
SmartPM: Automatic Adaptation of
Dynamic Processes at Run-Time

Dipartimento di Ingegneria Informatica, Automatica e Gestionale A. Ruberti,
Universitá di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica – XXV Ciclo

Candidate

Andrea Marrella
ID number 796069

Thesis Committee

Prof. Massimo Mecella (Tutor)
Prof. Daniele Nardi
Prof. Luca Iocchi
Prof. Umberto Nanni
Prof. Stavros Vassos

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing Science and Engineering

October 2013

Thesis defended on 7 October 2013

SmartPM: Automatic Adaptation of Dynamic Processes at Run-Time
Ph.D. thesis. Sapienza – University of Rome

© 2013 Andrea Marrella. All rights reserved

Website: http://www.dis.uniroma1.it/∼marrella

Author’s email: marrella@dis.uniroma1.it

http://www.dis.uniroma1.it/$\sim $marrella
mailto:marrella@dis.uniroma1.it

Dedicated to my grandmother, with love.

v

Ringraziamenti

Questo lavoro di Tesi è il risultato di un percorso di ricerca durato 3 anni e mezzo.
Provo emozioni contrastanti se ripenso all’esperienza di Dottorato che ho appena
concluso. Ho vissuto momenti difficili, talvolta frustranti, ma l’impegno e la passione
per la ricerca sono stati più forti delle difficoltà. In definitiva, non cambierei nulla
della mia esperienza di Dottorato. Penso che mi abbia reso una persona migliore,
dal punto di vista accademico ed umano.

Non sarei mai riuscito a completare questo percorso senza l’apporto di persone
speciali. A questo proposito, vorrei principalmente ringraziare Chiara, che non
ha mai mancato di incoraggiarmi e mi è stata vicina soprattutto nei momenti più
difficili, e la mia famiglia, che mi ha sempre mostrato un sostegno impagabile in ogni
situazione. Ringrazio anche i miei colleghi di Dottorato, in particolare Alessandro,
Claudio, Francesco, Donatella, Mario, Riccardo, Paolo. Mi ritengo fortunato ad
aver condiviso una parte della mia vita con loro.

Un ringraziamento speciale va a Massimo, grazie al quale ho acquisito un’esperienza
lavorativa ed umana più unica che rara, e a quei ricercatori con cui ho lavorato e
condiviso idee di ricerca. Una menzione particolare va al Prof. Yves Lesperance,
grazie al quale ho potuto intraprendere una fantastica esperienza di ricerca e di vita
in Canada, che mi ha arricchito culturalmente e professionalmente.

Grazie di cuore a tutti.

vii

Contents

Extended Abstract ix

1 Introduction 1
1.1 Flexibility Issues in Process Management Systems 2
1.2 The Spectrum of Process Management and Modeling Paradigms . . 7

1.2.1 Structured Processes . 7
1.2.2 Loosely Structured Processes 8
1.2.3 Unstructured Processes . 8
1.2.4 Dynamic Processes . 9

1.3 Case Study . 10

2 State of the Art 15
2.1 Process Adaptation . 15

2.1.1 Exception Handling Techniques 16
2.1.2 Analysis of Existing PMSs . 18
2.1.3 Discussion . 20

2.2 AI-based Process Adaptation . 21
2.2.1 Discussion . 24

3 The SmartPM Approach 27
3.1 Overview of the Approach . 27

3.1.1 Representing Tasks in SmartPM 29
3.1.2 Resource Model and Task Life-Cycle in SmartPM 30

3.2 Preliminaries . 31
3.2.1 Situation Calculus . 32
3.2.2 Indigolog . 35
3.2.3 Classical Planning . 39

3.3 Formalizing processes in IndiGolog 41
3.3.1 Realizing the Framework . 53

3.4 Monitoring for Failures . 55
3.5 The SmartPM Adaptation Mechanisms 60

3.5.1 The Built-in Adaptation Mechanism 60
3.5.2 The Plan-based Adaptation Approach 63
3.5.3 The Continuous Planning Approach 65

3.6 Conclusion . 70

viii Contents

4 The SmartPM System 73
4.1 System Architecture . 73
4.2 The IndiGolog Platform . 76

4.2.1 The Top-level Main Cycle and Language Semantics 77
4.2.2 The Temporal Projector . 79
4.2.3 The Communication Manager 79
4.2.4 The Domain Application . 80

4.3 The SmartPM Definition Tool . 81
4.3.1 The SmartML Modeling Language 81
4.3.2 Defining Processes in SmartPM through BPMN 87
4.3.3 The XML-to-IndiGolog Parser 89

4.4 Building the Planning Domain and the Planning Problem 92
4.5 SmartPM in Action . 94

5 Validation 99
5.1 Performances of SmartPM in Computing Recovery Procedures 99
5.2 Effectiveness of SmartPM in Adapting Processes 100

6 Automatic Generation of Process Templates 109
6.1 Case Study . 110
6.2 Partial-Order Planning . 112
6.3 Process Templates . 113
6.4 On Synthesizing a Library of Process Templates 118

6.4.1 The General Framework . 119
6.4.2 Properties . 122

6.5 Translation Algorithms . 123
6.5.1 Representing Domain Theories and Process Cases in PDDL . 123
6.5.2 Translating a Partially Ordered Plan P into a

Process Template PT . 125
6.6 Experiments . 127
6.7 Related Work . 130
6.8 Conclusion . 131

7 Recovering Dynamic Processes in YAWL 133
7.1 Running Example . 134
7.2 The YAWL Architecture . 135
7.3 Making YAWL and SmartPM interoperate 136
7.4 The Planlets Approach . 138

