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Abstract

Effect of stochastic fluctuations in angular velocity on the stability of two DOF ring-type

MEMS gyroscopes is investigated. The governing Stochastic Differential Equations are dis-

cretized using the higher-order Milstein scheme in order to numerically predict the system

response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as

a measure of Largest Lyapunov Exponents are employed for validation purposes due to lack of

similar analytical or experimental data. The stability investigation predicts that the threshold

fluctuation intensity increases nonlinearly with damping ratio. Under typical gyroscope oper-

ating conditions, nominal input angular velocity magnitude and mass mismatch appear to have

minimal influence on system stability.

Furthermore, construction, electrical improvements, testing and troubleshooting of a macro-

scale ring-type gyroscope prototype is completed. Experiments have been conducted in order

to investigate the linearity of system response, system behavior when subjected to environ-

mental fluctuation in angular rate as well as the effects of angular rate and mass mismatch on

system natural frequency. It is shown that the system natural frequency decreases with input

angular rate and mass mismatch. It is also revealed that the system exhibits a more efficient

damping behavior when subjected to stochastic speed fluctuations with fixed intensity at higher

input angular rates.

Keywords: MEMS, gyroscope, stochastic differential equation, dynamic stability, white noise.
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Chapter 1

Introduction and Literature Survey

1.1 Introduction

The ancient civilizations designed a simple toy called a ”top” for the sole purpose of entertain-

ment, unaware of the applications of the device in the millennia to come. The invention of the

spinning top opened the door to exquisite, then unimaginable advancements in low-cost high-

accuracy navigation devices used worldwide in a diverse list of applications from long-haul

transportation to entertainment. A wide variety of gyroscopic devices have been developed in

the past century in order to quantify rotation and, essentially, simplify navigation.

In the past two decades, the world of Micro Electro-Mechanical Systems (MEMS) offered un-

precedented opportunities in reducing the weight, size, production cost and power consumption

of the sensors as well as increasing their accuracy in by omitting unnecessary moving parts and

fluids. It was only logical that MEMS methods were applied to gyroscopes and gave birth to

a new range of navigation devices. Although these devices offer countless possibilities, they

are still prone to sources of error such as drift, effects of temperature change and unwanted

vibration.

The present thesis is a continuation of ongoing research at the Dynamics and Sensing Systems

1
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Laboratory at Western University and focuses on a modern type of MEMS gyroscopes called

the ring-type gyroscopes. In an effort to model and study the effects of environmental fluctu-

ations in angular rate of ring gyroscopes, stochastic methods are utilized and integrated using

numerical methods.

Although ring-type gyroscopes have been studied and manufactured in MEMS scale, more

research needs to be done on the behavior of MEMS and macro-scale ring-type gyroscopes

and problems associated with this class of devices. For this purpose, an experimental macro-

scale prototype previously developed by Cho (2009) has been completed and complementary

experiments were conducted in order to visualize the behavior of the device and the effects of

low natural frequencies associated with such macro-scale devices.

1.2 Literature Review

1.2.1 A Short History of Gyroscopes

Beginning in the 18th and early 19th centuries, explorers required a device for measurement of

horizon and direction regardless of the orientation of the surface it was placed on. The English

scientist, John Serson (in 1742 or 1743) was one of the first to notice that spinning tops tend to

remain level regardless of the supporting surface being tilted. He suggested that the top has the

potential to be used as artificial horizon on ships. Modern gyroscopes are, in essence, modified

tops. The first known prototype of modern gyroscopes was introduced by G. C. Bohnenberger

in 1810. His prototype, however, consisted of a heavy ball instead of a wheel and hence was

not credited by the scientific community due to its limited applications (Wagner, 2005).

In 1852, Foucault who was experimenting with the effects of earth rotation on pendulums, con-

structed a device consisting of a high-speed rotating wheel which could move independently

with respect to a supporting rigid gimbal based on previous work by Bohnenberger (1810,
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Germany) and Johnson (1832, United States). The orientation of the wheel stayed consistent,

therefore confirming that the Earth is rotating constantly since the supporting gimbal is directly

connected to the Earth (Foucault, 1852). The device acquired the name ”gyroscope”, from the

Greek words ”gyros” (revolution) and ”skopein” (to see); a device that allows the user to see

the revolution of the Earth. Although the word ”gyroscope” is used by some authors exclu-

sively for rotary sensors with spinning wheels, it can be generally used for any device that is

used to demonstrate or measure rotation (Lawrence, 1993). George M. Hopking, American

inventor, employed an electric motor to maintain the angular velocity of the wheel at any de-

sired speed in 1878. An example of this type of gyroscopes can be seen in Figure 1.1. In 1898,

Ludwig Obry patented a torpedo steering mechanism that operated based on gyroscopic inertia

which might have inspired Elmer A. Sperry, who developed the first automatic airplane pilot

using gyroscopes and the first gyro-stabilizer for reducing roll in ships (see Lawrence, 1993;

Scarborough, 1958).

Simple Gyroscope
( P fut t<.t g r up h co urt es,y S,p er r y G y r rt s u.t 1 

t c C rL.)

Figure 1.1: A simple gyroscope. (Scarborough, 1958)

Gyroscopes can generally be categorized into three grades based on their accuracy and perfor-
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mance, namely rate, tactical and inertial grade, where the inertial grade provides the highest

accuracy possible while the rate grade is used for low-accuracy demanding applications. Table

1.1 displays the different grades of gyroscopes and the requirements that need to be met for

categorizing a device under each grade.

Specification Rate Grade Tactical Grade Inertial Grade

Angle Random Walk (deg /
√

hr) >0.5 0.5∼0.05 <0.001
Bias Drift (deg /hr) 10∼1000 0.1∼10 <0.01

Full Scale Range (deg /s) 50∼1000 >500 >400
Dynamic Range (dB) 40 100 100
Noise (deg /s.

√
Hz) >0.1 0.5∼0.05 <0.001

Absolute Accuracy (%) 0.1∼1 0.01∼0.1 <0.001
Bandwidth (Hz) >70 ∼100 ∼100

Table 1.1: Grade requirements of gyroscopes (Yazdi et al., 1998)

The most usual form of a gyroscope was a mechanical device consisting of a heavy flywheel

rotating at high speeds until mid 1950s. These types of gyroscopes formed the majority of

navigation devices in vessels (Kempe, 2011; Scarborough, 1958). New types of gyroscopes

emerged beginning in the 1950s with the introduction of the Sperry rate Gyrotron (Morrow,

1955) opening the way to new classes of angular rate measurement devices that would not fit

under the conventional definition of a gyroscope. Various types of gyroscopes have been devel-

oped ever since for specific range of applications, such as angle and angular rate measurement,

remote sensing, photogrammetry, terrestrial surveying and terrain profiling (Jekeli, 2001). In

1963, a new class of gyroscopes were born with the introduction of Ring Laser Gyroscopes

(RLG) and Fiber Optic Gyroscopes (FOG). This class of gyroscopes which take advantage of

the phase shift of light beams, commonly known as the Sagnac effect, are able to measure an-

gular rate with exceptionally high accuracy and form the majority of inertial grade gyroscopes

(Loukianov et al., 1999).

At the same time, another class of gyroscopes were being developed which took advantage of

Coriolis effect in a different way in order to measure angular velocity. This class, commonly
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referred to as vibratory gyroscopes have been developed in pursuit of reducing the production

cost and size of the sensors. However they did not attract the attention of the scientific com-

munity until the rise of MEMS devices due to apparent lack of advantages over conventional

gyros. With the introduction of MEMS devices, a unique characteristic of the vibratory gyros

gave popularity to these sensors which is feasibility of production in micro-scale. Ever since,

vibratory angular rate sensors have been the focus of researchers with the hope to develop more

cost-effective and accurate devices. This research has led to development of several types of

vibratory gyros including the vibrating string, mass-spring and vibrating shell resonator gyro-

scopes which currently fall under the rate or tactical grade accuracy classification.

1.2.2 Vibrating String

The vibrating string gyro, as the name suggests, consists of an oscillating string. The string is

fixed on both ends and the vibration plane of the string tends to remain stationary in case the

supports rotate about the string axis (Quick, 1964). Quick, in 1964, realized that the Coriolis

acceleration causes the vibration to be coupled into the plane perpendicular to the vibration

plane and hence the vibration plane appears to not be affected by the rotation. Quick designed

an apparatus which measures the coupling due to rotation and essentially acts as an angular

measurement sensor.

1.2.3 Mass-Spring

This type of gyroscopes usually contains a proof mass oscillating along the X-axis using a

driving force (FD) with the frame free to rotate about the Z-axis as shown in Figure 1.2. Coriolis

force FC, due to rotation combined with oscillation results in deflection of the proof mass in

the Y-axis. The Coriolis acceleration and deflection in the Y-axis can then be used in order to

measure the angular velocity about the Z-axis.
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Figure 1.2: Schematics of a spring-mass type gyroscope (Reproduced from Clark, 1999)

1.2.4 Tuning Fork

Rotation of a vibrating tuning fork about its base produces periodically varying Coriolis forces

along the rotation axis. The variations in the angular rate can be qualitatively explained through

conservation of angular momentum with the fork rotating more rapidly when the tines are

closer to each other and the fork rotating more slowly when the tines are apart (Morrow, 1955).

Hence, forcing the fork to rotate about its axis at a steady speed results in the varying motion of

the tines which can be calibrated against the angular speed of the base. An example of a MEMS

tuning fork gyroscope under a Scanning Electron Microscope (SEM) is shown in Figure 1.3.

1.2.5 Vibrating Shell

The tuning fork gyros operate using energy transfer between two different vibration modes.

Therefore, this type of gyroscopes is highly sensitive to environment temperature due to differ-



Chapter 1. Introduction and Literature Survey 7

Figure 1.3: SEM view of a tuning fork gyroscope. (Günthner et al., 2006)

ent temperature sensitivities of the natural frequencies of the two modes. Vibrating shell gy-

roscopes, however, overcome this problem by taking advantage of two identical mode shapes.

Bryan (1890) analyzed the vibration of cylindrical and bell-shaped shells using a wine glass

analogy. Bryan noted that a wine glass produces a pure and continuous tone when struck.

However, twisting the wine glass around results in audible beats demonstrating that the nodal

meridians do not remain fixed in space. Furthermore, Bryan concludes that since the beats can

still be heard with the observer turning around while holding the vibrating glass, the nodes do

not rotate with the same angular velocity as the glass or the observer.

1.2.6 Ring-type

Ring-type or ring-structure gyroscopes operate similar to vibrating shell gyros. Ring-type gy-

roscopes were first developed by Delco Electronics Corporation and British Aerospace Systems

incorporating a batch-manufactured silicon ring held in place by eight spider-leg spring sus-
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penders (Maluf and Williams, 2004). This type of gyros gained popularity for their minimal

drift to temperature fluctuation and high sensitivity to rotation. Moreover ring-type and in gen-

eral the vibrating shells gyros exhibit higher immunity to unwanted environment vibration as

opposed to e.g., tuning forks due to their weak interaction with the supporting structure (see

Asokanthan et al., 2006; Lawrence, 1993).

Ring-type vibratory gyroscopes rely on Coriolis effect for operation similar to other types of

modern angular rate sensors with the exception of ring-laser sensors. A ring-type angular rate

sensor is usually composed of a thin, light-weight ring, an exciter and a sensor. An example

of a MEMS ring gyroscope can be seen in Figure 1.4. Vibration in a certain vibratory mode

is excited in the ring using an exciter. Coriolis forces induced in the ring during rotation of

the ring cause the excited ring to shift vibration into the next resonance mode. A well-placed

sensor is able to detect the resultant shift and the sensor output is then calibrated against the

rotation (Kempe, 2011).

Figure 1.4: SEM view of a polysilicon ring gyroscope 1 mm in diameter. (Ayazi and Najafi,
1998)
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More recently, the advancements in the fields of micro-machining and Micro Electro-Mechanical

Systems (MEMS) have enabled development of gyroscopes and accelerometers in a small

package. Low power consumption, small size, low manufacturing cost as well as moderate

accuracy are the main advantages offered by MEMS angular rates sensors which makes them

ideal for usage in everyday and practical applications. MEMS packages are used nowadays in

vehicles for applications such as designing active suspension and navigation, in cameras for

image stabilization and in consumer electronics (such as smartphones) for a range of applica-

tion from navigation to entertainment (Abedin, 2014). Table 1.2 shows the typical applications

of a MEMS inertial sensor with the estimated grade requirements (Söderkvist, 1994; Yates,

1999).

Application Range Accuracy Grade

Automotive Safety 50 ∼ 200◦/s 1 ∼ 10◦/s Rate
Consumer 50 ∼ 100◦/s 0.5 ∼ 2◦/s Rate
Medical 20 ∼ 100◦/s 0.1 ∼ 2◦/s Rate/Tactical

Industrial 10 ∼ 50◦/s 0.01 ∼ 0.2◦/s Tactical

Table 1.2: Applications of gyroscopes with estimated typical grades

MEMS-based sensors primarily fall in the rate grade. Improvements in accuracy as well as

their drift performance are warranted before they can be accepted as a true tactical or inertial

grade device. To this end, several recent research as well as development efforts are underway.

In the recent years, another type of sensors similar to ring gyroscopes called the Bulk Acoustic

Wave (BAW) inertial sensors have been developed by Ayazi and Johari (2009) and currently in

production by Qualtré Inc. BAW sensors are composed of a silicon disk which is manufactured

in the HARPSS process and detect energy transfer as a result of rotation between two modes of

high frequency (1 to 5 MHz) of the disk. BAW sensors offer full-scale ranges of 300 ∼ 3000 ◦/s

as well as temperature sensitivities as low as 0.05 ◦/s/◦C. A schematic of a BAW inertial sensor

is displayed in Figure 1.5, showing the vibration modes of the disk as well as the sensing and

actuation devices.
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Figure 1.5: Schematic of a BAW inertial sensor. (Kempe, 2011)

Although the operating principles of the ring-type gyroscopes are fairly simple, complication

might arise during typical manufacturing and operating conditions. Stability of the sensor is

compromised when the device is subjected to disturbance caused by environmental fluctua-

tions. Furthermore, development of a perfectly uniform ring is improbable resulting in non-

uniform mass distribution of the ring, called mass mismatch. Introduction of mass mismatch

affects the natural frequencies of the ring and essentially the operation as well as accuracy of

the gyroscope. Hence, the main objective of the present thesis is assessment of dynamic sta-

bility of MEMS-based ring-type vibratory gyroscopes under external disturbance as well as

design and production of a macro-scaled prototype for the purposes of studying the physical

and vibratory characteristics as well as the general behavior of the device.

To Further this development, dynamics and stability of ring-structure gyroscopes have been of

interest in the recent past. In-plane motion of vibrating rings considering the effects of both

centrifugal and Coriolis forces on the dynamic response has been investigated in (see Huang

and Soedel, 1987). Moreover, the coupling between the in-plane and out-of-plane vibratory
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motion was studied by Eley et al. (2000). Focusing on the system stability, a method for in-

vestigating the stability of a linear gyroscopic system via a model of a rotating beam has been

developed by Kammer and Schlack Jr. (1987). Recently, stability of a ring-based gyroscope

when it is subjected to harmonic perturbation in angular rate has been studied via the method

of averaging (Asokanthan and Cho, 2006). Although harmonic vibration may be a simple ap-

proximation useful for modeling angular speed fluctuation emanating from the environment,

white noise, which covers a wide range of frequencies, may be a more realistic representa-

tion. Hence, introduction of the white noise is envisaged to aid in a more accurate prediction

of the dynamic behavior of these devices as well as the physical systems they are mounted

on. Asokanthan and Wang (2009) studied the effects of angular rate perturbations on mass

spring systems using the second moment stability criteria and the method of averaging. The

present investigation focuses on the dynamic stability of ring-structure gyroscopes based on

their dynamic response, considering random perturbation in input angular velocity.

