238 research outputs found

    High-Performance Micromachined Vibratory Rate- and Rate-Integrating Gyroscopes.

    Full text link
    We aim to reduce vibration sensitivity by developing gyros that operate in the balanced mode. The balanced mode creates zero net momentum and reduces energy loss through an anchor. The gyro can differentially cancel measurement errors from external vibration along both sensor axes. The vibration sensitivity of the balanced-mode gyroscope including structural imbalance from microfabrication reduces as the absolute difference between in-phase parasitic mode and operating mode frequencies increases. The parasitic sensing mode frequency is designed larger than the operating mode frequency to achieve both improved vibration insensitivity and shock resistivity. A single anchor is used to minimize thermoresidual stress change. We developed two gyroscope based on these design principles. The Balanced Oscillating Gyro (BOG) is a quad-mass tuning-fork rate gyroscope. The relationship between gyro design and modal characteristics is studied extensively using finite element method (FEM). The gyro is fabricated using the planar Si-on-glass (SOG) process with a device thickness of 100 micrometers. The BOG is evaluated using the first-generation analog interface circuitry. Under a frequency mismatch of 5Hz between driving and sense modes, the angle random walk (ARW) is measured to be 0.44deg/sec/sqrt(Hz). The Cylindrical Rate-Integrating Gyroscope (CING) operates in whole-angle mode. The gyro is completely axisymmetric and self-aligned to maximize mechanical isotropy. The gyro offers a large frequency ratio of ~1.7 between parasitic and the wineglass modes. The CING is fabricated using the 3D Si-on-glass (SOG) process with a device thickness of 300 micrometers. The 1st and 2nd generation CINGs operate at 18kHz and 3kHz, respectively and demonstrate a frequency mismatch of <1% and a large Q (~20,000 at 18kHz and ~100,000 at 3kHz under exact mode matching). In the rate-sensing mode, the first-generation CING (18kHz) demonstrates an Ag of 0.05, an angle random walk (ARW) of 7deg/sqrt(hr), and a bias stability of 72deg/hr without temperature compensation. In the rate-sensing mode, the second-generation CING measures an Ag of 0.0065, an ARW of 0.09deg/sqrt(hr), and a bias stability of 129deg/hr without temperature compensation. In the rate-integration mode, the second-generation CING demonstrates precession with an Ag of 0.011±0.001 under a frequency mismatch of 20~80mHz during several hours of operation.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/1/jycho_1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91440/2/jycho_2.pd

    Characterization, Control and Compensation of MEMS Rate and Rate-Integrating Gyroscopes.

    Full text link
    Inertial sensing has important applications in navigation, safety, and entertainment. Areas of active research include improved device structures, control schemes, tuning methods, and detection paradigms. A powerful and flexible characterization and control system built on commercial programmable hardware is especially needed for studying mode-matched gyroscopes and rate-integrated gyroscopes. A gyroscope can be operated in a mode-matched rate-mode for increased sensitivity or rate-integrating mode for greatly increased dynamic range and bandwidth, however control is challenging and the performance is sensitive to the matching of the modes. This thesis proposes a system built on open and inexpensive software-defined radio (SDR) hardware and open source software for gyroscope characterization and control. The characterization system measures ring-down of devices with damping times and automatically tunes the vibration modes from over 40 Hz mismatch to better than 100 mHz in 3 minutes. When used for rate-gyroscope operation the system provides an FPGA implementation of rate gyroscope control with amplitude, rate and quadrature closed-loop control in the SDR hardware which demonstrates 400% improvement in noise and stability over open-loop operation. The system also operates in a RIG mode with hybrid software/firmware control and demonstrates continuous operation for several hours, unlike previous systems which are limited by the gyroscope ring-down time. The hybrid mode also has a simulation module for development of advanced gyroscope control algorithms. Advanced controls proposed for RIG operation show over 1000% improvement in effective frequency and damping mismatch in simulation and 25% reduction in drift due to damping mismatch in a test RIG. By tuning the compensation, the drift can be reduced by almost 90%, with worst case drift decreased to -41 deg/s and RMS drift to -21 deg/s. Harmonic analysis of the anisotropy in a rate-integrating gyroscope measured with this control system is presented to guide development of new error models which will further improve performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96121/1/jagregor_1.pd

    NASA Tech Briefs, October 2003

    Get PDF
    Topics covered include: Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester; Flight Test of an Intelligent Flight-Control System; Slat Heater Boxes for Thermal Vacuum Testing; System for Testing Thermal Insulation of Pipes; Electrical-Impedance-Based Ice-Thickness Gauges; Simulation System for Training in Laparoscopic Surgery; Flasher Powered by Photovoltaic Cells and Ultracapacitors; Improved Autoassociative Neural Networks; Toroidal-Core Microinductors Biased by Permanent Magnets; Using Correlated Photons to Suppress Background Noise; Atmospheric-Fade-Tolerant Tracking and Pointing in Wireless Optical Communication; Curved Focal-Plane Arrays Using Back-Illuminated High-Purity Photodetectors; Software for Displaying Data from Planetary Rovers; Software for Refining or Coarsening Computational Grids; Software for Diagnosis of Multiple Coordinated Spacecraft; Software Helps Retrieve Information Relevant to the User; Software for Simulating a Complex Robot; Software for Planning Scientific Activities on Mars; Software for Training in Pre-College Mathematics; Switching and Rectification in Carbon-Nanotube Junctions; Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers; Environmentally Safer, Less Toxic Fire-Extinguishing Agents; Multiaxial Temperature- and Time-Dependent Failure Model; Cloverleaf Vibratory Microgyroscope with Integrated Post; Single-Vector Calibration of Wind-Tunnel Force Balances; Microgyroscope with Vibrating Post as Rotation Transducer; Continuous Tuning and Calibration of Vibratory Gyroscopes; Compact, Pneumatically Actuated Filter Shuttle; Improved Bearingless Switched-Reluctance Motor; Fluorescent Quantum Dots for Biological Labeling; Growing Three-Dimensional Corneal Tissue in a Bioreactor; Scanning Tunneling Optical Resonance Microscopy; The Micro-Arcsecond Metrology Testbed; Detecting Moving Targets by Use of Soliton Resonances; and Finite-Element Methods for Real-Time Simulation of Surgery