7.4.1 Incorporating Planlets into YAWL 140
7.4.2 Annotating YAWL Specifications in Planlets 142

7.5 Conclusion . 150

8 Conclusion 153

A The Full Code of the Example 155

ix

Extended Abstract

Business Process Management [142] (a.k.a. BPM) is a “hot topic” because it is
highly relevant from a practical point of view while at the same it offers many
challenges for computer scientists and researchers. It is based on the observation
that each product that a company provides to the market is the outcome of a number
of activities performed. Business processes are the key instruments to organizing
these activities and to improving the understanding of their interrelationships. BPM
addresses the topic of process support in a broader perspective by incorporating
different types of analysis (e.g., simulation, verification, and process mining) and
linking processes to business and social aspects. Moreover, the current interest in
BPM is fueled by technological developments (e.g., service oriented architectures)
triggering standardization efforts. Several research issues have been addressed
about the definition of models for describing processes, some of them more targeted
towards domain-specific business designers (e.g., UML Activity Diagrams [35], BPMN
– Business Process Modeling Notation [7]), and others more targeted to formal
definitions of processes, in order to enable verification over process schemas (e.g.,
workflow nets [128] – a variant of Petri Nets [88, 98] targeted to describing processes,
YAWL [124], etc.).

A Process Management System [130] (a.k.a. PMS) is a generic software system
that is driven by explicit process representations (also called process models) to
coordinate the enactment of business processes, aiming at increasing the efficiency
and effectiveness in their execution. A process model, which is always built at
design-time, is in charge of organizing the execution order of the activities of the
business process. The basic constituents of a process model are tasks that describe
an activity to be performed by an automated service (e.g., within a service-oriented
architecture) or a human (e.g., an employee). The procedural rules to control the
tasks are usually described by routing constructs like sequences, loops, parallel and
alternative branches that form the control flow of the process [83].

The core of a PMS is the engine that takes in input a process model and manages
the process routing by deciding which tasks are enabled for execution, taking into
account the control flow, the value of process variables and tasks constraints. The
representation of a single execution of a process model within the engine of the
PMS is called a process instance [55]. Once a task is ready for being assigned, the
engine is also in charge of assigning it to proper participants; this step is performed
by considering the participant “skills” required by the single task: a task will be
assigned to the participant that provides all of the skills required. Participants are
provided with a client application, part of the PMS, named Task Handler. It is
aimed at receiving notifications of task assignments. Participants can, then, use

x Extended Abstract

this application to pick the next task to work on. Current technologies exist on
the market which concretely allow the enactment of processes (e.g., the YAWL
Engine [124] and the jBPM orchestration engine [22] based on the WS-BPEL [92]
specification, etc.).

Traditionally, PMSs have focused on the support of predictable and repetitive
business processes, which can be fully pre-specified in terms of formal process
models. All possible paths through those processes are well-understood, and the
process participants usually do not need to make a decision about what to do next
since the path is completely determined by their data entry or other attributes
of the process. This kind of highly-structured work includes mainly production
and administrative processes (such as financial services, manufacturing, etc.) [73].
However, current maturity of process management methodologies has led to the
application of process-oriented approaches in new challenging knowledge-intensive
scenarios [33], such as healthcare [102, 69] or home automation (e.g., domotics [53]).
In such working environments, changes in the operational context and in other
heterogeneous contextual information may occur unpredictably and at any time,
requiring the ability to react to those changes and properly adapt and modify process
behavior. This has led to the need to provide support for flexible and adaptive
process management [141, 105], by reconsidering the trade-off between flexibility and
support provided by existing PMSs [135]. According to [115], Process Adaptation
can be seen as the ability of a process to react to exceptional circumstances (that
may or may not be foreseen) and to adapt/modify its structure accordingly.

The current-day leading commercial PMS products [20, 125, 60, 85] and research
prototypes [17, 18, 124] provide some techniques to react to exceptions and adapt
process instances to mitigate their effects. Specifically, they provide the support for
the handling of expected exceptions. The process models are designed in order to
cope with potential exceptions, i.e., for each kind of exception that is envisioned to
occur, a specific contingency process (a.k.a. exception handler or compensation flow)
is defined. These approaches perform well with predictable and repetitive business
processes, where all possible exceptions and deviations that can be encountered
are predictable and defined in advance, along with the specific handling logic.
However, in knowledge-intensive scenarios, the process usually dynamically evolves,
i.e., it strongly depends on user decisions made during process execution. For those
processes, it is not possible to anticipate all real-world exceptions and to capture
their handling in a process model at design-time.

In this direction, since the last Nineties, a new class of Adaptive Process Man-
agement Systems is emerged, by facilitating structural changes of processes at run-
time [103, 48, 87, 104, 109, 139]. When something goes wrong during the process
execution, structural changes apply directly to process elements, and the adaptation
is carried out by deleting, adding, or modifying one or several process elements.
For example, an adaptive PMS like ADEPT2 [104] is able to support the handling
of unanticipated exceptions, by enabling different kinds of ad-hoc deviations from
the pre-modeled process instance at run-time, according to the structural process
change patterns defined in [138]. New process models can be created and tailored
for a particular demand or business case, and process instances can be adapted after
they have been started if some unforeseen events occur. Currently, adaptive PMSs
have reached such a level of maturity that they are about to be transferred into

xi

practice [83].
The majority of the above approaches face the challenge to provide flexibility and

adaptation and to offer process support at the same time. Traditional PMSs deal
with expected exceptions at design-time by automatically providing an exception
handler at run-time, while adaptive PMSs offers structural process change at run-time
for unanticipated exceptions, but they do not automate the adaptation; a manual
intervention of a domain expert is always required for adapting a faulty process
instance at run-time. However, in the last years, the widespread availability of mobile
computing platforms has led to the application of process-oriented approaches in
pervasive and highly dynamic scenarios [16, 31, 14, 15]. An interesting example
comes from the emergency management domain. During the management of complex
emergency scenarios, teams of first responders act in disaster locations with the main
purpose of achieving specific goals, including assisting potential victims and assessing
and stabilizing the situation. The set of activities and procedures that collectively
define an emergency response plan are characterized for being as complex as typical
business processes and for involving teams of many members. Emergency response
operators can benefit from the use of mobile devices and wireless communication
technologies, as well as from the adoption of a process-oriented approach for team
coordination [114]. A response plan encoded as a business process and executed by
a PMS deployed on mobile devices can help coordinate the activities of emergency
operators equipped with PDAs and smartphones and supported by mobile networks.
In this dynamic context the environment may change continuously and processes
can be easily invalidated because of exogenous events and of tasks not executed as
expected. This means that (i) it is not possible to predict all possible exceptions
at design-time and that (ii) adaptation ought to be as automatic as possible and
to require minimum manual human intervention at run-time; in fact, in emergency
management, saving minutes could result in saving injured people, preventing
buildings from collapses, and so on.