One of the most important factors that affect the operation of a ring gyroscope is deviation

of the geometry from the intended axisymmetric design. Imperfections could occur mostly

during the manufacturing stage. Non-uniformities in mass result in high levels of mechanical

coupling and reduced secondary response which in return limits detection of low angular rates.

To this end, previous research has shown that near-perfect aspect ratios are achieved using deep

reactive ion etching as well as finer line photolithography is the fabrication process of silicon

rings (Harris et al., 1998).

In another effort to increase the accuracy of ring gyroscopes Wang et al. (2010) designed and

fabricated a sensor with harsh environmental conditions in mind. The final product demon-

strated a low frequency split of 0.5 Hz between the sensing mode and driving mode frequencies

due to high symmetry. Furthermore, it was shown that the frequency split remains consistent

under different environmental conditions.

The present thesis consists of two parts. The first part focuses on studying the effects of envi-
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ronmental fluctuations on ring-type gyroscopes through numerical simulation. The developed

schemes take advantage of the equations of motion for the ring-type gyroscopes which have

been developed by Asokanthan and Cho (2006) based on the previous work by Huang and

Soedel (1987). The present study further extends the work performed by Asokanthan and Cho

(2006) for the periodic fluctuation by introducing a random perturbation in the angular rate.

For this purpose, considering the random fluctuation, the governing equations that represent

the motion of the gyroscopic system under investigation are written in the form of a system of

standard Stochastic Differential Equations (SDE).

It is known that closed-form analytical solutions cannot be obtained for this class of systems

owing to their highly non-differentiable character of the realization of the Wiener process

(Higham, 2001). In the present study, the higher-order Milstein scheme is employed to sim-

ulate the time response. The stochastic response of ring-based gyroscopes is then quantified

for certain parameters of interest. The stability analysis is then performed based on the simu-

lated responses so that the stability behavior of this class of gyroscopes can be predicted. To

this end, an algorithm for computing the characteristic Lyapunov exponents of the response

have been employed for validating the stability predictions via the stochastic response. Effects

of damping and angular speed fluctuation magnitude on system stability have been quantified

for different input angular velocities. In addition, these effects have also been quantified for a

parameter that represents the non-uniformity in ring mass distribution.

The objective of the second part of the present thesis is further investigation of the results

obtained through numerical and analytical studies as well as the non-linearities of macro-scale

ring-type gyroscopes. A macro-scale experimental setup was developed for this purpose and

studies were performed in order to quantify the energy transfer between different mode shape

configurations and assess the effects of angular rotation on the natural frequency of the ring.

Furthermore, the effects of non-uniform mass distribution along the circumference of the ring

as well as effects of fluctuations in input angular rate on system behavior have been quantified.
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1.3 Thesis Objectives

Although vibratory sensors are manufactured for common applications in MEMS-scale, it is

not feasible to study the effects of environmental fluctuations on a MEMS-scale sensor due

to the complexities of changing the geometry of the ring as well as selection of suitable mea-

surement devices for a rotating MEMS ring. Moreover, numerical simulation of such devices

poses another problem due to the barriers caused by the limitations of analytical and numerical

methods. Considering the problem in hand, the present thesis aims to:

• Introduce environmental fluctuations in the input angular rate of ring-type vibratory gy-

roscopes by employing a white noise function and develop the corresponding stochastic

differential equations of motion considering the newly introduced noise intensity vari-

able.

• Develop the required numerical tools using the available schemes in order to numeri-

cally solve the resulting SDE and apply the developed scheme to the SDE. For this pur-

pose, the goal is to employ the higher-order available schemes in order to obtain a novel

method with higher accuracy than the simpler schemes and to implement the developed

higher-order numerical equations using a Matlab script and validate the results against

the commonly-used schemes using Largest Lyopunov Exponents stability assessment

tools.

• Perform a dynamic stability analysis using the developed script and study the effects of

fluctuations in angular rate on system stability via a parametric study using an array of

noise intensity and damping ratio values in order to obtain a noise intensity threshold for

a prescribed system damping ratio. Further research is also envisioned in order to assess

the effects of angular rate and decreased uniformity of mass along the circumference of

the ring on bifurcation of system natural frequencies and essentially, system stability.
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• Develop a macro-scale ring-type vibratory sensor prototype using the experimental project

previously initiated by Cho (2009). The project agenda includes development of reliable

wiring of the device, installation and testing of sensors, development of a LabView script

for data acquisition, monitoring and analysis, development of an instruction manual for

safe operation and maintenance of the device as well as implementation of safety mea-

sure to ensure safe operation of the experimental setup.

• Conduct experiments on the bifurcation of natural frequencies of a ring-type gyroscope

and demonstrate the reduction of natural frequency due to angular rotation as well as the

non-linear behavior of the macro-scale device as a result of large-amplitude vibrations

and relatively low natural frequency close to operating angular rates.

• Investigate the effect of increased non-uniform mass distribution due to manufacturing

defects on natural frequencies of the system and compare the results with previous the-

oretical analysis in literature. Furthermore, the goal is to demonstrate the effects of

fluctuations in angular rate on system behavior which can be used to further the exper-

imental research into dynamic stability of macro-scale systems similar to the numerical

study performed in the present thesis.

1.4 Thesis Outline

The present thesis is comprised of a numerical and an experimental study on the behavior of

ring-type gyroscopes. Conforming to the objectives of the thesis, the thesis is presented in the

following chapters:

In Chapter 2, the previously obtained equations of motion for the ring-type sensors are further

developed in order to incorporate the effects of fluctuations in angular velocity. Furthermore,

the equations are simplified and rewritten in order to take the form of standard Stochastic
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Differential Equations.

Chapter 3 reviews the stochastic calculus tools required in order to numerically solve the de-

veloped equations. Moreover, the common numerical schemes are introduced, explained and

compared and the higher-order Milstein numerical scheme is applied to the stochastic differen-

tial equation at hand.

The results of the numerical study are discussed in Chapter 4. This chapter starts by validating

the developed method using Largest Lyapunov Exponent method and comparing the method

with the more commonly used Euler method. Times responses obtained using the Milstein

method are analyzed and a parametrical study is performed in order to obtain an intensity

threshold for fluctuations in angular rate using a prescribed system damping ratio. Effects of

angular rate and mass uniformity on system natural frequencies are also discussed in Chapter

4 and the discussion on the findings is ensued.

The details of the experimental setup are discussed in Chapter 5 as well as the experimental

results on effects of angular rate, environmental fluctuations and mass uniformity on system

natural frequency.

Finally, Chapter 6 discusses the conclusion of the obtained numerical and experimental re-

sults as well as a summary of the developed numerical and experimental tools employed in the

research. Contributions of the present work are also highlighted in this chapter and recommen-

dations for future research are explored.



Chapter 2

Governing Equations

2.1 Introduction

The governing equations for the system developed using Hamilton’s principle by Cho (2005)

have been employed to study the effect of stochastic fluctuation in input angular rate. Complex

Fourier series are then used to derive the modal shapes of the ring. In this chapter, the employed

model is reviewed in order to better understand the experiments and implementation of the

numerical models.

2.2 Model Description

The ring is assumed to be of uniform rectangular cross section of width b and sufficiently thin

with the ratio of radial thickness h to mean radius r, i.e., (h/r)2 << 1 (see Love, 2013). The

material chosen for the ring is assumed to be isotropic and homogeneous while the transverse

shear deformation of the ring is considered negligible in accordance with the thin ring assump-

tion and the Euler-Bernoulli theory (see Soedel, 2004). It is assumed that the circumferential

16
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strain in mid-surface is zero and Galerkin’s procedure is employed to obtain the equations

of motion in terms of suitable generalized coordinates. Figure 2.1 shows the geometry and

parameters used in the present research.

Figure 2.1: Schematic of the rotating ring geometry. (Cho, 2005)

Figure 2.2: Visualization of the second flexural modes of the ring. (Cho, 2005)
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Rotational coordinates α1, α2 and α3 are used for locating the neutral surface elements and

ur and uθ represent the transverse and circumferential displacements, respectively. In order to

incorporate the stiffness of the ring into the model, eight radial springs are considered with

the stiffness components kr and kθ representing the radial and circumferential components, re-

spectively. Furthermore, the three components of the angular rate Ω are shown in the figure.

However, the current analysis is focused on effects of angular rotation in the Z-axis direction

and the other components are assumed to be zero. Due to the symmetry of the geometry, the

ring exhibits different mode shapes with identical natural frequencies as shown in Figure 2.2,

referred to as degenerate mode shapes. Energy transfer between these degenerate configura-

tions due to angular rotation can be used in order to measure angular rate.

2.3 Governing Equations

The general equations of motion to the ring can be derived using Hamilton’s principle. To this

end, the expressions for kinetic, potential, strain and external energy for the ring have been

considered. Keeping the flexural vibration modes of the ring in mind, it can be shown that

when vibration is excited in a particular mode in the ring and the ring is subjected to an external

angular rate Ω, the vibration mode shape tends to shift from one degenerate shape to the other,

e.g., from the primary mode to the secondary mode or vice versa in Figure 2.2. This shift is

due to the energy transfer between the extensional displacements of the two configurations as

a result of Coriolis effect (Cho, 2005). This phenomenon can be employed in order to measure

angular rate by detecting the shift between configurations. A number of mode shapes can

be chosen for this purpose. However, excitation and measurement is more practical in some

vibration modes. In the present research, the second mode, i.e. n = 2, is chosen due to the

larger vibration amplitudes, simplicity in excitation and sensing methods and familiar shape of

the vibration mode, commonly known as the ”wineglass mode”.
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For this particular mode, four generalized coordinates can be defined as shown in Figure 2.2,

where the generalized coordinates q1(t) and q2(t) represent the flexural displacements and q3(t)

and q4(t) represent circumferential displacements. It can be seen that the two configurations of

this mode are separated by 45◦ due to symmetry. In addition, the reversal of nodes and anti-

nodes in the two degenerate configurations has also been depicted in the figure. Furthermore,

the derived equations of motion can be rewritten in terms of only the flexural modes by applying

the amplitude ratios described by Huang and Soedel (1987),

q3 = −(1/n)q1 and q4 = (1/n)q2, (2.1)

The reduced discretized form of second order linear gyroscopic equations of motion for the

ring using the flexural generalized coordinates q = [q1 q2]T as:

Mq̈ + (G + D)q̇ + Kq = F, (2.2)

The detailed derivation process can be found in Appendix A and also in Cho (2005). In Equa-

tion (2.2), G represents the gyroscopic matrix which is a result of the Coriolis effect and pro-

vides coupling between the two flexural configurations, D is the damping matrix, K denotes

the stiffness matrix and F is the generalized excitation force vector. The system matrices take

the form:
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M =

1 0

0 1 + δm

 (2.3)

G =

 0 −2Ωγ

2Ωγ 0

 , (2.4)

D =

2ζω01 0

0 2ζω02

 , (2.5)

K =

κ1 + κ2Ω
2 −Ω̇γ

Ω̇γ κ1 + κ2Ω
2

 , (2.6)

F =


f1 cosωt

0

 . (2.7)

where,

γ =
ˆ̃b + n2 ˆ̃a

n( ˆ̃a + ˆ̃b)
, κ1 =

ˆ̃b ˆ̃c − n2 ˆ̃a2

ρA( ˆ̃a + ˆ̃b)
, κ2 =

(
n2( ˆ̃b + ˆ̃c − 4ˆ̃a)

ˆ̃a + ˆ̃b
−

(2 + n)( ˆ̃b ˆ̃c − n2 ˆ̃a)

( ˆ̃a + ˆ̃b)2

)
,

ˆ̃a = n2 EI
r4 +

EA
r2 ,

ˆ̃b = n2
(EI

r4 +
EA
r2

)
, ˆ̃c = n4 EI

r4 +
EA
r2 .

The intermediate parameters ã, b̃ and c̃ are defined in Appendix A as the set of Equations

(A.23).

The system matrix M is called the mass matrix. The effects of non-uniform distribution of

mass along the circumference of the ring is incorporated in the mass matrix by employing the

assumption that the mass of the ring is slightly higher, by the amount δm in the direction of the

sensing coordinate. It may me noted that the stiffness matrix includes the centrifugal force term

that depends on a factor κ2, which takes a negative value for the present system. Hence, overall

system stiffness is affected by angular velocity which may lead to lower system stability.

The damping matrix, apart from representing viscous dissipation, includes the gyroscopic cou-
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pling term 2Ωγ, which is dependent on the input angular velocity. It is worth noting that owing

to the gyroscopic as well as the centrifugal effects, the two undamped system natural frequen-

cies ω01 and ω02 vary with the input angular velocity Ω. However, at typical low input angular

velocities of about 2π rad/s, these two frequencies take nearly identical values (Asokanthan

and Cho, 2006). The excitation frequency ω is usually chosen close to the system natural

frequencies ω01 and ω02 which is discussed in detail in Section 2.4.

Keeping in mind that during the present research, the ring is excited only in one flexural mode,

the force vector can be simplified to the form shown in Equation (2.7), where,

f1 =
2 fr

ˆ̃b

ρA( ˆ̃a ˆ̃b)
.

However, focusing on the system stability where the steady state response of the system is

not of interest, the homogeneous form associated with Equation (2.2) in the absence of the

excitation force f1 is considered for the numerical analysis chapter of the thesis.

Moreover, the term Ω̇ can be neglected under the assumption of constant angular rate. On the

other hand, this assumption is not practical in the presence of fluctuations in the angular rate.

However, for the system under investigation, the contributions of the associated terms, Ω̇γq1

and −Ω̇γq2 are negligible when compared to 2Ωγq̇1 and −2Ωγq̇2 at high angular rates where

instability becomes an issue. Therefore, it is sufficient to approximate Ω̇γq1 = −Ω̇γq2 = 0 for

the purpose of stability analysis. Also, for the case of uniform mass distribution of the ring,

mass mismatch δm = 0. However, mass mismatch is taken into account for natural frequency

computations, hence incorporating the effect of non-uniform distribution of mass in the system

equations. Applying the assumed conditions, the governing equations of motion of a ring-based

gyroscope take the form of a second order ordinary differential equation,

1 0

0 1

 q̈ +

2ζω01 −2Ωγ

2Ωγ 2ζω02

 q̇ +

κ1 + κ2Ω
2 0

0 κ1 + κ2Ω
2

 q = 0. (2.8)
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It is known that for a typical ring-based gyroscope operation, one of the second flexural modes

is harmonically excited while the measurement of angular shift of this mode towards the cor-

responding degenerate mode is employed in quantifying the angular rate. It may be noted that

during the typical operation of a gyroscope an angular shift between 0◦ and 45◦ is realized as

discussed in Section 2.2 and earlier in Section 2.3. Hence, the coordinate q2 can be thought

of as being associated with the angular rate measurement while the coordinate q1 can be con-

sidered to represent the excitation. For the purposes of numerical simulations, the geometric

and material properties of the ring as shown in Table 2.1 have been used. In particular, these

properties are employed to calculate the ring parameters γ, κ1 and κ2.

