8 research outputs found

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Augmented Business Process Management Systems: A Research Manifesto

    Get PDF
    Augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems that draws upon trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an ABPMS, we discuss core characteristics of an ABPMS, and we derive a set of challenges to realize systems with these characteristics.Comment: 19 pages, 1 figur

    AI-augmented business process management systems: a research manifesto

    Get PDF
    AI-augmented Business Process Management Systems (ABPMSs) are an emerging class of process-aware information systems, empowered by trustworthy AI technology. An ABPMS enhances the execution of business processes with the aim of making these processes more adaptable, proactive, explainable, and context-sensitive. This manifesto presents a vision for ABPMSs and discusses research challenges that need to be surmounted to realize this vision. To this end, we define the concept of ABPMS, we outline the lifecycle of processes within an ABPMS, we discuss core characteristics of an ABPMS, and we derive a set of challenges to realize systems with these characteristics

    SmartPM: automatic adaptation of dynamic processes at run-time

    Get PDF
    The research activity outlined in this thesis is devoted to define a general approach, a concrete architecture and a prototype Process Management System (PMS) for the automated adaptation of dynamic processes at run-time, on the basis of a declarative specification of process tasks and relying on well-established reasoning about actions and planning techniques. The purpose is to demonstrate that the combination of procedural and imperative models with declarative elements, along with the exploitation of techniques from the field of artificial intelligence (AI), such as Situation Calculus, IndiGolog and automated planning, can increase the ability of existing PMSs of supporting dynamic processes. To this end, a prototype PMS named SmartPM, which is specifically tailored for supporting collaborative work of process participants during pervasive scenarios, has been developed. The adaptation mechanism deployed on SmartPM is based on execution monitoring for detecting failures at run-time, which does not require the definition of the adaptation strategy in the process itself (as most of the current approaches do), and on automatic planning techniques for the synthesis of the recovery procedure

    System design for periodic data production management

    Get PDF
    This research project introduces a new type of information system, the periodic data production management system, and proposes several innovative system design concepts for this application area. Periodic data production systems are common in the information industry for the production of information. These systems process large quantities of data in order to produce statistical reports in predefined intervals. The workflow of such a system is typically distributed world-wide and consists of several semi-computerized production steps which transform data packages. For example, market research companies apply these systems in order to sell marketing information over specified timelines. production of information. These systems process large quantities of data in order to produce statistical reports in predefined intervals. The workflow of such a system is typically distributed world-wide and consists of several semi-computerized production steps which transform data packages. For example, market research companies apply these systems in order to sell marketing information over specified timelines. There has been identified a lack of concepts for IT-aided management in this area. This thesis clearly defines the complex requirements of periodic data production management systems. It is shown that these systems can be defines as IT-support for planning, monitoring and controlling periodic data production processes. Their significant advantages are that information industry will be enabled to increase production performance, and to ease (and speed up) the identification of the production progress as well as the achievable optimisation potential in order to control rationalisation goals. In addition, this thesis provides solutions for he generic problem how to introduce such a management system on top of an unchangeable periodic data production system. Two promising system designs for periodic data production management are derived, analysed and compared in order to gain knowledge about appropriate concepts and this application area. Production planning systems are the metaphor models used for the so-called closely coupled approach. The metaphor model for the loosely coupled approach is project management. The latter approach is prototyped as an application in the market research industry and used as case study. Evaluation results are real-world experiences which demonstrate the extraordinary efficiency of systems based on the loosely coupled approach. Special is a scenario-based evaluation that accurately demonstrates the many improvements achievable with this approach. Main results are that production planning and process quality can vitally be improved. Finally, among other propositions, it is suggested to concentrate future work on the development of product lines for periodic data production management systems in order to increase their reuse

    Towards automatic recovery in protocol-based Web service composition

    Get PDF
    Dans une composition de services Web basée protocole, un ensemble de services composants se collaborent pour donner lieu à un service Composite. Chaque service est représenté par un automate à états finis (AEF). Au sein d un AEF, chaque transition exprime l exécution d une opération qui fait avancer le service vers un état suivant. Une exécution du composite correspond à une séquence de transitions où chacune est déléguée à un des composants. Lors de l exécution du composite, un ou plusieurs composants peuvent devenir indisponibles. Ceci peut produire une exécution incomplète du composite, et de ce fait un recouvrement est nécessaire. Le recouvrement consiste à transformer l exécution incomplète en une exécution alternative ayant encore la capacité d aller vers un état final. La transformation s'effectue en compensant certaines transitions et exécutant d autres. Cette thèse présente une étude formelle du problème de recouvrement dans une composition de service Web basée protocole. Le problème de recouvrement consiste à trouver une meilleure exécution alternative parmi celles disponibles. Une meilleure alternative doit être atteignable à partir de l exécution incomplète avec un nombre minimal de compensations visibles (vis-à-vis le client). Pour une exécution alternative donnée, nous prouvons que le problème de décision associé au calcul du nombre de transitions invisiblement compensées est NP-Complet. De ce fait, nous concluons que le problème de décision associé au recouvrement appartient à la classe P2.In a protocol-based Web service composition, a set of available component services collaborate together in order to provide a new composite service. Services export their protocols as finite state machines (FSMs). A transition in the FSM represents a task execution that makes the service moving to a next state. An execution of the composite corresponds to a sequence of transitions where each task is delegated to a component service. During composite run, one or more delegated components may become unavailable due to hard or soft problems on the Network. This unavailability may result in a failed execution of the composite. We provide in this thesis a formal study of the automatic recovery problem in the protocol-based Web service composition. Recovery consists in transforming the failed execution into a recovery execution. Such a transformation is performed by compensating some transitions and executing some others. The recovery execution is an alternative execution of the composite that still has the ability to reach a final state. The recovery problem consists then in finding the best recovery execution(s) among those available. The best recovery execution is attainable from the failed execution with a minimal number of visible compensations with respect to the client. For a given recovery execution, we prove that the decision problem associated with computing the number of invisibly-compensated transitions is NP-complete. Thus, we conclude that deciding of the best recovery execution is in P2.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Error Handling in Process Support Systems

    No full text
    rocess Support Systems (PSSs) are software systems supporting the modeling, enactment, monitoring, and analysis of business processes. Process automation technology can be fully exploited when predictable and repetitive processes are executed. Unfortunately, many processes are faced with the need of managing exceptional situations that may occur during their execution, and possibly even more exceptions and failures can occur when the process execution is supported by a PSS. Exceptional situations may be caused by system (hardware or software) failures, or may by related to the semantics of the business process. In this paper we introduce a taxonomy of failures and exceptions and discuss the effect that they can have on a PSS and on its ability to support business processes. Then, we present the main approaches that commercial PSSs and research prototypes offer in order to capture and react to exceptional situations, and we show which classes of failure or exception can be managed by each approach
    corecore