Research Contributions

The main focus of the author’s research activity is to devise an approach for run-time
automatic adaptation of dynamic processes. Dynamic processes are a particular kind
of processes for which there is not a clear, anticipated correlation between a change in
the context and corresponding process changes. Usually, the structure of a dynamic
process can be completely captured with a procedural process model that explicitly
defines the tasks and their execution constraints. Examples of dynamic processes
are processes for emergency management (an extensive case study is presented in
Section 1.3) and military forces deployment plans. A dynamic process is thought
to be enacted in pervasive and highly dynamic scenarios, where exceptions and
exogenous events “are not the exception but the rule”. Dynamic context changes or
undesirable outcome of some activities may often cause abnormal termination of the
process activities and prevent the achievement of the business goals.

Traditional approaches that try to anticipate how the work will happen by solving
each problem at design time [20, 125, 60, 85, 17, 18, 124], as well as approaches that
allow to manually change the process structure at run time [103, 48, 87, 104, 109, 139],

xii Extended Abstract

are often ineffective or not applicable in rapidly evolving contexts. The design-time
specification of all possible compensation actions requires an extensive manual effort
for the process designer, that has to anticipate all potential problems and ways to
overcome them in advance, in an attempt to deal with the unpredictable nature
of dynamic processes. Moreover, the designer often lacks the needed knowledge
to model all the possible contingencies, or this knowledge can become obsolete as
process instances are executed and evolve, by making useless his/her initial effort.
Although the exploitation of current adaptive PMSs to support the enactment
of processes in pervasive and mobile scenarios represents a promising and helpful
approach, dynamic processes demand a more agile approach recognizing the fact
that in dynamic environments process models quickly become outdated and hence
require closer interweaving of modeling and execution [105].

With respect to these needs, the author’s research main target is to devise intel-
ligent failure handling mechanisms that allow to monitor running process instances
and to react to tasks failures or to the occurrence of exogenous events that may put
at risk process executions, by providing automatic adaptation to identify a suitable
compensation and recovery strategy. The idea is to provide an adaptation framework
that is able to deal automatically with unanticipated exceptions at run-time, without
explicitly defining any handler/policy to recover from exceptions at design-time, and
without the intervention of domain experts.

If compared with classical business processes, the execution and adaptation of
dynamic processes demand two special requirements:

• A dynamic process must be adaptable to the context. This means there is the
need to explicitly define the contextual data describing the scenario in which
the process will be enacted;

• A PMS that executes a dynamic process must be able to automatically detect
exceptional situations, to derive and to correctly apply the recovery procedures
necessary to handle them.

To this end, we use a specialized version of the concept of adaptation from the field
of agent-oriented programming [27]. Specifically, we consider adaptation as reducing
the gap between the expected reality, the (idealized) model of reality that is used by
a PMS to reason on the dynamic process under execution, and the physical reality,
the real world with the actual values of conditions and outcomes. A misalignment of
the two realities often stems from errors in the tasks outcomes (e.g., incorrect data
values) or is the result of exogenous events coming from the environment.

Our approach to process adaptation is mainly based on well-established tech-
niques and frameworks from Artificial Intelligence (a.k.a. AI), such as Situation
Calculus[107], IndiGolog [25] and automatic planning [90]. Situation Calculus is a
logical language specifically designed for representing dynamically changing worlds
in which all changes are the result of named actions. We used Situation Calculus for
providing a declarative specification of the domain (i.e., available tasks, contextual
properties, tasks preconditions and effects, what is known about the initial state) in
which the dynamic process has to be executed. On top of Situation Calculus, we
used the IndiGolog language for formalizing the structure and the control flow of our
dynamic process. IndiGolog is a logic-based programming language used for robot
and agent programming.

xiii

Then, we propose a PMS realization, namely SmartPM [30, 29], which is based on
the IndiGolog interpreter1 developed at University of Toronto and RMIT University,
Melbourne. The IndiGolog interpreter reasons about the preconditions and effects
of the process tasks to find a legal terminating execution of the process. IndiGolog
programs are executed online together with sensing the environment and monitoring
for events. When an exception or an exogenous event is sensed, it results in a
discrepancy between the physical and expected reality, and the IndiGolog interpreter is
in charge to determine if such event is able to invalidate the execution of the dynamic
process under execution. If so, SmartPM allows the synthesis of a recovery procedure
at run-time by invoking an external state-space planner [45]. In AI, planning systems
are problem-solving algorithms that operate on explicit representations of an initial
state (the faulty process state that reflects the physical reality), a goal condition (the
process state reflecting the expected reality) and actions (the set of tasks executable
in the contextual scenario under observation). A state-space planner explores only
strictly linear sequences of actions directly connected from the initial state to the
goal, i.e., in our case, it searches for a plan that may turn the physical reality into
the expected reality. If the recovery plan exists, it will be executed by SmartPM
for adapting the faulty process instance. Since the adaptation mechanism deployed
on SmartPM is blocking (i.e., the execution of the main process is stopped during
the synthesis/enactment of the recovery procedure), we also propose a non-blocking
repairing mechanism based on continuous planning techniques [77], that avoids to
stop directly any task in the main process during the computation of the recovery
process.