Property Value

Density ρ = 8800 kg/m3

Young’s modulus E = 210 × 109 N/m2

Mean radius r = 500 µm
Radial thickness h = 12.5 µm
Axial thickness b = 30 µm

Table 2.1: Physical properties of the MEMS ring

2.4 Natural Frequency Variations

The natural frequencies of the two configurations of the second flexural mode depend on the

mass mismatch factor as well as the angular rate of the ring. Using a micromachined ring-

type sensor with isotropic material properties as described in Table 2.1, the variation of natural

frequencies with angular rate can be obtained by Cho (2005) as depicted in Figure 2.3.

It can be seen that the natural frequencies of the two configurations remain the same in the

absence of angular rate and mass anomalies. However, due to rotation of the ring about the

Z-axis as shown in Figure 2.1, the natural frequencies deviate, with the natural frequency of
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Figure 2.3: Variation of natural frequencies with angular rate with non-uniform mass assump-
tion. (Cho, 2005)

the first flexural configuration decreasing while the second natural frequency is increased.

Introducing mass mismatch to the system by setting δm as low as 0.01% results in the bifur-

cation of the two natural frequencies in a stationary ring as shown in Figure 2.3. Similar to

the ideal case, the first natural frequency is reduced with an increase in angular rate while the

second natural frequency increases. Furthermore, increasing the mass mismatch consequently

increases the bifurcation of natural frequencies.

2.5 Closure

The equations of motion for a thin vibrating ring previously derived by Cho (2005) are re-

viewed. Two coupled second order differential equations are obtained as a result. The equa-

tions are further simplified in order to prepare the equations for the proposed problem and

performing numerical operations. Furthermore, the natural frequencies of the second flexural
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vibration mode of the ring are visualized for different angular rates and mass mismatch values.

It is revealed that bifurcation of natural frequencies occurs with increasing angular rate result-

ing in the first natural frequency to decrease while the second natural frequency is increased.

What is more, the bifurcation gap is affected by the mass mismatch factor.



Chapter 3

Stochastic Model Incorporating

Uncertainty in Input Angular Rate

3.1 Introduction

Many physical phenomena can be modeled as random processes. When such a phenomenon

appears in a dynamical system, the physical model takes the form of a Stochastic Differential

Equation (SDE). SDEs appear in the modeling of certain phenomena due to the fluctuations

which appear in, for example, the physical properties of a system and hence the coefficients

of ordinary differential equations are no longer deterministic. Fluctuations may occur in many

forms, a number of which are categorized based on the frequencies of the fluctuations.

In the present research, Gaussian white noise is selected to be fit as a wide bandwidth of

frequencies is covered by this type of function. Advantages of using white noise include the

ability to study the effects of a wider bandwidth of frequencies and perform more realistic

simulations.

25
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3.2 Gaussian White Noise

White noise contains equal contributions from all visible frequency components. Whilst such

processes seem to be physically impossible since the total energy of the signal would be in-

finity, a white noise model of excitation is used very often and is found to be convenient in

representing random processes. The reason is that any causal system only responds to a lim-

ited range of excitation frequencies, therefore the components of the excitation which contain

frequencies that are too high become irrelevant in predicting the system response. Ideal white

noise is often used to simplify calculations and to obtain suitable orders of magnitude of the so-

lution. Understanding the effect of white noise on the dynamic response of the system requires

the basics of stochastic calculus which will be discussed in this chapter.

3.2.1 Stochastic Calculus

A stochastic process can be defined as any discrete or continuous process that is a collection of

random variables associated with a deterministic parameter (Jekeli, 2001). A stochastic process

X can be mathematically defined as

(Xt, t ∈ T ) = (Xt(φ), t ∈ T, φ ∈ Φ),

defined on a space Φ, where T is an arbitrary time interval. Keeping the definition in mind,

a stochastic process W = (W(t), t ∈ [0,∞]) is called a (standard) Brownian motion or Wiener

process if the following conditions are satisfied (Mikosch, 1999; Kloeden and Platen, 1992):

• The process is continuous and starts at zero, i.e., W(0) = 0.

• Expected value of the process is zero at any given time, i.e., E[W(t)] = 0, and

• The process has independent and stationary increments, i.e., W(t) − W(s) has a normal
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distribution N(0, t − s).

White noise is defined as a wide-range stationary process ξ(t) with mean zero and constant

spectral density function S (ω) = S 0, where ω represents any arbitrary frequency in the domain

[−∞,+∞]. The important properties of white noise can be summarized as:

• E[ξ(t)] = 0, and

• E[W(t)W(t + τ)] = S 0δ(t).

The name, ”white”, comes from the fact that the average power is distributed uniformly in fre-

quency, similar to white light. Furthermore, considering a function W(t), generating a Brow-

nian motion with variance S 0, it can be show that the first time derivative of W(t) is in fact

Gaussian white noise (Kloeden and Platen, 1992):

ξ(t) =
dW
dt
. (3.1)

This result is later on used in introducing noise to the geometrical system by generating a se-

quence of random number based on a Brownian motion and using the numerical first derivative

to simulate white noise.

3.3 Stochastic Fluctuation in Angular Rate

It is known that numerical schemes developed for SDE are limited to first order differential

equations. Therefore, prior to applying the numerical methods, Equation (2.8) is converted

to four first order differential equations. Uncertainty parameters for angular velocity are also

introduced in the equations during this process. The resulting equations of motion can then

be written in a standard form of an SDE for the purposes of numerical computations. In order

to convert Equation (2.8) from two second order equations into four first order equations, the
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reduction of order technique is employed. For this purpose four state variables are defined as:

q1 = x1, q̇1 = x2, q2 = x3, and q̇2 = x4.

Substituting the defined variables x1 to x4 into Equation (2.8) yields:

ẋ2 + 2ζω01x2 − 2Ωγx4 + (κ1 + κ2Ω
2)x1 = 0 (3.2)

(1 + δm)ẋ4 + 2Ωγx2 + 2ζω02x4 + (κ1 + κ2Ω
2)x3 = 0 (3.3)

In order to represent the random fluctuation in the input angular velocity, these fluctuations are

assumed to take the form of a white noise process. Understanding that the first time derivative

of a Brownian motion process is Gaussian white noise, a Brownian motion function W(t) is

employed to simulate the white noise (see e.g., Kloeden and Platen, 1992). Introducing the

random fluctuation to a nominal input angular velocity Ω0, the input angular velocity is written

as:

Ω = Ω0 + µ0ξ(t), (3.4)

where ξ(t) is white noise and µ0 is the noise intensity magnitude. Using Equation (3.4), the

centrifugal component of the equations of motion can be evaluated as:

Ω2 = Ω2
0 + 2µ0Ω0ξ(t) + µ2

0ξ
2(t). (3.5)

The last term on the right hand side of Equation (3.5) is considered negligible due to its lower

order of smallness, since µ0ξ(t) which represents fluctuations in angular rate is small relative to

the nominal angular rate Ω0 and consequently µ2
0ξ

2(t) � 1. In order to better characterize the

fluctuation magnitude, a parameter µ that represents the noise intensity ratio is introduced as:

µ =
µ0 max(ξ(t))

max(Ω0)
. (3.6)
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Substituting Equations (3.4) and (3.5) in Equations (3.2) and (3.3) and multiplying the equa-

tions by dt yields

dx2 =

[
2(Ω0 + µ0

dW
dt

)γx4 − 2ζω01x2 −
(
κ1 + κ2(Ω2

0 + 2µ0Ω0
dW
dt

)2
)
x1

]
dt, (3.7)

dx4 =
1

1 + δm

[
− 2(Ω0 + µ0

dW
dt

)γx2 − 2ζω02x4 −
(
κ1 + κ2(Ω2

0 + 2µ0Ω0
dW
dt

)2
)
x3

]
dt. (3.8)

The equations for the four state variables can be obtained by simplifying the equations and

neglecting the higher order terms:

dx1 = x2 dt, (3.9)

dx2 =
(
2Ω0γx4 − 2ζω01x2 − (κ1 − κ2Ω

2
0)x1

)
dt +

(
2µ0γx4 − 2κ2µ0Ω0x1

)
dW, (3.10)

dx3 = x4 dt, (3.11)

dx4 =
−2Ω0γx2 − 2ζω02x2 − (κ1 − κ2Ω

2
0)x3

1 + δm
dt −

2µ0γx2 − 2κ2µ0Ω0x3

1 + δm
dW. (3.12)

Rewriting the equations in matrix form, a system of SDEs that represents the motion is obtained

as:



dx1

dx2

dx3

dx4


=



0 1 0 0

−κ1 − κ2Ω
2
0 −2ζω01 0 2Ω0γ

0 0 0 1

0
−2Ω0γ

1 + δm
−κ1 − κ2Ω

2
0

1 + δm
2ζω02

1 + δm





x1

x2

x3

x4


dt

+



0 0 0 0

−2κ2µ0Ω0 0 0 2µ0γ

0 0 0 0

0
−2µ0γ

1 + δm
−2κ2µ0Ω0

1 + δm
0





x1

x2

x3

x4


dW,

(3.13)

where the resultant 4 × 1 coefficient matrix associated with the term dt is called the drift

matrix, a[X(t)] and the resultant 4 × 1 coefficient matrix associated with the term dW is called
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the diffusion matrix, b[X(t)], with the state vector X(t) = [x1 x2 x3 x4]T (see e.g., Higham,

2001; Kloeden and Platen, 1992; Higham and Kloeden, 2002). In the present numerical study, a

smooth increase of the input angular rate Ω0 from zero to 2π rad/s is employed for the purposes

of response predictions.

3.4 Itô-Taylor Expansion

It is known that an exact analytical solution does not exist for the stochastic differential equa-

tions that represent the motion of a gyroscope. A numerical simulation of the system seems to

be the most efficient method. For this purpose, a number of iterative approaches to integrate

SDEs numerically have been developed in the recent past. The most widely-used ones are

Euler-Maruyama, Euler-Heun, Milstein, derivative-free Milstein (Runge-Kutta approach), and

Stochastic Runge-Kutta (see Schaffter, 2010). The higher-order Milstein scheme which takes

advantage of the Itô-Taylor expansion for discretization of the SDE (Higham and Kloeden,

2002) is the most suitable for the present governing equations.

In an effort to describe this method, the Itô-Taylor expansion of the SDE for a scalar dependent

variable X,

dX(t) = a[X(t)]dt + b[X(t)]dW(t) (3.14)

is presented, where a[X(t)] and b[X(t)], respectively, denote the drift and the diffusion terms

while dW(t) represents the driving Wiener Process. Use of the Itô’s Lemma (Higham and

Kloeden, 2002) leads to

d f [X(t)] = L0a[X(t)]dt + L1b[X(t)]dW(t), (3.15)

where

L0 ≡
∂

∂t
+ a

∂

∂X
+

1
2

b2 ∂2

∂X2 ,
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L1 ≡ b
∂

∂X
,

and f (X[t]) is any function of X[t] with all functions evaluated at (t, x). The Itô formula can

then be written in the form of the Itô stochastic integral equation:

f [X(t)] = f [X(t0)] +

∫ t

t0
L0 f [X(s)]ds +

∫ t

t0
L1 f [X(s)]dWs. (3.16)

Setting f (X) = X and assuming that a and b do not depend on t explicitly, the equation becomes

X(t) = X(t0) +

∫ t

t0
a[X(s)]ds +

∫ t

t0
b[X(s)]dWs. (3.17)

Itô’s Lemma may be iterated to obtain constant integrands for the higher order terms. Choosing

f (X) = a[X(t)] and f (X) = b[X(t)] and applying Equation (3.16), the higher order coefficients

are derived as

a[X(t)] = a[X(t0)] +

∫ t

t0
L0a[X(s)]ds +

∫ t

t0
L1a[X(s)]dWs, (3.18)

and

b[X(t)] = b[X(t0)] +

∫ t

t0
L0b[X(s)] ds +

∫ t

t0
L1b[X(s)] dWs. (3.19)

Substituting into Equation (3.17), yields

X(t) = X(t0) +

∫ t

t0

{
a[X(t0)] +

∫ s1

t0
L0a[X(s2)]ds2 +

∫ s1

t0
L1a[X(s2)]dW(s2)

}
ds1

+

∫ t

t0

{
b[X(t0)] +

∫ s1

t0
L0b[X(s2)]ds2 +

∫ s1

t0
L1b[X(s2)]dW(s2)

}
dW(s1).

(3.20)



Chapter 3. StochasticModel 32

Evaluation of the integrals follows:

X(t) = X(t0) + a[X(t0)]
∫ t

t0
ds1 + b[X(t0)]

∫ t

t0
ds2

+

∫ t

t0

∫ s1

t0
L0a[X(t)] ds2 ds1 +

∫ t

t0

∫ s1

t0
L1a[X(s2)] dW(s2 ds1

+

∫ t

t0

∫ s1

t0
L0b[X(s2)] ds2 dW(s1) +

∫ t

t0

∫ s1

t0
L1b[X(s2)] dW(s2) dW(s1).

(3.21)

Substituting the functions L0 and L1 as defined and carrying the integrals, the equation can be

rewritten as

X(t) = X(t0) + a[X(t)]
∫ t

t0
ds1 + b[X(t)]

∫ t

t0
dW(s1)

+ b[X(t0)]b′[X(t0)]
∫ t

t0

∫ s1

t0
dW(s2) dW(s1) + O(δt3/2),

(3.22)

where O(δt3/2) represents terms that include δt3/2 or terms of higher order and b′ denotes

derivative of function b with respect to variable X. The order of the terms are assessed with the

the properties of Wiener process in mind, where E[dW2(t)] = dt and hence each dW2 term is

weighed similar in order as a first order dt term.

It should be noted that the double integral in Equation (3.22) is an Itô integral and therefore

cannot be evaluated by classical calculus methods such as the conventional Reimann method.

The double integral in Equation (3.22) can be evaluated using Itô integral rules as (Kloeden

and Platen, 1992):

∫ t

t0

∫ s1

t0
dW(s2) dW(s1) =

1
2

[W(t) −W(t0)]2 −
1
2

(t − t0). (3.23)

Substitution of the double integral in Equation (3.22) yields

X(t) = X(t0) + a[X(t)]
∫ t

t0
ds1 + b[X(t)]

∫ t

t0
dW(s1)

+ b[X(t0)]b′[X(t0)]{
1
2

[W(t) −W(t0)]2 −
1
2

(t − t0)} + O(δt3/2).
(3.24)
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This equation forms the theoretical basis for both Euler and Milstein schemes (Higham and

Kloeden, 2002). It may be noted that the Euler scheme is constructed using the first three

terms of this expansion while incorporation of the fourth term yields the Milstein scheme.

