-sizes, as known in practice through the work of Friedman and others. Moreover, our results lead to a rigorous proof that for a linearly separable problem, AdaBoost with \epsilon\to0 step-size becomes an L^1-margin maximizer when left to run to convergence.Comment: Published at http://dx.doi.org/10.1214/009053605000000255 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor Methods

    Full text link
    We provide guarantees for learning latent variable models emphasizing on the overcomplete regime, where the dimensionality of the latent space can exceed the observed dimensionality. In particular, we consider multiview mixtures, spherical Gaussian mixtures, ICA, and sparse coding models. We provide tight concentration bounds for empirical moments through novel covering arguments. We analyze parameter recovery through a simple tensor power update algorithm. In the semi-supervised setting, we exploit the label or prior information to get a rough estimate of the model parameters, and then refine it using the tensor method on unlabeled samples. We establish that learning is possible when the number of components scales as k=o(dp/2)k=o(d^{p/2}), where dd is the observed dimension, and pp is the order of the observed moment employed in the tensor method. Our concentration bound analysis also leads to minimax sample complexity for semi-supervised learning of spherical Gaussian mixtures. In the unsupervised setting, we use a simple initialization algorithm based on SVD of the tensor slices, and provide guarantees under the stricter condition that k≤βdk\le \beta d (where constant β\beta can be larger than 11), where the tensor method recovers the components under a polynomial running time (and exponential in β\beta). Our analysis establishes that a wide range of overcomplete latent variable models can be learned efficiently with low computational and sample complexity through tensor decomposition methods.Comment: Title change

    Generalization Error in Deep Learning

    Get PDF
    Deep learning models have lately shown great performance in various fields such as computer vision, speech recognition, speech translation, and natural language processing. However, alongside their state-of-the-art performance, it is still generally unclear what is the source of their generalization ability. Thus, an important question is what makes deep neural networks able to generalize well from the training set to new data. In this article, we provide an overview of the existing theory and bounds for the characterization of the generalization error of deep neural networks, combining both classical and more recent theoretical and empirical results
    • …
    corecore