In the second part of the thesis, we analyze a problem that often involves the
design-time specification of a dynamic process. Since resources of a dynamic process
are usually shared by the process participants, it is difficult to foresee all the potential
tasks interactions in advance and there is the risk that concurrent tasks could not
be independent from one from another (e.g., they could operate on the same data
at the same time), resulting in incorrect outcomes. We address this issue and
proposing an approach [76] that exploits partial-order planning algorithms [90, 140]
for building automatically a library of process template definitions. Partial-order
planning differs from classical state-space planning algorithms, that explore only
strictly linear sequences of actions directly connected to the start or goal, by devising
totally ordered plans. On the contrary, partial-order planning is based on the least
commitment principle [140], whose main advantage is that decisions about action
ordering are postponed until a decision is forced, thus guaranteing flexibility in the
execution of the plan and by possibly permitting actions to run concurrently. The
strength of the approach is that resulting templates are reusable in a variety of
partially-known contextual environments, and all concurrent tasks composing the
templates are effectively independent one from another.

Finally, although SmartPM is born as a PMS for supporting first responders in
emergency management scenarios, the planning-based adaptation approach employed
is enough general for being used on top of existing PMSs. Specifically, in the third
part of this Thesis, we concretize our approach to automatic process adaptation on

1http://sourceforge.net/projects/indigolog/

xiv Extended Abstract

top of the well-known YAWL modeling language and execution environment [124].
To this end, we show a concrete design and implementation proposal of how the
YAWL architecture can be extended to integrate planning capabilities and to support
the handling of unanticipated exception at run-time [80, 79, 81].

In summary, the main contributions and results of the author’s research activity
can be summarized as follow:

R1 First of all, in [28] we collected and analyzed the general requirements for the
application of a process-oriented approach in emergency management scenarios.
Starting from those requirements, in [31] we focus on the challenges related to
the design and implementation of a PMS able to support first responders on
the field, analyzing the core components of the overall architectural model.

R2 In [16] we present the high level architecture for emergency management
systems devised in the European research project WORKPAD2. Such an
architecture is specifically tailored in supporting collaborative work of human
operators during disaster scenarios, where different teams, belonging to different
organizations, need to collaborate in order to reach a common goal. The
overall approach, user-centered methodology and achieved results in the design,
implementation and validation of the WORKPAD architecture are detailed
in [57, 58, 10, 15]. Moreover, a qualitative and quantitative evaluation of main
outcomes, as a result of on-the-field validation and showcase activities of the
project are shown in [14].

R3 Starting from the experience gained in the area and lessons learned, in [78] we
provide a general set of guidelines, suggestions and possible research directions
on how to effectively design mobile information systems for supporting on-the-
field collaboration of emergency operators.

R4 In [21] we present the design and prototype of a PMS for improving operational
support to clinicians during their daily activities in hospital wards, on the
basis of clinical guidelines.

R5 In [33], starting from three different dynamic real world scenarios, we present a
critical and comparative analysis of the existing approaches used for supporting,
modeling and adapting dynamic and knowledge-intensive processes.

R6 In [30, 29, 77] we present and formalize SmartPM, our AI-based PMS that
deals automatically with unanticipated exceptions at run-time. Specifically,
in [30, 29] we exploit a built-in adaptation mechanism offered by the IndiGolog
interpreter (basically, a simple planner based on a breadth-first search al-
gorithm) for the synthesis of the recovery procedure. In order to improve
drastically the time needed for finding the recovery plan, in [77] we delegate
every aspect of adaptation to an external state-of-the-art planner. This allows
to separate the planning phase with the modeling and execution phase, and to
introduce a non-blocking repairing mechanisms, based on continuous planning
techniques.

R7 In [80] we contextualize and demonstrate our approach in a service-oriented
environment, as an application of the architectural solutions for the integra-
tion of different modeling approaches to achieve flexibility [129]. We show

2http://www.dis.uniroma1.it/ workpad/

xv

how the YAWL environment (and its imperative modeling approach) can be
complemented with the SmartPM execution environment [29].

R8 In [79] we propose a general approach and a conceptual architecture to au-
tomatic process adaptation, based on the concept of declarative modeling of
processes and the use of continuous planning techniques; we show the feasibility
of the proposed approach by discussing its deployment on top of the YAWL
system [124].

R9 In [81], we introduce and define Planlets, as self-contained YAWL specifica-
tions where process tasks are annotated at design-time with pre-conditions,
desired effects and post-conditions. The role of declarative task annotations
is twofold: (i) pre- and post-conditions enable run-time process execution
monitoring and exception detection: they are checked respectively before and
after task executions, and the violation of a pre- or post-condition results
in an exception to be handled; (ii) along with the input/output parameters
consumed/produced by the task, pre-conditions and effects provide a complete
specification of the task: this allows the task to be represented as an action
in a planning domain description and used for solving a planning problem
built to handle an exception. In the presence of an exception, this approach
allows delegating to an external planner the automatic run-time synthesis of a
suitable recovery procedure by contextually selecting the compensation tasks
from a specific repository linked to the Planlet under execution.

R10 Since the design time specification of dynamic processes can be time-consuming
and error-prone, due to the high number of tasks involved and their context-
dependent nature, such processes frequently suffer from potential interference
among their constituents, since resources are usually shared by the process
participants and it is difficult to foresee all the potential tasks interactions in
advance. Concurrent tasks may not be independent from one from another (e.g.,
they could operate on the same data at the same time), resulting in incorrect
outcomes. To address these issues, in [76] we propose an approach that exploits
partial-order planning algorithms for automatically synthesizing a library of
process template definitions for different contextual cases. The resulting
templates guarantee sound concurrency in the execution of their activities and
are reusable in a variety of partially-known contextual environments.