Considering the time interval [ti, ti+1], by choosing

t0 = ti, t = ti+1, ∆t = ti+1 − ti, and ∆Wi = W(ti+1) −W(ti),

the discretized form for the use of Milstein method is formulated as:

X(ti+1) = X(ti) + a[X(ti)]∆t + b[X(ti)]∆Wi +
1
2

b[X(ti)]b′[X(ti)]
{
(∆Wi)2 − ∆t

}
, (3.25)

where ∆W is a Wiener process with the properties E[W(t)] = 0 and E[W2(t)] = ∆t. For

the purposes of numerical approximation, ∆W can be generated using a uniformly distributed

sequence of random numbers as (Kloeden and Platen, 1992):

∆W(ti) = N(0, 1)∆ti (3.26)

Equation (3.25) when extended to multi-dimensional systems yields the component of the state

vector employing Milstein scheme for numerical computations and takes the general form

Xu(t)i+1 = Xu(t)i + au[Xu(t)i]∆t +

m∑
j=1

bu, j[Xu(t)i]∆W j
i +

m∑
j1, j2=1

L j1bu, j2[Xu(t)i]I j1, j2 , (3.27)

where the drift and diffusion terms, the driving Wiener process and the variables are written in

vector form. In Equation (3.27),

L j1 =

d∑
k=1

bk, j1[Xu(t)i]
∂

∂Xk , I j1, j2 =

∫ ti+1

ti

∫ s1

ti
dW j1

s2
dW j2

s1
,

b[X(ti)] is the diffusion coefficient matrix, d is the number of dimensions and m represents the

number of independent Wiener processes (Higham and Kloeden, 2002).
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The vector-based scheme presented in Equation (3.27), considering the system drift and diffu-

sion coefficient matrices, is employed for the purposes of performing numerical computations

to solve the system of equations that govern the gyroscope response. To this end, considering

Equation (3.13) and setting d to 4 and m to 1 in Equation (3.27), the response takes the form:

Xu(ti+1) = Xu(ti) + au[Xu(ti)]∆t + bu,1[Xu(ti)]∆Wi

+

4∑
k=1

1
2

bk,1[Xu(ti)]
∂bu,1[X(ti)]

∂Xk

{
(∆Wi)2 − ∆t

}
, u = 1, 2, . . . , 4.

(3.28)

The resulting four equations are employed in the prediction of gyroscope response.

Conforming to the goal of the present study, namely the stability investigation, free vibration

of the gyroscope when subjected to an initial disturbance is examined.

3.5 Lyapunov Characteristic Exponent

The Lyapunov characteristic exponent for determining stability of dynamic systems was first

introduced by Wolf et al. (1985). Lyapunov exponents are defined as the average rate of di-

vergence or convergence of nearby orbits in the n-dimensional phase space (Baker and Gollub,

1990). Any system with at least one positive Lyapunov exponent will inevitably become unpre-

dictable, with the magnitude of the exponent reflecting on the time scale that system dynamics

will diverge. Therefore, it is sufficient to only calculate the largest of the characteristic ex-

ponents in order to determine system stability. In order to calculate Lyapunov exponents, the

long-term evolution of an infinitesimal n-sphere of initial conditions is observed as the spheres

turn into n-ellipsoids. The ith one-dimensional Lyapunov exponent is then defined in terms of

the ratio between the principal axes of the ellipsoid:

λi = lim
t→∞

1
t

pi(t)
p0(t)

. (3.29)
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The method was further developed by Rosenstein et al. (1993) applied to small data sets with

less computational effort. For the present work, the algorithm used was based on the method

developed by Rosenstein et al. This method, as previously mentioned, requires reconstruction

of the time response in phase space. For this purpose, the method of time delay as explained

by Kliková and Raidl (2011), which is one of the most frequently used methods of phase space

construction, was used. Using this algorithm, a parameter sweep was performed on noise

intensity for different values of damping ratios. The details of the computer code used for this

purpose can be found in Appendix B.

3.6 Closure

The necessary stochastic tools are reviewed and fluctuations in input angular rate are introduced

in the form of a Gaussian white noise function. An order reduction operation is performed on

the second order equations of motion in order to obtain four first order differential equations.

Fluctuations in angular rate are implemented in the resulting equations and the equations are

rearranged as a Stochastic Differential Equation (SDE). The Euler numerical scheme as well as

the higher-order Milstein numerical scheme are introduced and explained and the higher-order

Milstein scheme is applied to the SDE in order to achieve higher accuracy. Furthermore, the

Lyapunov characteristic exponent and the Largest Lyapunov Exponent stability criterion are

introduced for the purposes of verification of the final Matlab script.



Chapter 4

Stability Analysis Using Numerical

Methods

4.1 Introduction

For the purposes of studying the stability of the gyroscope, time response for the free vibration

of the system is examined, when the system is subjected to suitable initial conditions. Sim-

ulations performed are based on an assumption that an initial displacement of 10−5 m being

exerted on the driving coordinate, q1, while stochastic fluctuations in input angular rate are

applied as described in Equation (3.4). The sensing coordinate q2 is then quantified for the

purposes of characterizing the gyroscope response.

Initially, the predicted responses using the higher-order Milstein scheme are compared with the

results obtained using the simpler Euler scheme in order to assess the validity of the developed

Milstein algorithm and also investigate the benefits of using a higher-order scheme. Moreover,

the Largest Lyapunov Exponents of the predicted responses are evaluated in order to study the

stability of the system. Finally, the higher-order Milstein scheme is used in order to find the

stability threshold of the system under stochastic fluctuation and considering different damping

36
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ratio values. The developed Matlab code is discussed in detail in Appendix B. The hardware

used for numerical calculations consisted of a Windows 7 PC with an AMD Phenomtm Quad

Core processor clocked at 2.2 GHz and 8GB of memory.

4.2 Numerical Predictions

In order to ascertain the accuracy of the developed model, the convergence of the simulation

algorithm is tested with four different damping ratio values, namely 0.03, 0.05, 0.09 and 0.13.

Numerical convergence is reached in 150000 or more time steps for a duration of 0.009 seconds

of simulation time and the number of time steps is considered adequate for the remainder of

the study.

The vector-based higher-order Milstein scheme has been chosen for this study instead of the

Figure 4.1: Example of stable time response.

simpler Euler approach in order to investigate whether higher accuracy will be achieved for
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the numerical simulations by employing a higher-order scheme. System time responses gener-

ated by the two methods were compared for the purposes of verifying the response predictions.

Figures 4.1 to 4.3 show the responses of the gyroscope under different fluctuation magnitudes

and displaying both stable and unstable behavior of the system. The Wiener process is numer-

ically simulated using the random number generation function in MATLAB and employing

the method discussed in Equation (3.26). The details of the developed MATLAB code used

for generation of the Wiener process are available in Appendix B.2. Maximum relative noise

intensity, as defined in Equation (3.6) has been used as a magnitude measure for representing

environment fluctuation. Figure 4.1 shows the response of the system for a damping ratio of

0.04 and maximum relative noise intensity measure µ = 0.0149.

It can be seen that with sufficient damping, the system is observed to remain stable. However,

as shown in Figure 4.2, as noise intensity is increased to a sufficiently high value to cause

noticeable disturbance in the system, yet low enough to be damped, the system shows oscilla-

tory motion until complete decay. It may be noted that a certain threshold intensity measure for

each damping ratio is associated with transition to instability and this measure can be computed

using the time responses.

For damping ratios less than the threshold value or, alternatively with sufficiently high noise

measure, the system response becomes unstable, as shown in Figure 4.3. Furthermore, it may

be noted that Euler and Milstein schemes both predict similar time responses, with Milstein

scheme which accounts for additional higher-order terms showing slightly larger values for the

response compared with those predicted via the Euler scheme. Further, the Euler scheme which

does not take the higher order terms into account results in an under-predicted response, hence

exhibiting increased system stability. As a result, under certain conditions where noise inten-

sity is close to the threshold values, it appears that Euler scheme can predict a stable system

behavior while Milstein scheme predicts an unstable behavior. An example of such conditions

is shown in Figure 4.4. There are also cases where Euler scheme might predict a marginally

stable behavior while Milstein scheme, accounting for higher order terms predicts a clearly
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Figure 4.2: Example of marginally stable time response.

Figure 4.3: Example of unstable time response.
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Figure 4.4: Under-prediction of results by Euler scheme in a marginally stable case.

unstable behavior as shown in Figure 4.5. Therefore, due to lack of any exact analytical or

experimental results to verify the acquired data against, it is necessary that the accuracy of

the employed model is assessed before proceeding to the parameter sweep for characterizing

the system behavior under changes in pertinent system parameters. For this purpose, dynamic

stability of the system is studied employing the two schemes using the Largest Lyapunov Ex-

ponent (LLE) method as a stability measure. Lyapunov exponents are defined as the average

rate of divergence or convergence of nearby orbits in the n-dimensional phase space (see, e.g.,

Kliková and Raidl, 2011). Any system with at least one positive Lyapunov exponent will in-

evitably become unstable, with the magnitude of the exponent reflecting on the time scale that

system dynamics will diverge. Therefore, it is sufficient to calculate the largest Lyapunov ex-

ponent for characterizing system stability. In the present study, a practical implementation of

the LLE search algorithm, based on the method of time delay as presented in Kliková and Raidl

(2011), is employed. Figure 4.6 shows the values of threshold noise intensity factors obtained

at which the system starts to exhibit instability.
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For the purposes of confirming that the results from Milstein and Euler schemes are com-

patible, and also for studying the error introduced by neglecting higher-order terms in Euler

scheme, a number of points have been chosen for the LLE study. Three highly stable points

that correspond to damping ratios of 0.03, 0.08 and 0.13 and the respective maximum relative

noise intensity values of 0.0114, 0.0225 and 0.0294 as displayed in Figure 4.6 have been cho-

sen. LLE values evaluated at these points resulted in the same sign, in this case being negative

confirming that the system is stable under such conditions. However, LLE values predicted by

Eulers scheme have been found to be lower than those predicted by Milstein Scheme by 3.8 to

8.5 percent. Further, comparison of the time responses predicted by these two schemes reveals

that the Euler scheme tend to under-predict the response for the present gyroscopic system.

Hence, it may be concluded that contribution from the higher-order terms could be significant

and the use of Milstein scheme is beneficial in some cases. However, for the purposes of pre-

dicting the response of this class of gyroscopes Euler scheme offers lower computation time

Figure 4.5: Under-prediction of results by Euler scheme in a marginally unstable case.
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and resource requirements. The details of the LLE calculations are summarized in Table 4.1.

It should be noted that the difference percentage is calculated by considering the difference

between the LLE values obtained using Milstein and Euler schemes divided by the LLE value

obtained using Euler scheme.

Damping Ratio ζ Raw noise intensity µ0 Milstein Euler Relative Difference

0.03 65 -1.31E+08 -1.35E+08 -3.8%
83 -1.72E+07 -2.28E+07 -24.3%
87 2.33E+07 2.20E+07 5.87%

0.08 129 -2.57E+08 -2.77E+08 -7.07%
147 -1.22E+07 -3.39E+07 -64%
152 6.36E+07 5.67E+07 12.1%

0.13 168 -4.05E+08 -4.43E+08 -8.5%
188 -5.93E+07 -9.80E+07 -39.5%
194 3.73E+07 4.11E+07 -9.04%

Table 4.1: Summary of LLE values for predicted time responses.

In order to further confirm that the two schemes predict approximately compatible instability

thresholds for the system, six marginal points as shown in Figure 4.6 have been chosen for

analysis. Three points slightly above the threshold point within the unstable region and three

points slightly below within the stable region have been chosen. The LLE analysis reveals that

both schemes predict the LLE value with the same sign and therefore predicting stability and

instability regions correctly.

4.3 Parametric Study

It is known that external noise is one of the most important parameters that affect the gyro-

scope dynamic behavior. Such noise usually results from environment factors and the nature

of the system operation and can be exerted on the system at any frequency range depending on
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Figure 4.6: Stability boundary in the µ-ζ space (Ω = 2π rad/s).

the source. Furthermore, MEMS systems are generally designed to demonstrate low damping

ratios (high quality factor) and incorporating the allowable fluctuation in the system design

becomes important. Therefore, a parametric study is performed to assess the noise intensity

stability threshold for a number of damping ratio values. For this purpose, the damping ratio

of the system is changed with 0.01 increments and the noise stability threshold of the system is

obtained by employing the bisection search method and analyzing the predicted time response.

Figure 4.6 shows that noise intensity threshold is increased at higher damping ratios. In ad-

dition, studies performed on varying input angular rates of practical significance for typical

gyroscope applications revealed that changes in angular velocity does not affect noise thresh-

old significantly. Variation of system natural frequencies with typical input angular rates can

be seen in Table 4.2. However, under unrealistic high angular velocities, namely values close to

system natural frequencies, where the first natural frequency tends to decrease while the second

natural frequency increases, noise thresholds seem to increase. This behavior may be attributed

to the centrifugal force component present in the stiffness matrix which increases with angular



Chapter 4. Stability Analysis Using NumericalMethods 44

velocity, affecting overall system stiffness. Further, it has been found that moderate changes in

mass mismatch do not affect the noise threshold. However, unrealistic mass mismatch values

close to 10 percent cause a reduction in the second natural frequency and as a consequence

appear to contribute to a reduction in the noise threshold. It is worth noting that such values for

mass mismatch and angular velocity are not of practical significance under typical gyroscope

operating conditions. Variation of system natural frequencies with mass mismatch can be seen

in Table 4.3. It should also be noted that increasing the mismatch only results in the reduction

of the first natural frequency while the second natural frequency of the system is unaffected by

the mismatch at a constant angular rate.

Ω0 (rad/s) ω01 (rad/s) ω02 (rad/s) Change Relative to Stationary Ring

0 1.9864 × 105 1.9865 × 105 -
2π 1.9864 × 105 1.9865 × 105 0 %

10π 1.9862 × 105 1.9867 × 105 0.01%

Table 4.2: Variation of system natural frequencies with input angular rate.

δm ω01 (rad/s) ω02 (rad/s) Change Relative to Stationary Ring

0 1.9864 × 105 1.9865 × 105 -
10−4 1.9864 × 105 1.9865 × 105 0 %
10−3 1.9855 × 105 1.9865 × 105 0.04%
10−2 1.9766 × 105 1.9865 × 105 0.49%
10−1 1.8940 × 105 1.9865 × 105 4.65%

Table 4.3: Variation of system natural frequencies with mass mismatch.

4.4 Closure

Time response predictions via Euler scheme as well as the Largest Lyapunov Exponents have

been used for comparison of accuracy of the predictions and validation of the developed higher-
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order solution. The results are found to be compatible and it is shown that while a significant

difference between the two schemes is not visible using the considered system, the effect of

the higher-order terms can become significant in some cases. A parametric study is performed

using the higher-order method and the threshold values for noise intensity at different values of

system damping ratio were predicted using the acquired system time responses. The obtained

noise intensity thresholds exhibit a non-linear increasing trend with damping. Furthermore,

variation in input angular velocity and mass mismatch have been found not to impose signifi-

cant influence on system stability under typical gyroscope operating conditions.



Chapter 5

Experimental Results

5.1 Introduction

In this chapter, the variations in natural frequency due to angular rate as well as manufacturing

imperfections are studied by employing an experimental setup. The secondary objective of

the conducted experiments is to demonstrate the phenomena that might not be otherwise easily

investigated through a MEMS sensor such as nonlinear behavior that arises due to the smallness

of natural frequency of a macro-scale ring-type angular sensor. Phenomena such as variations

in system natural frequency due to the presence of input angular rate and decreased uniform

distribution of mass as well as the effect of fluctuations in angular rate on system behavior are

studied.

The experiments that are conducted in the present chapter are merely a means of observation

of the expected behavior and not reproduction of the numerical results presented in Chapter

4. Further validation of results against theoretical data is not feasible due to the differences

in the geometries used in the analysis. The predicted numerical results are obtained using

the properties of a MEMS-scale geometry while the experimental data involves a macro-scale

ring. This results in a significant difference in system natural frequency and therefore the input

46
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angular rate being relatively higher than a MEMS-scale ring. Furthermore, the vibrations in the

experimental setup are of high amplitude making contact-less sensing feasible, detection of the

vibrations and natural frequencies possible with the naked eye and thus, resulting in increased

non-linearity of the system.