    Stochastic Stability and Uncertainty Quantification of Ring-based Vibratory Gyroscopes

    Get PDF
    Effect of stochastic fluctuations in angular velocity on the stability of two DOF ring-type MEMS gyroscopes is investigated. The governing Stochastic Differential Equations are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of Largest Lyapunov Exponents are employed for validation purposes due to lack of similar analytical or experimental data. The stability investigation predicts that the threshold fluctuation intensity increases nonlinearly with damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability. Furthermore, construction, electrical improvements, testing and troubleshooting of a macro-scale ring-type gyroscope prototype is completed. Experiments have been conducted in order to investigate the linearity of system response, system behavior when subjected to environmental fluctuation in angular rate as well as the effects of angular rate and mass mismatch on system natural frequency. It is shown that the system natural frequency decreases with input angular rate and mass mismatch. It is also revealed that the system exhibits a more efficient damping behavior when subjected to stochastic speed fluctuations with fixed intensity at higher input angular rates

    Detection of gait events using a gyroscope sensor in FES drop-foot correction

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    High-Q Fused Silica Micro-Shell Resonators for Navigation-Grade MEMS Gyroscopes

    Full text link
    This research aims to develop the resonator for a navigation-grade microelectromechanical system (MEMS) Coriolis vibratory gyroscope (CVG) that will bring inertial navigation capabilities to a wider range of applications by reducing gyroscope size and cost. To achieve the desired gyroscope performance, the gyroscope resonator must have low energy dissipation and a highly symmetric structure. Several challenges arise at the micro-scale due to the increased sensitivity to imperfections and increased susceptibility to energy loss mechanisms. This work investigates the lower limit on energy dissipation in a micro-shell resonator known as the birdbath (BB) resonator. The BB resonator is designed to mitigate the energy loss mechanisms that commonly limit MEMS resonators, including anchor loss and thermoelastic dissipation, through a unique shape and fabrication process and through the use of fused silica as the structural material. A blowtorch molding process is used to form high aspect ratio fused silica shells with a range of wall profiles, providing a high level of control in three dimensions that is not possible with conventional micromachining techniques. Prototype BB resonators were developed prior to this dissertation work but they achieved low quality factors (Q) and low ring-down time constants (T) on the order of 100 thousand and 1 s, respectively. The goal of this work is to drastically increase performance above these initial results. Each relevant energy loss mechanism is considered in order to identify the dominant loss mechanism for a given device. Process improvements are implemented to mitigate each loss mechanism, including improved thermal management during blowtorch molding, cleaner lapping and polishing, reduced upfront surface contamination, and methods to remove contaminants after fabrication. Following optimization, Qs up to 10 million and Ts up to 500 s are measured, representing a marked improvement over the prototype resonators. It is found that BB resonators are now limited by surface loss, as indicated by the observed inverse relationship between Q and surface-to-volume ratio. The surface-loss-limited regime results in a high sensitivity to added surface layers. The addition of a conductive layer to enable electrostatic transduction is found to have a large impact, decreasing Q by 50% with the addition of only 30 angstroms of metal. It is suggested that the origin of this loss may be interfacial slippage due to a large increase in stress that occurs at the interface during oscillation. Experimental investigation into the dependence of Q on conductive layer composition, thickness, deposition conditions, and post-deposition treatments is carried out. Following treatments to removed adsorbed contaminants from the surface, resonators with a 15/50 angstrom Ti/Pt layer are found to maintain 60% of their initial Qs. Indium tin oxide (ITO) is identified as a promising conductive layer candidate, with initial experiments producing shells that maintain 70% of their initial Q. The values of Q and T produced in this work are unprecedented for MEMS resonators. Even accounting for the losses that accompany conductive layer deposition, birdbath resonator gyroscopes are expected to achieve navigation-grade performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146096/1/taln_1.pd

    Autonomous aerobatic maneuvering of miniature helicopters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2003.Includes bibliographical references (p. 83-86).In this thesis, I present an experimentally proven control methodology for the autonomous execution of aerobatic maneuvers with small-scale helicopters, and a low-order dynamic model which adequately describes a miniature helicopter in a wide range of flight conditions, including aerobatics. The control laws consist of steady-state trim trajectory controllers, used prior to, and upon exit from the maneuvers; and a maneuver execution logic inspired by human pilot strategies. In order to test the control laws, a miniature helicopter was outfitted with a custom digital avionics system, and a hardware-in-the-loop simulation was developed. The logic was tested with several aerobatic maneuvers and maneuver sequences, which demonstrated smooth maneuver entry, automatic recovery to a steady-state trim trajectory, and robustness of the trim-trajectory control system toward measurement and modeling errors. Based on these results, I further propose a simplified hybrid model for a helicopter under such closed loop control. The model can be utilized in the development of computationally tractable motion-planning algorithms for agile vehicles.by Vladislav Gavrilets.Ph.D

    Voyager spacecraft system, phase IA, TASK B - Preliminary design. Spacecraft functional design, volume A, book 2

    Get PDF
    Functional descriptions of subsystems for 1971 Voyager flight spacecraf
    • …
    corecore