During the realization of this thesis, the following publications have been produced:
[76] A. Marrella, Y. Lespérance

Synthesizing a Library of Process Templates through Partial-Order Planning Algorithms.
14th International Working Conference on Business Process Modeling, Development
and Support (BPMDS 2013), Valencia, Spain, 17-18 June 2013.

[81] A. Marrella, A. Russo, M. Mecella
Planlets: Automatically Recovering Dynamic Processes in YAWL. 20th International
Conference on Cooperative Information Systems (CoopIS 2012) - OTM Conferences
(1), Rome, Italy, 10-14 September 2012.

[21] F. Cossu, A. Marrella, M. Mecella, A. Russo, G. Bertazzoni, M. Suppa, F.
Grasso
Improving Operational Support in Hospital Wards through Vocal Interfaces and Process-
Awareness. 25th IEEE International Symposium on Computer-Based Medical Systems
(CBMS 2012), Rome, Italy, 20-22 June 2012.

xvi Extended Abstract

[33] C. Di Ciccio, A. Marrella, A. Russo
Knowledge-intensive Processes: An Overview of Contemporary Approaches. 1st Inter-
national Workshop on Knowledge-intensive Business Processes (KiBP 2012)), Rome,
Italy, 15 June 2012.

[79] A. Marrella, M. Mecella, A. Russo
Featuring Automatic Adaptivity through Workflow Enactment and Planning. 7th
International Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2011), Orlando, Florida, USA, 15-18 October 2011.

[80] A. Marrella, M. Mecella, A. Russo, A.H.M. ter Hofstede, S. Sardina
Making YAWL and SmartPM Interoperate: Managing Highly Dynamic Processes by
Exploiting Automatic Adaptation Features. 9th International Conference on Business
Process Management (BPM 2011), Demonstration Track, Clermont-Ferrand, France,
28 August - 02 September 2011.

[29] M. de Leoni, A. Marrella, M. Mecella, S. Sardina
SmartPM - Featuring Automatic Adaptation to Unplanned Exceptions. Technical Re-
port of Dipartimento di Informatica e Sistemistica ANTONIO RUBERTI, SAPIENZA
- Università di Roma. June 2011.

[77] A. Marrella, M. Mecella
Continuous Planning for solving Business Process Adaptivity. 12th International Work-
ing Conference on Business Process Modeling, Development and Support (BPMDS
2011), London, UK, 20-21 June 2011.

[15] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, A. Russo, M. Borten-
schlager, R. Steinmann
WORKPAD : Process Management and Geo-Collaboration Help Disaster Response.
International Journal of Information Systems for Crisis Response and Management
(IJISCRAM), Volume 3, Issue 1, pp. 32–49, 2011.

[78] A. Marrella, M. Mecella, A. Russo
Collaboration On-the-field: Suggestions and Beyond. 8th International Conference on
Information Systems for Crisis Response and Management (ISCRAM 2011), Lisbon,
Portugal, 8-11 May 2011.

[31] M. de Leoni, A. Marrella, A. Russo
Process-aware Information Systems for Emergency Management. International Work-
shop on Emergency Management through Service Oriented Architectures (EMSOA)
co-located with the ServiceWave 2010 Conference, Ghent, Belgium, 13 December 2010.

[14] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, M. Bortenschlager, R.
Steinmann
The WORKPAD Project Experience: Improving the Disaster Response through Process
Management and Geo Collaboration. 7th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2010), Seattle, USA, 2-5
May 2010.

[58] S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella, M.
Bortenschlager, R. Steinmann
The WORKPAD User Interface and Methodology: Developing Smart and Effective
Mobile Applications for Emergency Operators. 13th International Conference on
Human-Computer Interaction (HCI International 2009), Session “Designing for Mobile
Computing”, San Diego, USA, 19-24 July 2009.

[57] S. R. Humayoun, T. Catarci, M. de Leoni, A. Marrella, M. Mecella, M.
Bortenschlager, R. Steinmann
Designing Mobile Systems in Highly Dynamic Scenarios. The WORKPAD Methodology.
Springer’s International Journal on Knowledge, Technology and Policy, Volume 22,
Number 1 - March 2009.

xvii

[30] M. de Leoni, A. Marrella, M. Mecella, S. Valentini, S. Sardina
Coordinating Mobile Actors in Pervasive and Mobile Scenarios: An AI-based Approach.
2nd IEEE International Workshop on Interdisciplinary Aspects of Coordination Ap-
plied to Pervasive Environments: Models and Applications (COMA 2008) at WETICE
08, Rome, Italy, 23-25 June 2008.

[10] A. Capata, A. Marrella, R. Russo, M. Bortenschlager, H. Rieser
A Geo-based Application for the Management of Mobile Actors during Crisis Situa-
tions. 5th International Conference on Information Systems for Crisis Response and
Management (ISCRAM 2008), Washington DC, USA, 4-7 May 2008.

[16] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Salvatore, G. Vet-
ere,S. Dustdar, L. Juszczyk, A. Manzoor, Hong-Linh Truong
Pervasive and Peer-to-Peer Software Environments for Supporting Disaster Responses.
IEEE Internet Computing Journal - Special Issue on Crisis Management - Volume 12,
Number 1 - January-February 2008.

[28] M. de Leoni, A. Marrella, M. Mecella, F. De Rosa, A. Poggi, A. Krek, F.
Manti
Emergency Management: from User Requirements to a Flexible P2P Architecture. 4th
International Conference on Information Systems for Crisis Response and Management
(ISCRAM 2007), Delft, the Netherlands, 13-16 May 2007.

The work [76], presented thoroughly in Chapter 6, is the result of a research internship
of the author at the Department of Computer Science and Engineering at York
University in Toronto (Ontario, Canada), under the supervision of Prof. Yves
Lespérance.