Similar to Chapter 4, an experiment has been designed in order to study the effects of fluctua-

tions in input angular rate on system behavior. However, due to the limitations of the physical

system, it is not yet possible to reproduce the obtained numerical results. Therefore, a prelimi-

nary experiment has been designed in order to reveal the effects of input fluctuation, the results

of which can be used in future experiments on quantifying the effects of stochastic fluctuations

in input angular rate.

5.2 Experimental Setup

The experimental setup consists of a long suspended C1095 blue-tempered cylindrical McMaster-

Carr Supply Company steel shell with the properties summarized in Table 5.1. The shell is

made by joining the two sides of a steel plate using spot welding and therefore natural vari-

ations in mass mismatch as well as damping and stiffness are expected. However, it should

be noted that the analytical and numerical studies in the present thesis are performed with a

micro-scale ring in mind. In order to overcome the complexities of manufacturing a MEMS

ring as well as associated problems with excitation and sensing methods, the constructed long

macro-scale cylinder was considered for the experimental analysis instead, due to the similar-

ities between dynamic characteristics of a non-rotating ring structure and a non-rotating long

cylindrical structure (Cho, 2009).

The dimensions of the ring were carefully chosen in order to achieve the required small thickness-

to-radius ratio of a thin cylinder. Furthermore, the thickness of the ring at 0.1016 mm allows for

non-linearities due to large amplitude vibration of more than four times the structure thickness.
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Figure 5.1: Experimental setup

The experimental setup is shown in Figure 5.1.

Property Value

Density ρ = 7833.41 kg/m3

Young’s modulus E = 206.84 × 109 N/m2

Mean radius r = 92.5 mm
Radial thickness h = 0.1016 mm

Thickness-to-Radius Ratio h/r ' 0.001
Axial Length L = 150 mm

Table 5.1: Physical properties of the experimental ring

The top part of the shell is loosely fixed using symmetrically placed thin paper tapes to the

axis of an Ideal Aerosmith 1291BR Precision Single-Axis Rate Table, while the bottom part

of the cylinder is allowed to deform freely in the absence of any constraints conforming to

the purpose of maximizing similarities to a thin ring. Ideal Aerosmith 1291BR Precision Rate

Table is highly capable of producing constant speed angular rotation with high accuracy while

employing slip-rings in order to enable signal routing to and from the rotating surface to a

stationary device. Moreover, The cylindrical shell is chosen to be sufficiently long, minimizing

the changes in mode shapes due to the tapes.

Excitation of the ring is made possible using a set of APW EM075-12-122 electromagnets, dis-
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Figure 5.2: Configuration of an electromagnetic exciter.

played in Figure 5.2, and the resulting displacements are measured using two Lion Precision

Eddy-Current probes. The electromagnets offer contactless excitation of vibration in the ring

while offering control over the simulating signal. The external excitation signal is generated

using a Stanford Research Systems DS345. The DS345 is capable of generating low frequency

sinusoidal functions, as well as performing a linear frequency sweep, used for natural frequency

detection. The generated signal is amplified using a Crown CE1000 amplifier while removing

Figure 5.3: Configuration of the Eddy-Current probes.
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Figure 5.4: Schematic location of sensors and actuators.

the unwanted noise. Furthermore, Eddy-Current probes offer contact-less monitoring of dis-

placement in low frequency bandwidth which allows for reduction of unnecessary constraints

of the cylinder. A close-up view of the positioning of the Eddy-Current probes is displayed in

Figure 5.3 and a schematic view of the location of exciters and sensors with respect to the ring

mode shape is depicted in Figure 5.4. A Lion Precision ECL134 dual-channel driver is used

for signal conditioning which allows for simultaneous monitoring of two probes. The output

signals are routed towards a National Instruments data acquisition device and then analyzed via

LabView software. Since the operating frequency of the system is observed and manually set

to be about 1 Hz to 20 Hz, a sampling rate of 1 kHz is chosen in order to satisfy and exceed the

requirements of Nyquist criterion by a large margin. The rate table employs slip rings which

enables transmission of signal from devices on the rotating table to stationary amplifiers and

data acquisition system. The details of the devices employed in the experimental setup as well

as the wiring diagrams and the developed LabView scripts are discussed in Appendix C.

Initially, the positioning of sensors and exciters was assessed in the absence of angular rate

with the ultimate purpose of demonstrating the natural frequency of the flexural modes as well

as non-linearities of the system in mind. Complications occur when the sensors are placed
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Figure 5.5: Implementation of stochastic angular rate fluctuation setup.

either too close to or too far from the cylinder. Placing the Eddy-Current sensors too close

to the cylinder might result in collision of the cylindrical shell with the sensor under high

amplitude vibration. On the other hand, placing the probes too far from the shell results in

higher vibration amplitudes in the output signal. This is due to the fact that Eddy-Current

sensors take advantage of changes in an induced magnetic field in order to detect presence of

ferromagnetic material. This results in the presence of displacements that occur near the nodes

on the output signal of the sensor. Therefore, the sensor location has to be optimized in order

to avoid collision with the shell as well as high accuracy in detecting low amplitude vibration

in sensitive points such as nodal points.

The electromagnets are placed along the diameter of the cylinder while maintaining symmetry.

The excitation points correspond to anti-nodal points as the displacement of the ring is max-

imum at the excitation points. The eddy-current sensors are then placed accordingly at one

nodal and one anti-nodal point in order to monitor the time and frequency response of the ring

at different physical and nodal points. The sensor positions are referred to as nodal point and

anti-nodal point from here on corresponding to nodal and anti-nodal points in the first config-

uration of the second flexural mode. Furthermore, excitation and measurements are performed
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on the free end of the cylinder conforming to the objective of simulating a free-standing ring.
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Figure 5.6: Block diagram representation of the experimental setup.

Finally, a shaker system has been employed for the purpose of simulating environmental white

noise fluctuation in the angular rate. A KCF Vibration Exciter paired with a KCF PA5100

Signal Generator/Power Amplifier is used for this purpose. The PA5100 system is considered

suitable for this purpose due to the capability to generate white noise as well as low-frequency

sinusoidal motion. The shaker is placed on the rate table and connected to the rate table axis

through a welded steel beam. This ensures that the fluctuations caused by the shaker are trans-

ferred to the ring while the desired average angular rate is maintained. The shaker as well as the

fixtures connecting the output rod with the rate table axis is shown in Figure 5.5. The complete

block diagram and schematic representations of the experimental setup can be seen in Figures

5.6 and 5.7. The details of the system wiring along with more details on the experimental setup

can be found in Appendix C.
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Figure 5.7: Schematic representation of the experimental setup.

5.3 Experimental Results and Discussion

In the initial phase of experiments, the bifurcation of the two flexural configurations due to

angular rate was studied. To this end, the ring was excited using a linear sinusoidal wave

frequency sweep. The correlation of the resulting ring response was then found against the

exciter signal. The results are displayed in Figure 5.8.

The peak in Figure 5.8 corresponds to the natural frequency of the ring for the first flexural

configuration. As it is shown in Figure 5.8, the resonance frequency of the ring is reduced in

the rotating ring when compared to a stationary ring conforming to the expected result from the

frequency analysis in Chapter 2. The natural frequency of the second configuration is increased

in return resulting in a bifurcation in natural frequencies of the second mode shape. However,

the two natural frequencies take close values under low angular velocities to which gyroscopes
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Figure 5.8: Natural frequency shift in the Cross Spectrum Magnitude diagram due to angular
rotation.

are typically subjected. In addition, the effects of other mode shapes that are not accounted for

in the present research can also contribute to the detection of the natural frequencies, making

the bifurcation difficult to observe.

Following the study of frequency shift due to angular rate, the non-linear characteristic of the

sensor response were analyzed by monitoring the energy transfer between the two second mode

flexural configurations as a result of Coriolis force. The vibration amplitude at a nodal point

and at an anti-nodal point are recorded and compared for this purpose. The natural frequency

of the ring in Figure 5.8 was chosen as the excitation frequency, warranting large vibration

amplitude. Figure 5.9 shows the variations of vibration amplitude at nodal and anti-nodal

points with angular rate with the structure being excited at the stationary resonance frequency.

It can be seen that the vibration amplitude does not exhibit an apparent trend at low angular

rates. However, the energy transfer from the first configuration to the second becomes apparent
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Figure 5.9: Linearity of nodal and anti-nodal measurements.

in the anti-nodal point at angular velocities of about 210 ∼ 240◦/s. It is interesting to note that

the increase in vibration at the node is detected at lower angular velocities of about 90◦/s.

Measurements made at the anti-nodal point exhibit acceptable linearity for input angular rates

of up to 500◦/s while linearity is drastically decreased at the nodal point at 300◦/s. It was found

that the linearity of the device is highly dependent on the excitation frequency, as expected from

the preceding analysis. The non-linearity of the devices may be attributed to high vibration

amplitudes as well as the low natural frequency of the device, recorded at 10.4 Hz. This results

in a high angular rate to natural frequency ratio as opposed to typical MEMS sensors which

are designed with high natural frequencies in the kHz range and detection angular rates of

0 ∼ 2π rad/s. Furthermore, the usage of eddy-current sensors for the current setup presents

difficulties in accurate measurement of vibration at nodal points due to their measurement

technique. Eddy-current sensors operate by creating a magnetic field close to the sensor and

detecting the disturbance in the created field caused by an object. Therefore, any vibration in

the proximity of the node will also contribute to the measured signal.
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Manufacturing defects play an important role in the discussed non-linearities as well as fre-

quency analysis of the ring. Increased non-uniformity in mass distribution of the ring could

Figure 5.10: Suggested locations for mass anomaly.

result in further bifurcation and variation in system natural frequencies as demonstrated in Fig-

ure 2.3. The occurrence of defects can be controlled by employing accurate manufacturing and

machining processes. However, it is necessary to study the effects of non-uniformity in mass

on ring performance since such defects cannot be completely prevented during the manufac-

turing process. For this purpose, mass anomalies were placed on the ring and the peak-to-peak

amplitude of the sensor output was measured at a range of frequencies in order to determine

the natural frequency of the first flexural configuration.

In addition to investigating the quantity of the mass anomaly, the significance of the position

of the anomaly with respect to the second flexural mode shape was also assessed. Figure 5.10

shows a schematic of the locations considered for investigation relative to the mode shape. Two

nodal points, one anti-nodal point and the excitation point as well as an arbitrary point located

at the mid-point between the nodes and anti-nodes were chosen for this purpose.
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Figure 5.11: Anti-nodal measurements of time response for 2.5% mass mismatch located at
points 1 to 3.

Initial study of the remaining nodal and anti-nodal points did not reveal noticeable deviation

of natural frequency when compared to the axially symmetrical counterparts. Therefore, it is

sufficient to study the points on one quarter of the ring surface due to symmetry. However, in

the current study, the results from the the second quarter of the ring surface are also considered

in order to demonstrate the effects of placing the mass anomaly at symmetrical points on the

ring.

Figure 5.11 shows the variation of peak-to-peak vibration amplitude due to 2.5% mass mis-

match relative to total mass of the ring at points 1, 2 and 3 along the ring circumference

using the measurements made at the anti-nodal point. It can be seen that an increase in non-

uniformity in mass distribution results in a reduction of the first natural frequency of the sec-

ond flexural mode. Analytical study performed in Chapter 2 suggests that the second natural

frequency is increased as a result of reduced mass uniformity. However, the second natural fre-

quency is not easily detectable in the present macro-scale ring-type gyroscope. Further analysis
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Figure 5.12: Anti-nodal measurements of time response for 2.5% mass mismatch located at
points 4 to 6.

Figure 5.13: Nodal measurements of time response for 2.5% mass mismatch.
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of Figure 5.11 reveals that the location of mass anomaly has significant effect on the decrease

in natural frequency. It can be seen that while the first natural frequency of the non-rotating

ring is 10.6 Hz, when the 2.5% mass mismatch is placed at the nodal point the frequency is

reduced to 10.2 Hz. Furthermore, the natural frequency is decreased further when the mass is

moved away from the nodal point and closer to the anti-nodal point. The minimum natural

frequency of 9.8 Hz occurs when the mass is placed at one of the anti-nodal points.

Symmetrical counterparts of points 1,2 and 3 reveal similar natural frequencies. Peak-to-peak

measurements at the anti-node for anomaly locations 4,5 and 6 can be seen in Figure 5.12.

Figure 5.13 shows the nodal measurements for variation of the first natural frequency for differ-

ent locations of the 2.5% mass mismatch. It can be seen that the measurements from the nodal

point and anti-nodal point demonstrate similar natural frequencies with negligible error due to

high measurement error from unwanted vibration near the node as well as high frequency sig-

nal noise and averaging error. Hence, the anti-nodal measurements are chosen for further mass

mismatch analysis due to the larger peak-to-peak amplitude of vibration and minimal effect of

Figure 5.14: Variation of natural frequency with mass mismatch - experimental results.
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nearby vibration on the anti-nodal measurement. Summary of the obtained resonance frequen-

cies can be seen in Table 5.2. It should be noted that the resonance frequencies are found by

manually changing the excitation frequency of the system and making observations based on

peak-to-peak voltage of the output signal. Figure 5.14 displays the effects of the quantity of

Concentrated Mass Resonance Frequency Resonance Frequency
Location Using Nodal Probe (Hz) Using Antinodal Probe (Hz)

No mismatch 10.6 10.4
Point 1 10.2 10.2
Point 2 10.0 10.0
Point 3 9.8 9.8
Point 4 10.4 10.2
Point 5 10.2 10.0
Point 6 9.8 9.8

Table 5.2: Summary of measurements with concentrated mass located at different points on the
ring.

localized mass at different locations on the ring. Experiments have been conducted by placing

localized mass anomalies of 2.5%, 5% and 10% of total ring mass and the natural frequency

of the first configuration for the second flexural mode of the ring has been found through peak

detection on peak-to-peak amplitude versus excitation frequency curves.

It can be seen that increasing the mass of the anomaly results in a decrease in the natural

frequency of the first configuration of the second flexural mode. Furthermore, the figure shows

that the effect of mass concentration is larger when the mass is located in the vicinity of anti-

nodal points. Results suggest that a concentrated mass of 10% the mass of the ring can result

in a 0.7 Hz drop in natural frequency when placed at a nodal point and a 1.8 Hz decrease when

located at an anti-nodal point.
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5.4 Stochastic Fluctuation in Angular Rate

Analytical and numerical studies show that environmental fluctuations in angular rate affect

the dynamic stability of MEMS ring-type gyroscopes. This proposes the question whether

these fluctuations continue to have a significant effect on macro-scale systems as well. To this

end, a shaker system was considered in order to simulate environmental fluctuations and study

the resulting effects on system stability. Environmental fluctuations demonstrate stochastic

behavior. Hence, as discussed in Chapter 3, white noise can be used for studying the effects

of fluctuations while covering a large spectrum of frequencies. Figure 5.15 demonstrates the

effect of fluctuations on vibration of the stationary ring while showing the output of both nodal

and antinodal probes.

It can be seen that high frequency fluctuation has a significant influence on the stationary ring

under pure fluctuation. However, low frequency fluctuation does not seem to have visible

effect on the system. This interesting observation can be contrasted with a rotating ring under

fluctuation. Effects of fluctuation on the output signals of a rotating ring can be seen in Figure

5.16.

It can be seen that with a rotating ring, the effects of high frequency fluctuation is less visible
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Figure 5.15: Effects of fluctuations in angular rate on raw sensor measurements, Ω = 0 rad/s.
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Figure 5.16: Effects of fluctuations in angular rate on raw sensor measurements, Ω = 2π rad/s.

compared to a stationary ring. This effect may be a result of the changes in system stiffness

due to rotation. Furthermore, low frequency fluctuations are more visible with the absence of

high frequency noise.