The implementation of the IndiGolog based PMS has been developed in cooper-
ation with Dr. Sebastian Sardina, research fellow at the Intelligent Agent Group
of the RMIT University in Melbourne (Australia) and Dr. Massimiliano de Leoni,
research assistant at the Eindhoven University of Technology (the Netherlands).

The works [80] and [81] are the result of a research collaboration with Prof. Arthur
H. M. ter Hofstede, the co-leader of the BPM Group of the Faculty of Information
Technology of Queensland University of Technology, Brisbane (Australia).

The author has also co-chaired a workshop on Knowledge-intensive Business
Processes (KiBP 2012) held in Rome on June 15th, 2012, co-located with the 13th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2012)3. The main focus of the workshop was to discuss about how the use
of techniques that came from different fields, such as Artificial Intelligence (AI),
Knowledge Representation (KR), Business Process Management (BPM), Service
Oriented Computing (SOC), etc., can be used jointly for improving the modeling and
the enactment phase of a knowledge-intensive process. The purpose was to devise
interesting approaches that can still achieve the goals of understanding, visibility
and control of these emergent processes. The KiBP 2012 proceedings are available
online at http://ceur-ws.org/Vol-861/.

Thesis Outline

• Chapter 1 introduces background concepts and definitions related to process
flexibility and process adaptation, and provides a systematic view of the

3Web site: http://www.dis.uniroma1.it/~kibp2012/

http://ceur-ws.org/Vol-861/
http://www.dis.uniroma1.it/~kibp2012/

xviii Extended Abstract

different approaches and methodologies that have emerged to support classes of
processes with different requirements. This serves as the basis for positioning
the performed work. Moreover, a case study based on a real emergency
management scenario is presented.

• Chapter 2 analyzes the state of the art concerning process adaptation and
process recovery. Specifically, we first analyze existing process adaptation and
exception handling techniques. Then, we discuss on the degree of adapta-
tion/flexibility provided by several commercial PMSs and academic prototypes.
Finally, we directly compare SmartPM with other research works that exploit
AI techniques for improving the degree of process adaptation.

• Chapter 3 focuses on our general approach to automatic process adaptation,
that involves formalizing processes in Situation Calculus and IndiGolog. We
clearly define the execution semantic provided by SmartPM for the enactment
of dynamic processes, together with the logic used for monitoring running
process instances and adapting them when needed through the use of classical
planning techniques.

• Chapter 4 discusses the overall architecture of SmartPM, our AI-based PMS,
including technical details about the system implementation, the IndiGolog
interpreter and the Task Handler used for assigning tasks to process partici-
pants. Then, we describe the SmartPM Modeling Language (a.k.a. SmartML),
which combines a modeling formalism for representing the information of the
contextual scenario linked to a specific dynamic process, and a graphical tool
(specifically, Eclipse BPMN4) for designing the control flow of the process. We
also show how a dynamic process formalized through SmartML is automatically
translatable in Situation Calculus and IndiGolog readable formats and is there-
fore ready for being executed by SmartPM. Finally, we analyze the algorithms
for converting a SmartML domain theory in a PDDL planning domain and for
generating a PDDL planning problem when process adaptation is required.

• Chapter 5 reports on performance evaluation and system validation activities.
Specifically, we first report on experimental evaluation results, in terms of
time needed for automatically adapting the dynamic process taken from our
case study when exceptions of growing complexity arise. Then we measure
the effectiveness of SmartPM in finding recovery procedures by simulating the
execution of thousands of processes instances having different control-flows in
different contextual environments.

• Chapter 6 proposes an approach that exploits partial-order planning algorithms
for synthesizing automatically a library of process template definitions starting
from a declarative specification of process tasks. A template can be seen as
the “closest thing” to a completely defined process model. It guarantees sound
concurrency in the execution of its activities and is reusable in a variety of
partially-known contextual environments.

• Chapter 7 provides an in-depth discussion, a concrete design and implemen-
tation proposal of how the YAWL architecture can be extended to integrate
planning capabilities. For this aim, we propose the approach of Planlets,

4http://www.eclipse.org/modeling/mdt/?project=bpmn2

http://www.eclipse.org/modeling/mdt/?project=bpmn2

xix

self-contained YAWL specifications with recovery features, based on modeling
of pre- and post-conditions of tasks and the use of planning techniques.

• Chapter 8 concludes the thesis by discussing limitations and future develop-
ments of the planning-based adaptation approach we have proposed. Moreover,
we show ongoing and future research activities we are currently investigating.

1

Chapter 1

Introduction

Business process management (BPM) solutions have been prevalent in both industry
products and academic prototypes since the late 1990s [75]. A classical business
process reflects a “preferred work practice”, i.e., a set of one or more connected
activities which collectively realize a particular business goal [142]. Usually, a
business process is linked to an organizational structure defining functional roles
and organizational relationships. Examples of business processes include insurance
claim processing, order handling and personnel recruitment [105].

In order to improve their business processes, enterprises are increasingly interested
in aligning their information systems in a process-centered way offering the right
business functions to the right users at the right time [36, 105]. This need has evolved
primarily from the desire to understand, organize, and automate the processes upon
which a business is based. For this purpose, during the last decade, a new generation
of information systems, called Process Management Systems (a.k.a. PMSs, or
more generally, Process-Aware Information Systems, a.k.a. PAISs) have become
increasingly popular to effectively support the business processes of a company
at an operational level. A PMS is a software system that manages and executes
operational processes involving people, applications and information sources on the
basis of process models [36].

PMSs hold the promise of facilitating the everyday operation of many enterprises
and work environments, by supporting business processes in all the steps of their
life-cycle [36]. As shown in Figure 1.1(a), the “life” of a business process is organized
in 4 main stages. In the design phase, starting from a requirements analysis, process
models are designed using a suitable modeling language. A process model is a
formal representation of work procedures that controls the sequence of performed
tasks and the allocation of resources to them [93]. In the configuration phase
process models are implemented by configuring a PMS in order to support process
enactment via an execution engine. In the enactment phase process instances are
then initiated, executed and monitored by the run-time environment. The execution
engine drives and monitors the work of the involved entities, and performed tasks
generating execution traces are tracked and logged. After process execution, in
the diagnosis phase process logs are evaluated and mined to identify problems and
possible improvements, potentially resulting in process re-design and evolution.

Traditionally, PMSs have focused on the management of “administrative” pro-

2 1. Introduction

cesses characterized by clear and well-defined structures. However, the use of business
processes for supporting work in highly dynamic contexts (such as emergency man-
agement or health care) has become a reality, thanks also to the growing use of
mobile devices in everyday life, which offer a simple way of picking up and executing
tasks. Those processes are usually subject to an higher frequency of unexpected
contingencies than classical scenarios; therefore, a certain degree of flexibility is
needed to support dynamic process adaptation in case of exceptions.

In this chapter, that serves as the basis for positioning the performed author’s
research activities, we aim at discussing the flexibility requirements of actual business
processes, ranging from pre-specified processes to dynamic and knowledge-intensive
processes. For this purpose, in Section 1.1 we analyze concepts and definitions
related to process flexibility and in Section 1.2 we classify business processes on the
basis of their degree of structure by providing a systematic view of the different
approaches and methodologies that have emerged to support classes of processes
with different requirements. Specifically, we will focus on addressing fundamental
adaptation needs for supporting dynamic processes in mobile settings for pervasive
scenarios. To this end, in Section 1.3 we present a case study based on a real dynamic
process thought to be enacted in emergency management scenarios.

1.1 Flexibility Issues in Process Management Systems

The notion of flexibility has emerged as a main research topic in BPM over the
last years [121, 59, 116]. The need for flexibility stems from the observation that
organizations often face continuous and unprecedented changes in their respective
business environments. Such disturbances and perturbations of business routines
need to be reflected within the business processes in the sense that processes need
to be able to adapt to such change. Research on process flexibility has traditionally
explored alternative ways of considering flexibility during the design of a business
process. The focus typically has been on ways of how the demand for process
flexibility can be satisfied by advanced process modeling techniques, i.e., issues
intrinsic to the processes [110].

In [115], the authors define flexibility as “the ability of the process to execute
on the basis of a loosely, or partially specified model, where the full specification
of the model is made at runtime, and may be unique to each instance”. Moreover,
they advocate an approach that aims at making the process of change part of the
business process itself. Such an approach, called Pockets of Flexibility, relies on a
pre-specified process model with placeholder activities. For each placeholder activity,
a constraint-based process model (i.e., activities and constraints) can be specified.
During process enactment, placeholder activities are refined, meaning that users
define a process fragment that has to satisfy the constraints and which substitutes
the placeholder activity.

An interesting look into the various ways in which flexibility can be achieved is
made in [117]. Here an extensive taxonomy of process flexibility is proposed. In
particular, it is presented a comprehensive description of four distinct approaches
that can be taken to facilitate flexibility within a process. Flexibility by Design is the
ability to incorporate alternative execution paths within a process model at design

1.1 Flexibility Issues in Process Management Systems 3

Figure 1.1. Process life-cycle (a) and Spectrum (b).

time. The selection of the most appropriate execution path is made at run-time
for each process instance. Flexibility by Deviation is presented as the ability for a
process instance to deviate at run-time from the execution path prescribed by the
original process without altering its process model. Flexibility by Underspecification
is the ability to execute an incomplete process model at run-time, i.e., the model
needs to be completed by providing a concrete realization for the undefined parts
at run-time. Finally, Flexibility by Change is the ability to modify a process model
at run-time such that one or all of the currently executing process instances are
migrated to a new process model. All of these strategies try to improve the ability
of business processes to respond to changes in their operating environment without
necessitating a complete redesign of the underlying process model, however they
differ in the timing and manner in which they are applied. Moreover they are
intended to operate independently of each other.

The above works concentrated on the control-flow perspective of a business
process, while other perspectives addressing data and resources used in a process
are also subject to flexibility requirements. A complete analysis that incorporates
also these perspectives has been performed in [105], where flexible process support
is characterized with four major flexibility needs, namely support for (i) variability,
(ii) looseness, (iii) adaptation, and (iv) evolution.

• Process variability requires processes to be handled differently - resulting in
different process variants - on the basis of a given context. Starting from
a fixed core process model, the course of actions may vary from variant to
variant [49]. Usually, there exists a multitude of variants of a particular process
model, whereby each of these variants is valid in a specific scenario; i.e., the
configuration of a particular process variant depends on requirements of the
process context. Variability can be usually introduced due to different groups
of customers involved in the process enactment or differences in regulations
found in different countries [50].

4 1. Introduction

Example 1.1.1. A typical example of a real procedure that needs flexible
support is the process for the organization of the study plans for master
students in some European universities. The procedure for application,
review and acceptance of study plans is managed by an on-line system
and is generally well defined. After the enrollment, all the master students
must submit a study plan from the on-line system. Let us suppose that the
courses for the study plan can be chosen starting from 3 specialization options
(Computer Networks, Software and Services for the Information Society,
Distributed Systems and Architectures) with pre-selected combination of
courses. If a student chooses to include in its study plan a pre-selected set of
courses, the approval of the study plan is immediate (and the review phase
is not required).
Variability can be introduced if a student decide to choose freely which
courses to include in the study plan, by combining the single courses taken
from each of the specialization. In this last case, the study plan must
be reviewed by a university delegate, modified (if necessary), and, finally,
approved or rejected. Another variant of the procedure is enacted when a
foreign student wants to apply for a study plan. These kinds of students
can not apply their study plan on-line, but they need to be received by the
university delegate, and the study plan is built ad-hoc for the single cases.