The preliminary noise study conducted in the present thesis can be used as a reference in or-

der to perform a parametric study on environmental fluctuation similar to the numerical study

performed in Chapter 4. For this purpose, the input angular rate to the system is subjected to

uniformly distributed fluctuations through the white noise function of the shaker. The ampli-

tude of the fluctuations is held constant while the angular rate is changed in order to monitor

the ability of the system in damping unwanted fluctuations. Twenty vibration cycles are docu-

mented for each angular rate both with and without the presence of noise. The results are then

subtracted in order to find the pure noise output of the system. The standard deviation of the

resulting noise data is then calculated and averaged by taking ten data samples consisting of

ten vibration cycles each. The samples are formulated in such a way so that the first sample

includes cycles 1 through 10, the second sample includes cycles 2 through 11, the third sample

includes cycles 3 through 12 and so on. This methods allows for assessment of confidence in

the obtained data by using 10 data samples and examining the standard deviation of the data

points as a measure of output fluctuation intensity. Having the mean standard deviation of the

output data, the 95-percent confidence interval for the obtained data can also be calculated us-
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ing the t-distribution table (Peters, 2001). Figure 5.17 shows the standard deviation values for

different input angular rates with fixed fluctuations. The 95-percent confidence intervals for

the mean standard deviation values can also be seen.Asymmetric Error Bars
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Figure 5.17: Variation of output standard deviation with angular rate.

It can be seen that by increasing the angular rate while applying constant fluctuation to the input

rate, the amount of visible fluctuation on the output data of the vibratory sensor is reduced. This

reduction may be associated with the reduction of relative noise-to-nominal ratio of the input

angular rate as the noise is kept at a constant level. Furthermore, an increase in angular rate,

as shown earlier in the chapter, results in variations in system natural frequency, as well as

effective system stiffness and damping mostly due to centrifugal forces. The current system

exhibits limitations on the amount of noise that can be added to the system input. This is partly

due to the damping and inertia of the connecting beams and shafts between the shaker and

the ring. A more direct method of noise implementation is recommended in order to reach

higher noise-to-nominal ratio of input angular rate These results can be used in order to assess
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the effects of uncertainty in other input parameters such as the frequency and amplitude of the

external excitation signal.

5.5 Closure

An experimental macro-scale ring-type gyroscope has been developed in order to study the

dynamic behavior of ring-type gyroscopes as well as the non-linear behavior of the device. A

long thin cylindrical shell is used for this purpose. The shell is installed on a precision rate

table with the free hanging bottom part of the shell mimicking a thin ring. Electromagnetic

exciters were used in order to excite forced vibration in the ring along with two eddy-current

sensors at nodal and anti-nodal locations. Variation of natural frequency with angular rate

has been shown to agree with theoretical results. Moreover, it was shown that the device

exhibits high non-linearity which may be due to the low natural frequency of the system as

well as high vibration amplitudes. Furthermore, the effects of increasing non-uniformity in

mass distribution along the circumference of the ring has been studied. It was found that

increasing mass mismatch reduces the natural frequency of the system when compared to a

system with lower mass mismatch as predicted by the analytical results. Furthermore, effects

of fluctuation in angular rate on a rotating a non-rotating ring were observed. Development

of the current system as well as the preliminary study performed on fluctuations in angular

rate can be used in order to assess the effects of environmental noise on dynamic behavior of

this class of gyroscopes. It was found that the system exhibits a more efficient damping of

fluctuations when subjected to higher angular rates.
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Conclusion

Stability of ring-based gyroscopes subjected to random fluctuation in the angular velocity is

studied using a two DOF dynamic model developed for flexible circular rings. Resulting equa-

tions of motion have been shown to predict the response in the driving as well as the sensing

directions of the gyroscope. The fluctuation has been assumed to be represented using stan-

dard white noise and the associated Stochastic Differential Equations have been formulated

employing the Milstein scheme to predict the system response. Due to lack of analytical or ex-

perimental data in the literature, response predictions via Euler scheme as well as the Largest

Lyapunov Exponents have been used for validation. The predicted threshold values for noise

intensity at different values of damping exhibit a non-linear increasing trend. Variation in input

angular velocity and mass mismatch have been found not to impose significant influence on

system stability under typical gyroscope operating conditions.

Furthermore, an experimental macro-scale ring-based gyroscope is completed and tested in

order to study the dynamic behavior and non-linearities of a macro-scale systems of this class.

Variations in natural frequency of the system is documented while increasing the input angular

rate as well as the non-uniform distribution of mass on the ring. It was found that higher

angular rates and increased mass mismatch result in a noticeable reduction in system natural

frequency, as predicted by the equations of motion and numerical simulations. In addition,

65
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effects of fluctuations in input angular rate on the system is investigated. While the system

maintains a stable behavior, the system exhibits more efficient damping of the fluctuations at

higher angular rates.

6.1 Thesis Contributions

The original contributions of the present thesis are summarized as follows:

• The equations of motion of a MEMS ring-based vibratory sensor have been rewritten

considering environmental fluctuations in input angular rate in the form of white noise.

The equations have then been transformed into the standard format of a Stochastic Dif-

ferential Equation and the higher-order Milstein scheme has been employed in order to

develop an algorithm for numerical simulation of the equations of motion.

• The obtained numerical predictions have been validated against the more commonly used

Euler scheme. Accuracy of the developed computer code in predicting system stability

has been confirmed using the Largest Lyapunov Exponents method. A parametric study

has been conducted in order to obtain a noise intensity threshold for systems with differ-

ent damping ratio values. A non-linearly increasing trend has been found for the stability

threshold of the system at higher damping ratios.

• An experimental macro-scale setup has been constructed and tested. Improvements have

been made in user friendliness and ease of maintenance of the system. Safety measures

and user instruction manuals have been developed in order to insure safe start-up, oper-

ation and shutdown of the devices.

• Experiments have been conducted in order to study the variations of system natural fre-

quency while the system is subjected to increasing input angular rates. Effects of re-

ducing the uniform distribution of mass along the circumference of the macro-scale ring
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have been investigated and system behavior when subjected to stochastic fluctuations in

input angular rate is documented and analyzed.

6.2 Recommendations for Future Research

The present thesis attempted to employ the higher-order numerical schemes used for Stochas-

tic Differential Equations in order to investigate the dynamic behavior of MEMS ring-based

gyroscopes and conduct a parametric study on effects of fluctuation intensity for the first time.

Furthermore, a macro-scale ring-based gyroscope has been developed in order to study the

non-linear behavior of this class of systems in larger scales. The tools and results that have

been developed during this thesis can be used in order to:

• Investigate the effects of random vibration and unwanted fluctuations on other classes

of vibratory angular rate sensors using the higher-order Milstein scheme as developed

during the current research. And also to use the developed stochastic model in order

to numerically simulate and study gyroscopic systems in real-world scenarios, therefore

eliminating the need for prototype development and reducing costs.

• Conduct experimentation on the effects of higher than typical input angular rates on

system behavior by enhancing the current setup for high angular rates. The typical gy-

roscopic system is designed in order to maintain a natural frequency in the order of

kilohertz or megahertz while the system is subjected to input angular rates of lower than

2πHz. The low natural frequency of the current setup allows for more insight into the

behavior of this class of systems at extremely high angular rates.

• Employ the obtained results and methods used in assessment of environmental fluctu-

ations on the ring in order to conduct parametric studies on the effects of fluctuations

on system stability similar to the numerical study in Chapter 4. Also, the preliminary
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fluctuation study opens the way to further the experiments conducted on environmental

fluctuation by considering uncertainties in the frequency and amplitude of the system

excitation force. Initial investigations reveal the system exhibits different characteris-

tics on uncertainty of the output signal when subjected to slight variations in excitation

parameters.

• Investigate the effects of physical properties and inherent uncertainties of the ring, such

as system stiffness on the behavior of ring-based gyroscopes as well as non-constrained

cylindrical structures.
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Appendix A

Derivation of Equations of Motion

A.1 Introduction

In this chapter, the details of the derivation process for equations of motion as well as sys-

tem natural frequencies are discussed. The complete derivation process along with analytical

analysis of the system can be found in Cho (2005).

A.2 Energy Equations

The total kinetic energy of the system consisting of the vibratory and rigid body motions of a

ring rotating with angular velocity Ω can be formulated as:

T =
ρAr

2

∫ 2π

0
|v|2 dθ, (A.1)

where ρ represents the density of the ring and A = b× h denotes the cross-sectional area of the

ring considering width b and thickness h as shown in Figure 2.1. The amplitude squared of the
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velocity vector for a ring element can be written as: (Cho, 2005):

|v|2 = (u̇r − uθΩ)2 + (u̇θ + urΩ + rΩ)2

= (u̇r
2 + u̇θ2) + Ω2(u2

θ + u2
r + 2ri4 + r2) + 2Ω(u̇θur − u̇ruθ + ru̇θ). (A.2)

For the purpose of calculating strain energy of the ring, it is assumed that transverse shear

and radial deflections can be neglected based on the thin ring assumption. Considering the

nonlinearities resulting from large deformations and assuming linear elastic properties for the

ring, strain energy of the ring can be formulated as:

U =

∫
V

[
1
2
σθεθ +

1
2
σrθεrθ + σi

θ(εθ + εi
θ)] dV

= br
∫ h/2

−h/2

∫ 2π

0
[
1
2
σθεθ +

1
2
σrθεrθ + σi

θ(εθ + εi
θ)] dθdα3, (A.3)

where σθ, σrθ and σi
θ correspond to normal stress component in the circumferential direc-

tion, shear stress and normal stress due to centrifugal force, respectively. The potential energy

associated with the eight springs supporting the ring can be written as:

V = br
∫ 2π

0

1
2

(kru2
r + kθu2

θ) dθ, (A.4)

where kr and kθ respectively denote the stiffness in radial and circumferential directions. Fi-

nally, the energy component due to external loads can be formulated to be:

EL = br
∫ 2π

0
( frur + fθuθ) dθ, (A.5)

where fr and fθ denote the applied forces in radial and circumferential directions, respectively.

Total energy of the ring can be calculated having the energy components. Hamilton’s principle

can the be applied to the differential variation in total energy using arbitrary time domains
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[t0, t1], in order to obtain the equations of motion:

δ

∫ t1

t0
(U + V − T − EL) dt = 0. (A.6)

Examining the energy terms individually and carrying the equation yield the equations of mo-

tion for the ring as

−
EA
br2 (u′′θ + u′r) −

EI
br4 (u′′θ − u′′′r ) + ρhΩ2(−2u′r − u′′θ )

+ kθuθ + ρh(üθ + Ω̇ur + 2Ωu̇r) = fθ,
(A.7)

in the circumferential direction, and

EA
br2 (u′θ + ur) −

EI
br4 (u′′′θ − u′′′′r ) + ρhΩ2(2u′θ − u′′r )

+ krur + ρh(ür − Ω̇uθ − 2Ωu̇θ) = fr,

(A.8)

in the radial direction, where, E represents the Young’s modulus, the area moment of inertial

of the ring cross section about its neutral axis is denoted as I = bh3/12, time derivatives are

represented by ˙( ) and spatial derivatives are denoted by ( )’.

A.3 Natural Frequencies

Assuming periodic variations with time in ur and uθ, the displacement components can be

represented by series (Huang and Soedel, 1987):

ur(θ, t) =

+∞∑
n=−∞

Ane j(nθ+ωnt), uθ(θ, t) =

+∞∑
n=−∞

Bne j(nθ+ωnt), (A.9)
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where n = 0,±1,±2, . . . and ωn represents the nth natural frequency. Substituting Equation

(A.9) in Equation (A.8) yields:


M11 M12

M21 M22




An

Bn

 = 0, (A.10)

where,

M11 = ρhω2
n −

(K
r2 +

D
r4 n4

)
− ρhn2Ω2 − kr, (A.11a)

M12 = j
(
2ρhΩωn −

K
r2 n −

D
r4 n3 − 2nρhΩ2

)
+ ρhΩ̇, M21 = −M12 (A.11b)

M22 = ρhω2
n − n2

(K
r2 +

D
r4

)
− ρhn2Ω2 − kθ, K = Eh, D = Eh3/12. (A.11c)

Calculating the determinant of Equation (A.10) and setting the determinant to zero, we can

obtain the system characteristics equation:

ω4
n + a2ω

2
n + a1ωn + a0 = 0, (A.12)

where,

a2 = −2Ω2(n2 + 2) − K1 −
kr + kθ
ρh

, a1 =
4nΩK1

n2 + 1
+ 8nΩ3 + j(4ΩΩ̇), (A.13)

a0 = (n4 − 4n2)Ω4 +
n2(n2 − 3)

n2 + 1
Ω2K1 + K2 +

n2D(n2kθ + kr)
ρ2h2r4 +

K(n2kr + kθ)
ρ2h2r2 (A.14)

+
n2Ω2(kθ + kr)

ρh
+

kθkr

ρ2h2 + Ω̇2 − j
[
4nΩ2 +

2
ρh

(K
r2 +

D
r4 n3

)]
Ω̇, (A.15)

K1 =
n2 + 1
ρhr2 (n2 D

r2 + K), K2 =
n2(n2 − 1)2

r6ρ2h2 DK. (A.16)

Equation (A.12) yields four natural frequencies, denoted as ωnk, where k = 1, 2, 3, 4. Two of

the obtained frequencies correspond to the flexural or transverse vibration, and the other two

correspond to the circumferential or extensional vibration of the ring. Here, the parameter n
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denotes the vibration mode for which the frequencies are derived. In the case that n = 0, the

equation yields two extensional natural frequencies corresponding to the ”breathing mode” and

n = 1 represents the rigid body motion of the ring.

Considering the natural frequency equations, the eigenfunctions can be written as:

ur(θ, t) = Anke j(nθ+ωnkt), uθ(θ, t) = Bnke j(nθ+ωnkt), n = 0,±1,±2, . . . , k = 1, 2, 3, 4. (A.17)

Furthermore, the ratio between the amplitudes of circumferential vibration and flexural vibra-

tion is approximated by Huang and Soedel (1987) as:

j
Bnk

Ank
= Cnk ≈


−1/n, k = 1, 2 (Flexural vibrations)

n, k = 3, 4 (Circumferential vibrations)
(A.18)

Hence, mode shapes can be formulated using trigonometric functions as follows (see e.g.,

Huang and Soedel, 1987)

ur(θ, t) = cos(nθ + ωnkt), uθ(θ, t) = Cnk sin(nθ + ωnkt) (A.19)

A.4 Normalized Equations of Motion

Considering the energy transfer between the mode configurations as shown in Figure 2.2, radial

and circumferential displacements can be written according to the superposition principle as.

ur(θ, t) =

∞∑
n=0

[q1(t) cos(nθ) + q2(t) sin(nθ)], (A.20a)

uθ(θ, t) =

∞∑
n=0

[q3(t) cos(nθ) + q4(t) sin(nθ)]. (A.20b)
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Substituting Equations (A.20) into Equations (A.7) and (A.8) and applying the orthogonal-

ity of the intermediate trigonometric functions yields the equations of motion. Following the

derivation process using generalized coordinates and substituting Equations (A.20) in Equa-

tions (A.7) and (A.8) yields:

∞∑
n=0

[D1n(t) cos(nθ) + D2n(t) sin(nθ)] = fr(θ, t), (A.21a)

∞∑
n=0

[D3n(t) cos(nθ) + D4n(t) sin(nθ)] = fθ(θ, t). (A.21b)

Here,

D1n(t) = ρh(q̈1 − 2Ωq̇3) − ρhΩ̇q3 + c̃q1 + nãq4, (A.22a)

D2n(t) = ρh(q̈2 − 2Ωq̇4) − ρhΩ̇q4 + c̃q2 − nãq3, (A.22b)

D3n(t) = ρh(q̈3 + 2Ωq̇1) + ρhΩ̇q1 − nãq2 + b̃q3, (A.22c)

D4n(t) = ρh(q̈4 + 2Ωq̇2) + ρhΩ̇q2 + nãq1 + b̃q4, (A.22d)

with

ã = n2 EI
r4 +

EA
r2 + 2ρAΩ2, (A.23a)

b̃ = n2
(EI

r4 +
EA
r2 + ρAΩ2

)
+ kθ, (A.23b)

c̃ = n4 EI
r4 +

EA
r2 + n2ρAΩ2 + kr. (A.23c)

Applying the orthogonality of trigonometric functions to Equation (A.21a),
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∫ 2π

0
fr(θ, t) cos(nθ) dθ

=

∫ 2π

0

∞∑
n=0

[D1n(t) cos(nθ) + D2n(t) sin(nθ)] cos(nθ) dθ

=

∞∑
n=0

[ ∫ 2π

0
D1n(t) cos2(nθ) dθ +

∫ 2π

0
D2n(t) sin(nθ) cos(nθ) dθ

]
=

∞∑
n=0

πD1n(t).

(A.24)

Substituting Equation (A.22a) into Equation (A.24) yields the first equation of motion:

(q̈1 − 2Ωq̇3) − Ω̇q3 +
1
ρh

(c̃q1 + nãq4) =
1
πρh

∫ 2π

0
fr(θ, t) cos(nθ) dθ. (A.25)

The second equation of motion can be obtained by applying a similar procedure to Equation

(A.21b).



Appendix B

Matlab Codes

B.1 Introduction

In this Chapter, the computer codes used for time response simulation and stability analysis
are presented in detail. Matlab programming language was used in the present research in
order to simplify the algorithm implementation using matrices. However, other programming
languages may also be used for the developed algorithm.

B.2 Time Series Simulation

The following code implements the Euler and the higher order Milstein numerical schemes
in order to simulate the free vibration time response of the gyroscopic system to an initial
disturbance:

% Ring P a r a m e t e r s

E = 210 e9 ; ro = 8800 ; r = 500 e −6; h = 1 2 . 5 e −6; b = 30e −6;
A = b∗h ; I = b∗h ˆ 3 / 1 2 ;
a = 4∗E∗ I / r ˆ4 + E∗A / r ˆ 2 ;
b = 4∗ (E∗ I / r ˆ4 + E∗A / r ˆ 2 ) ;
c = 16∗E∗ I / r ˆ4 + E∗A / r ˆ 2 ;
k1 = ( b∗ c − 4∗ a ˆ 2 ) / ( ro ∗A∗ ( a + b ) ) ;
k2 = ( 4 ∗ ( b + c − 4∗ a ) ) / ( a + b ) − ( 6 ∗ ( b∗ c − 4∗ a ) ) / ( ( a + b ) ˆ 2 ) ;
gamma = ( b+4∗a ) / ( 2 ∗ ( a + b ) ) ;

% I n i t i a l i z a t i o n
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N = 150000; % Number o f s t e p s
h = 0 . 0 0 9 /N; % t ime s t e p
i n t e n s i t y = 199 ; % n o i s e i n t e n s i t y
z e t a = 0 . 1 4 ; % damping r a t i o
t = [ 0 : h : ( h∗N ) ] ’ ; % s t o r e t ime
z = [1 e −5 , 0 , 0 , 0 ] ’ ; % i n i t i a l c o n d i t i o n
r e s u l t s = z ;

% G e n e r a t e Brownian Motion

rng ( ’ d e f a u l t ’ ) ; % I n i t i a l i z e random number g e n e r a t o r

DW = normrnd ( 0 , 1 , 1 ,N)∗ s q r t ( h ) ;
W = cumsum (DW) ; W = [ 0 ,W] ;
dW = d i f f (W) ;

% In o r d e r t o s t u d y t h e e f f e c t s o f a n g u l a r r a t e on
% sys tem r e s p o n s e , t h e n a t u r a l f r e q u e n c i e s can be
% c a l c u l a t e d v i a t h e e i g e n v a l u e e q u a t i o n as f o l l o w s

p = 4∗ (2∗ p i ) ˆ 2 ∗ gamma ˆ 2 ;
s = k1 + k2 ∗ ( 2∗ p i ) ˆ 2 ;
N a t u r a l F e r q u e n c i e s = r o o t s ( [ 1 0 ( p+2∗ s ) 0 s ˆ 2 ] ) ;

w01 = imag ( N a t u r a l F e r q u e n c i e s ( 1 ) ) ; % 1 s t n a t u r a l f r e q u e n c y
w02 = imag ( N a t u r a l F e r q u e n c i e s ( 3 ) ) ; % 2nd n a t u r a l f r e q u e n c y

% In o r d e r t o s t u d y t h e e f f e c t s o f mass mismatch on
% sys tem r e s p o n s e , t h e n a t u r a l f r e q u e n c i e s can be
% c a l c u l a t e d v i a t h e e i g e n v a l u e e q u a t i o n as f o l l o w s
%
% mm= 0 . 1 ;
% p =4∗(2∗ p i ) ˆ 2 ∗ gamma ˆ 2 ;
% s=k1+k2 ∗ ( 2∗ p i ) ˆ 2 ;
% N a t u r a l F e r q u e n c i e s = r o o t s ( [1+mm 0 ( p+(2+mm)∗ s ) 0 s ˆ 2 ] )
%
% w01=imag ( N a t u r a l F e r q u e n c i e s ( 1 ) ) % 1 s t n a t u r a l f r e q u e n c y
% w02=imag ( N a t u r a l F e r q u e n c i e s ( 3 ) ) % 2nd n a t u r a l f r e q u e n c y

% S i m u l a t e t ime r e s p o n s e u s i n g M i l s t e i n scheme

t i c
f o r i = 1 : 1 :N
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% G e n e r a t i n g t ime v a r y i n g omega

t f = 0 . 0 0 5 ;
max omega = 2∗ p i ;
i f t ( i ) <= t f % smooth ly v a r i n g omega

omega = (−2∗max omega / t f ˆ 3 ) ∗ t ( i ) . ˆ 3
+ (3∗max omega / t f ˆ 2 ) ∗ t ( i ) . ˆ 2 ;

e l s e
omega = max omega ;

end

% C a l c u l a t i n g d r i f t and d i f f u s i o n m a t r i c e s

a = [0 , 1 , 0 , 0 ;
−k1−k2∗omega ˆ2 ,−2∗ z e t a ∗w01 ,0 ,2∗gamma∗omega ;
0 , 0 , 0 , 1 ;
0 , −2∗gamma∗omega , −k1−k2∗omega ˆ 2 , −2∗ z e t a ∗w02 ] ;

b = [ 0 , 0 , 0 , 0 ;
−2∗k2∗ i n t e n s i t y ∗omega , 0 , 0 , 2∗ i n t e n s i t y ∗gamma ;
0 , 0 , 0 , 0 ;
0 , −2∗ i n t e n s i t y ∗gamma , −2∗k2∗ i n t e n s i t y ∗omega , 0 ] ;

b t o t a l = b∗ z ;
a t o t a l = a ∗ z ;

% Apply ing M i l s t e i n scheme

f o r u = 1 : 4
sum = 0 ;

f o r y = 1 : 4
sum = sum + b t o t a l ( y , 1 ) ∗ b ( u , y ) ;

end

xx ( u , 1 ) = z ( u ) + a t o t a l ( u )∗ h + b t o t a l ( u )∗dW( 1 , i )
+ 0 . 5 ∗ ( sum ) ∗ ( (dW( 1 , i ) ) ˆ 2 − h ) ;

z ( u ) = xx ( u ) ;
end

r e s u l t s = [ r e s u l t s , xx ] ;
end

l e g 1 = [ ’ \mu= ’ num2s t r ( i n t e n s i t y ) ] ;
l e g 2 = [ ’ \ z e t a = ’ num2s t r ( z e t a ) ] ;
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l e g = [ l e g 1 l e g 2 ] ;

x = r e s u l t s ( 3 , : ) ;
p l o t ( t , x , ’ r ’ )
l e g e n d ( l e g ) ;
ho ld on

t o c

% S i m u l a t i n g t ime r e s p o n s e u s i n g E u l e r scheme

% R e i n i t i a l i z i n g t h e s t a t e v a r i a b l e s

z = [1 e −5 , 0 , 0 , 0 ] ’ ; % i n i t i a l c o n d i t i o n
r e s u l t s = z ;

t i c
f o r i = 1 : 1 :N

% G e n e r a t i n g t ime v a r y i n g omega

t f = 0 . 0 0 5 ;
max omega = 2∗ p i ;
i f t ( i ) <= t f % smooth ly v a r i n g omega

omega = (−2∗max omega / t f ˆ 3 ) ∗ t ( i ) . ˆ 3
+ (3∗max omega / t f ˆ 2 ) ∗ t ( i ) . ˆ 2 ;

e l s e
omega = max omega ;

end

% C a l c u l a t i n g d r i f t and d i f f u s i o n m a t r i c e s

a = [0 , 1 , 0 , 0 ;
−k1−k2∗omega ˆ2 ,−2∗ z e t a ∗w01 ,0 ,2∗gamma∗omega ;
0 , 0 , 0 , 1 ;
0 , −2∗gamma∗omega , −k1−k2∗omega ˆ 2 , −2∗ z e t a ∗w02 ] ;

b = [ 0 , 0 , 0 , 0 ;
−2∗k2∗ i n t e n s i t y ∗omega , 0 , 0 , 2∗ i n t e n s i t y ∗gamma ;
0 , 0 , 0 , 0 ;
0 , −2∗ i n t e n s i t y ∗gamma , −2∗k2∗ i n t e n s i t y ∗omega , 0 ] ;

b t o t a l = b∗ z ;
a t o t a l = a ∗ z ;
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% Apply ing E u l e r scheme

xx =z+ a t o t a l ∗h+ b t o t a l ∗dW( 1 , i ) ;

z=xx ;
r e s u l t s =[ r e s u l t s , xx ] ;

end

x = r e s u l t s ( 3 , : ) ;
p l o t ( t , x ) ;
l e g e n d ( l e g ) ;

x l a b e l ( ’ Time ( s ) ’ )
y l a b e l ( ’ Ampl i tude (m) ’ )
t o c

B.3 Largest Lyapunov Exponent Calculation

Having the time response, stability of the system may be analyzed considering rate of growth or
decay of the system response. The Largest Lyapunov Exponent method is developed in order
to assess the rate of growth or decay of a system response. This method requires a number
of initial parameters including the time delay and the mean period which contain information
about the nature of the response. These parameters are later used in order to reduce the number
of calculation and increase the accuracy of the algorithm.

B.3.1 Calculating Mutual Average Information

The following code block demonstrates the calculation process for the Mutual Average Infor-
mation:

f u n c t i o n v=mai ( x , l a g )
%Syntax : v=mai ( x , l a g )
%
%
% C a l c u l a t e s t h e mutua l a v e r a g e i n f o r m a t i o n o f
% a t ime s e r i e s x f o r some t ime l a g .
%
% v i s t h e t h e v a l u e o f t h e mutua l a v e r a g e i n f o r m a t i o n .
% x i s t h e t ime s e r i e s .
% l a g i s t h e t ime l a g .
%
% Author : A l e x a n d r o s L e o n t i t s i s
% I n s t i t u t e o f Mathemat i c s and S t a t i s t i c s
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% U n i v e r s i t y o f Kent a t C a n t e r b u r y

i f n a r g i n <1 | i s e m p t y ( x)==1
e r r o r ( ’ You s h o u l d p r o v i d e a t ime s e r i e s . ’ ) ;

e l s e
% x must be a v e c t o r
i f min ( s i z e ( x )) >1

e r r o r ( ’ I n v a l i d t ime s e r i e s . ’ ) ;
end
x=x ( : ) ;
% n i s t h e t ime s e r i e s l e n g t h
n= l e n g t h ( x ) ;

end
d i s p l a y ( ’ check ’ )
i f n a r g i n <2 | i s e m p t y ( l a g )==1

l a g =0: min ( n / 2 −1 , 2 0 ) ;
e l s e

% l a g must be a v e c t o r
i f min ( s i z e ( l a g )) >1

e r r o r ( ’ The t ime l a g must be a s c a l a r o r a v e c t o r . ’ ) ;
end
% l a g must c o n t a i n i n t e g e r s
l a g=round ( l a g ) ;

% l a g v a l u e s must be between 0 and n /2−1
l a g= l a g ( f i n d ( lag >=0 & lag <n / 2 ) ) ;

% l a g must n o t be empty
i f i s e m p t y ( l a g )==1

e r r o r ( ’ You must g i v e a n o t h e r s e t o f v a l u e s f o r l a g . ’ )
end

end
d i s p l a y ( ’ check ’ )

% The mutua l a v e r a g e i n f o r m a t i o n
x=x−min ( x ) ;
x=x / max ( x ) ;
d i s p l a y ( ’ check ’ )
f o r i =1: l e n g t h ( l a g )

i
% D ef in e t h e number o f b i n s
k= f l o o r (1+ l og2 ( n− l a g ( i ) ) + 0 . 5 ) ;

% I f t h e t ime s e r i e s has no v a r i a n c e t h e n t h e MAI i s 0
i f v a r ( x ,1)==0
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v ( i )=0 ;
e l s e

v ( i )=0 ;
f o r k1 =1: k

f o r k2 =1: k
ppp= f i n d ( ( k1 −1 ) / k<x ( 1 : n− l a g ( i ) ) & x ( 1 : n− l a g ( i ))<= k1 / k . . .
& ( k2 −1 ) / k<x (1+ l a g ( i ) : n ) & x (1+ l a g ( i ) : n)<=k2 / k ) ;
ppp= l e n g t h ( ppp ) ;
px1= f i n d ( ( k1 −1 ) / k<x ( 1 : n− l a g ( i ) ) & x ( 1 : n− l a g ( i ))<= k1 / k ) ;
px2= f i n d ( ( k2 −1 ) / k<x (1+ l a g ( i ) : n ) & x (1+ l a g ( i ) : n)<=k2 / k ) ;

i f ppp>0
ppp=ppp / ( n− l a g ( i ) ) ;
px1= l e n g t h ( px1 ) / ( n− l a g ( i ) ) ;
px2= l e n g t h ( px2 ) / ( n− l a g ( i ) ) ;
v ( i )=v ( i )+ ppp∗ l og2 ( ppp / px1 / px2 ) ;

end
end

end
end

end

B.3.2 Calculating Mean Period

System response to an initial disturbance exhibits a constant frequency owing to the constant
natural frequency of the system. The system natural frequency can be used for estimation of the
mean period of system response. However, the following algorithm calculates the mean period
of a system based on the time response, eliminating the need for any additional information
about the system. Furthermore, another advantage of this algorithm is calculation of mean
period which accounts for the variations in natural frequency due to additional noise.

f u n c t i o n [ meanp ] = meanper iod ( x )

% C a l c u l a t e s and r e t u r n s mean p e r i o d o f t ime s e r i e s ’x ’
% By : Soroush Arghavan

buf = z e r o s ( 1 , l e n g t h ( x ) ) ;
i = 1 ;
j = 1 ;
t r a p = 1 ;

w h i l e i <= numel ( x ) − 1
w h i l e x ( i ) <= x ( i +1)

buf ( j ) = i ;
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i f i == numel ( x ) − 1
b r e a k ;

end

i = i +1;
t r a p = 0 ;

end

i f buf ( j ) ˜= 0
j = j +1;

end

i f t r a p == 1 ;
i = i +1;

end

t r a p = 1 ;

i f i == numel ( x )−1
b r e a k

end
end

f o r i = 1 : numel ( buf )−1
i f buf ( i +1) ˜= 0

d i f f ( i ) = buf ( i +1) − buf ( i ) ;
end

end

meanp=round ( mean ( d i f f ) ) ;
end

B.3.3 Calculating Lyapunov Exponents

Having the necessary initial information, the Lyapunov characteristic exponents of the system
time response can be calculated and can be used to determine the Largest Lyapunov Exponent
of the response:

f u n c t i o n d = l y a r o s e n s t e i n ( x ,m, tao , meanper iod , m a x i t e r )
% d : d i v e r g e n c e o f n e a r e s t t r a j e c t o i r e s
% x : s i g n a l
% t a o : t ime d e l a y
% m: embedding d imens ion
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N= l e n g t h ( x ) ;
M=N−(m−1)∗ t a o ;
Y=ps r deneme ( x ,m, t a o ) ;

f o r i =1:M

x0=ones (M, 1 ) ∗Y( i , : ) ;
d i s t a n c e = s q r t ( sum ( ( Y−x0 ) . ˆ 2 , 2 ) ) ;
f o r j =1:M

i f abs ( j − i )<= meanper iod
d i s t a n c e ( j )=1 e10 ;

end
end
[ n e a r d i s ( i ) n e a r p o s ( i ) ]= min ( d i s t a n c e ) ;

end

f o r k =1: m a x i t e r

maxind=M−k ;
e v o l v e =0;
p n t =0;
f o r j =1:M

i f j<=maxind && n e a r p o s ( j )<=maxind
d i s t k = s q r t ( sum ( (Y( j +k , : ) −Y( n e a r p o s ( j )+k , : ) ) . ˆ 2 , 2 ) ) ;

i f d i s t k ˜=0
e v o l v e=e v o l v e+ l o g ( d i s t k ) ;
p n t=p n t +1;

end
end

end
i f p n t > 0

d ( k )= e v o l v e / p n t ;
e l s e

d ( k )=0 ;
end

end
%f i g u r e
%p l o t ( d )

%% LLE C a l c u l a t i o n
%f s =2000;% s am p l i n g f r e q u e n c y
%t l i n e a r =1 5 : 7 8 ;
%F = p o l y f i t ( t l i n e a r , d ( t l i n e a r ) , 1 ) ;
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%l l e = F ( 1 ) ∗ f s

f u n c t i o n Y=ps r deneme ( x ,m, tao , n p o i n t )
%Phase s p a c e r e c o n s t r u c t i o n
%x : t ime s e r i e s
%m : embedding d imens ion
%t a o : t ime d e l a y
%n p o i n t : t o t a l number o f r e c o n s t r u c t e d v e c t o r s
%Y : M x m m a t r i x
% a u t h o r : ” Merve K i z i l k a y a ”
N= l e n g t h ( x ) ;
i f n a r g i n == 4

M=n p o i n t ;
e l s e

M=N−(m−1)∗ t a o ;
end

Y=z e r o s (M,m) ;

f o r i =1:m
Y ( : , i )=x ( ( 1 :M)+ ( i −1)∗ t a o ) ’ ;

end

B.3.4 Finding Largerst Lyapunov Exponent of The Simulated Time Se-
ries

The following code is applied to the calculated system time response in Section B.2 using the
functions defined in Appendix B.3.1 to B.3.3 in order to obtain the Largest Lyapunov Exponent
of the time response:

xm= r e s u l t s ( 3 , : ) ;
x=xm ( 1 : 4 4 0 0 0 ) ;
p l o t ( t ( 1 : 4 4 0 0 0 ) , x , ’ r ’ )
ho ld on

t a o = 0 : 1 : s i z e ( x , 2 ) / 6 0 −1 ;
d i s p l a y ( ’ c a l c u l a t i n g AMI’ )
y=mai ( x , t a o ) ;
%p l o t ( t ao , y )

f o r i = 2 : 1 : s i z e ( y ,2) −1
i f ( y ( i −1)>=y ( i ) && y ( i )<=y ( i +1) ) ;

t d e l a y = t a o ( 1 , i ) ; % t h e f i r s t minimum
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b r e a k ;
end

end

mper iod = meanper iod ( x ) ;
d i s p l a y ( ’ f i n d i n g LLE ’ )

%d i v e r g e n c e o f t r a g e c t o r i e s

d = l y a r o s e n s t e i n ( x , 5 , t d e l a y , mperiod , 4 4 0 0 0 ) ;

%s a m p l i n g f r e q u e n c y

f s =N / h ;
t l i n e a r =10: l e n g t h ( f i n d ( d ) ) −5 0 ;
F = p o l y f i t ( t l i n e a r , d ( t l i n e a r ) , 1 ) ;
LLEm = F ( 1 ) ∗ f s

t o c



Appendix C

Experimental Setup

The experimental setup consists of a long C1095 blue-tempered cylindrical McMaster-Carr

Supply Company steel shell installed on an Ideal Aerosmith 1291BR Precision Single-axis

Rate Table. The top part of the shell is fixed using lightweight thin tape in order to maintain the

shell in a suspending position while minimizing the effects of added stiffness and mode shapes

caused by the tapes. This allows the bottom part of the cylinder to deform and hence mimic a

thin free-standing ring. Figures C.1 and C.2 show the details of the experimental setup.

Ideal Aerosmith 
1291BR 

Controller 

Blue Tempered 
Steel Cylinder 

Ideal Aerosmith 
1291BR Rate 

Table 

LabView and 
DAQ Setup 

Function 
Generator 

Shaker Signal 
Generator 

Amplifier 
Junction Box 

Figure C.1: Experimental setup.

Two APW Company EM075-12-122 electromagnets are employed as shown in Figure C.3 for

the purpose of excitation of the ring. The electromagnets are place along the symmetry line of

the ring and are set to operate in phase relative to each other in order to force vibration in the

92
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Cylindrical 
Shell 

Electromagnetic 
Exciter 

Shaker 

Junction Box 

(a) Front view

 

Junction Box 

Cylindrical 
Shell 

Eddy-Current 
Probe 

Eddy-Current 
Driver 

(b) Alternative view

Figure C.2: Experimental setup close-up

second flexural mode.

Measurements are made possible via two Lion Precision Eddy current probes, displayed in

Figure C.4 and connected to an ECL134 Eddy current sensor driver. LabView software is used

for data analysis.

Slip rings in the rate table enable the input signal to the exciters and the shaker and sensor

output signal as well as low-voltage power for the driver to pass through the rotating rate ta-

ble to external devices. In order to facilitate the operation and maintenance of the system,

two junction boxes were developed for separation of signals on both the internal and external

connections of the rate table. The junction boxes divide the 37-pin connections into more man-

ageable, plug and play individual BNC connections. Figure C.5 shows the external junction

box used for separation and combination of signals between peripheral devices and the rate

table. In order to clarify the experimental setup and signal flow between the devices, the block

diagram and a schematic view of the setup are shown in Figures C.6 and C.7, respectively. The

system wiring was refined with both single-sensor and dual-sensor operation in mind. Fig-

ures C.8 and C.9 display the wiring schematics for single-sensor and dual-sensor operation,

respectively with the pin layout of the connectors summarized in Tables C.1, C.2 and C.3.
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Figure C.3: Configuration of an electromagnetic exciter.

Finally, the sensor measurement data is sent to LabView for monitoring and analysis. A Lab-

View script has been developed for reading the data from the data acquisition (DAQ) card. The

data is then filtered using a band-pass filter to remove low-frequency and high-frequency noise

on the two extremes of the measurement spectrum. The developed script is shown in Figures

C.10 and C.11.

Figure C.4: Configuration of the Eddy-Current probes.
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Input Signals 
from Devices 

To Rate Table From Rate Table 
Output Signals 

to DAQ 

Input Side Output Side 

Figure C.5: Layout of a junction box.

C.1 Startup Procedure

1. Determine whether single-sensor or dual-sensor operation is required for the experiment.

2. Use the Phoenix Contact 2938756 DC Power Supply for single-sensor operation and

the Total Power International TPSPU45E-210 switching power supply for dual-sensor

operation.

3. Use Lion Precision ECL100 for single-sensor operation and ECL134 for dual-sensor

operation.

4. Connect the probe(s) to the Eddy-Current driver.

5. Plug in the necessary BNC connections i.e. exciter, power and sensors on both junc-

tion boxes and make sure the unused BNC connections are disconnected. IMPORTANT

NOTE: MAKE SURE THAT THE POWER AND GROUND CONNECTIONS ARE

CONNECTED CORRECTLY BEFORE MOVING FURTHER. INCORRECT POWER

AND GROUND CONNECTIONS CAN CAUSE SERIOUS DAMAGE TO EQUIP-
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MENT AND USER.

6. Enable function generation and switch on the amplifier.

7. Switch on the power supply and enable the data acquisition script.

8. At this point the cylindrical shell should be excited and the sensor data should be visible.

9. Turn on the KCF PA5100 Signal Generator in case the shaker is used in the experiment.

Otherwise, keep the generator off. Note: Using any other type of signal generation or

amplifier device other than the designated device may result in incorrect operation of the

shaker.

10. Double check the rate table connections to make sure there are no faulty connections.

11. Switch on the Ideal Aerosmith 1291BR Controller using the circuit breaker switch lo-

cated on the back of the controller and the switch on button located on the front. IM-

PORTANT NOTE: Make sure that the ”servo” switch is ”OFF” and the physical brake

on the rate table is engaged before turning the controller on.

12. Make sure that the emergency brake knob on the controller is disengaged.

13. Disengage the physical brake located on the side of the ring table.

14. Switch ”servo” to ”ON”. The green ”active” LED should be visible on the controller. If

the red ”brake engaged” LED is on, make sure that the physical brake is fully disengaged.

15. Use the designated Ideal Aerosmith application to control the rate table.

C.1.1 Rate Table Initial Startup

In order to ascertain safe operation of the rate table and preventing damage to the equipment

of injury of personnel, the following initial startup procedure is recommended:
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IMPORTANT NOTE: BE PREPARED TO USE THE EMERGENCY BRAKE KNOB LO-

CATED ON THE IDEAL AEROSMITH 1291BR CONTROLLER AT ALL TIMES. DO NOT

LEAVE THE DEVICE UNATTENDED WHEN ON.

1. Type SRV1 in the command input section to turn the software controller on.

2. Use DIR1 for clockwise and DIR0 for counterclockwise rotation.

3. Set the maximum allowable velocity using MXV command, e.g. MXV500 for maximum

500◦/s.

4. Velocity and acceleration for the closed loop position control function can be set using

VEL and ACL commands. These steps can be ignored for constant-speed angular ro-

tation. Use the VEL command to set the velocity for closed-loop position control, e.g.

VEL50 for 50◦/s maximum angular velocity in the trapezoidal velocity function.

5. Set the acceleration for the trapezoidal velocity function using the ACL command, e.g.

ACL50 for 50◦/s2.

6. Type PPO in the command input. The software should return the current angular position

of the table.

7. Rotate the device 180◦ by hand.

8. Type PPO in the command input. The new position value should be different than the

previous value by 180◦.

9. Use RMO to move the table to a new position relative to the current location and check

the accuracy using PPO and comparing with the previous value, e.g. RMO10 moves the

table 10◦ in the defined direction.

10. Use the JOG command to start rotation with constant angular velocity. e.g. JOG360

results in the table rotating at 360◦/s or 1 Hz.
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11. Verify the current angular velocity be using the PVE command.

12. Stop the system at any point by using the STO command.

C.2 Shutdown Procedure

1. Stop the rate table using the STO command.

2. Switch ”servo” to ”OFF and make sure the ”active” light is off.

3. Turn the Ideal Aerosmith 1291BR Controller off using the front switch and the circuit

breaker located on the back.

4. Engage the physical brake located on the side of the ring table.

5. Turn the driver power supply off.

6. Turn the signal generators and the amplifier off.

7. Unplug the devices.

8. Disconnect all BNC connections.
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Pin Description Color
1 Not Connected Not Connected
2 Not Connected Not Connected
3 Not Connected Not Connected
4 Not Connected Not Connected
5 Ground White
6 Shaker + Green (Outer Wire)
7 Power - Black
8 Power + Red
9 Shaker - Blue
10 Exciter + Green (Inner Wire)
11 Exciter - Orange/Yellow/Brown
12 Not Connected Not Connected
13 Not Connected Not Connected
14 Not Connected Not Connected
15 Not Connected Not Connected
16 Not Connected Not Connected
17 Not Connected Not Connected
18 Not Connected Not Connected
19 Not Connected Not Connected
20 Not Connected Not Connected
21 Not Connected Not Connected
22 Not Connected Not Connected
23 Not Connected Not Connected
24 Not Connected Not Connected
25 Not Connected Not Connected
26 Not Connected Not Connected
27 Not Connected Not Connected
28 Not Connected Not Connected
29 Not Connected Not Connected
30 Not Connected Not Connected
31 Not Connected Not Connected
32 Not Connected Not Connected
33 Not Connected Not Connected
34 Not Connected Not Connected
35 Not Connected Not Connected
36 Not Connected Not Connected
37 Not Connected Not Connected

Table C.1: Input 37-pin connection pinout (Rate table J100 and J101)
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Pin Description Color
1 Not Connected Not Connected
2 Not Connected Not Connected
3 Not Connected Not Connected
4 Sensor 2 + Brown/Orange
5 Sensor 2 - Green
6 Ground White
7 Sensor 1 - Black
8 Sensor 1 + Red
9 Not Connected Not Connected

10 Not Connected Not Connected
11 Not Connected Not Connected
12 Not Connected Not Connected
13 Not Connected Not Connected
14 Not Connected Not Connected
15 Not Connected Not Connected
16 Not Connected Not Connected
17 Not Connected Not Connected
18 Not Connected Not Connected
19 Not Connected Not Connected
20 Not Connected Not Connected
21 Not Connected Not Connected
22 Not Connected Not Connected
23 Not Connected Not Connected
24 Not Connected Not Connected
25 Not Connected Not Connected
26 Not Connected Not Connected
27 Not Connected Not Connected
28 Not Connected Not Connected
29 Not Connected Not Connected
30 Not Connected Not Connected
31 Not Connected Not Connected
32 Not Connected Not Connected
33 Not Connected Not Connected
34 Not Connected Not Connected
35 Not Connected Not Connected
36 Not Connected Not Connected
37 Not Connected Not Connected

Table C.2: Output 37-pin connection pinout (Rate table J102 and J103)
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Pin Description Color
1 Sensor 1 + Red
2 Sensor 2 + Brown/Orange
3 Not Connected Not Connected
5 Not Connected Not Connected
6 Not Connected Not Connected
7 Not Connected Not Connected
8 Not Connected Not Connected
9 Sensor 1 - Black

10 Sensor 2 - Green
11 Not Connected Not Connected
12 Not Connected Not Connected
13 Not Connected Not Connected
14 Not Connected Not Connected
15 Ground White

Table C.3: ECL134 15-pin output connection pinout
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