• Looseness is a characteristic of Knowledge-intensive Processes [33], that are
processes characterized by being non repeatable (the models of two process
instances may differ one another), non predictable (the course of the actions
depends on context-specific parameters, whose values are not known a priori
and may change during process execution) and emergent (the course of the
actions only emerges during process execution, when more information is
available) [105]. For those processes, only the goal and the modeling of the
loose process are known a priori, meaning that those processes can not be fully
pre-specified at design-time.

Example 1.1.2. Typically, for being enacted, health-care processes re-
quires a loose specification. For example, Patient Treatment Processes are
rarely identical and the course of actions is unpredictable, since it depends
on the specific patient’s case (e.g., health status of the patient, allergies,
examination results, etc.).

• Process Adaptation is the ability of a process to react to exceptional circum-
stances (that may or may not be foreseen) and to adapt/modify its structure
accordingly [115]. Exceptions can be either expected or unanticipated [105].
An expected exception can be planned at design-time, i.e., a process designer
can provide an exception handler which is invoked during run-time to cope
with the expected exception. Therefore, if during run-time the PMS detects
an expected exception, it immediately invokes a suitable exception handler
for dealing with the exception itself. A list of exception handling patterns
that can be applied when exceptional situations arise is shown in [71]. Those
patterns cover typical strategies to be used when defining exception handlers
for a particular process model.

1.1 Flexibility Issues in Process Management Systems 5

Example 1.1.3. If we consider the procedure for managing study plans, a
“classical” expected exception is captured when a student forgets to compile
all the mandatory fields (e.g., the student ID code or the mobile phone
number) needed for submitting the study plan on-line. In such a case, the
on-line system notifies that some required information is missing, and asks
to the student to compile correctly all the mandatory fields. The system
will allow to submit the study plan only when all required information has
been correctly provided.

Even thought the handling of expected exceptions is fundamental for every
PMS, in many cases the number of possible exceptions may be too large,
and requires an extensive manual effort for the process designer, that has
to anticipate all potential problems and ways to overcome them in advance.
Moreover, for many knowledge-intensive and dynamic scenarios, expected
exceptions cover only partially relevant situations [123], and it is not realistic to
assume that all exceptional situations, as well as required exception handlers,
can be anticipated at design-time and thus incorporated into the process
model [105]. This means that PMSs should provide the support for the
handling of unanticipated exceptions at run-time. Such exceptions can be
detected during the execution of a process instance, when a mismatch between
the computerized version of the process and the corresponding real-world
business process occurs. To cope with those exceptions, a PMS is required
to allow structural adaptation of its corresponding process model at run-time;
structural changes apply directly to process elements, and the adaptation is
carried out by deleting, adding, or modifying one or several process elements.

Example 1.1.4. In many universities, it may happen that a student passes
a course that is not listed in the her/his study plan. Such an exception
can not be managed at design-time, since the university delegate, which
supervises the procedure for managing study plans, may decide:

– to include the passed course in the student’s study plan as an “excess
course”;

– to insert the passed course in the student’s study plan by substituting
it with another similar course already included in the study plan;

– to refuse to insert the passed course in the student’s study plan.
Each decision requires a certain knowledge about the student’s academic
situation. For example, if a student of Computer Science Engineering
passes an exam of Anatomy at the Faculty of Medicine, it is obvious that
the university delegate will refuse to update the student’s study plan by
inserting the respective course (that is out of the scope of the student’s
course of studies). On the contrary, if a student passes a exam during a
period spent in a foreign university, and the associate course is not included
in her/his study plan but is very similar to another course included in
her/his study plan, the university delegate may decide to substitute the
planned course with the one passed by the student when s/he was abroad.

• Process Evolution is the ability of an implemented process to change when
the corresponding business process evolves [12]. It is often driven by changes

6 1. Introduction

in the business, the technological environment, and the legal context [132].
The evolution may be incremental as for process improvements [23] (i.e., only
small changes are required to the implemented process), or drastic as for
process innovation or process re-engineering [52] (i.e., if radical changes are
required). The biggest problem here concerns the handling of active process
instances, which were initiated in an old model, but need to comply with a new
specification. Achieving compliance for these affected instances may involve
loss of work and therefore has to be carefully planned [115].

Example 1.1.5. Let us consider again the procedure for managing study
plans, and suppose that the University revises the admission procedure for
master students, requiring all applicants to submit a statement of purpose
together with their application for the study plan. To implement this change,
there can be two options available; one is to flush all existing applications,
and apply the change to new applications only. Thus all existing applications
will continue to be processed according to the old process model. The second
option to implement the change is to migrate to the new process. It may be
decided that all applicants, existing and new, will be affected by the change.
Thus all admission applications, which were initiated under the old rules,
now have to migrate to the new process.

With respect to these needs, our research activities have broadly focused on
the problem of process adaptation defined as the ability of a PMS to adapt the
process and its structure (i.e., pre-specified model) to emerging events. While several
approaches [20, 125, 60, 85, 17, 18, 124] have been proposed and implemented for
dealing with expected exceptions via exception handlers typically pre-specified by
process designers at design-time, we tackled the problem of unanticipated exceptions
and their handling through structural process changes at run-time. Specifically, we
focus our attention on dynamic processes, a particular kind of processes thought to be
enacted in pervasive and highly dynamic scenarios, and for which there is not a clear,
anticipated correlation between a change in the context and corresponding process
changes. Examples of dynamic processes are processes for emergency management
(a case study is presented in Section 1.3) and military forces deployment plans.

Some systems supporting structural changes of processes at run-time exist and
are well supported by the research community [103, 48, 87, 104, 109, 139], but they
do not automate the adaptation; a manual intervention of a domain expert is always
required for adapting a faulty process instance at run-time. However, dynamic
processes demand a more agile approach recognizing the fact that in dynamic
environments process models quickly become outdated and hence require closer
interweaving of modeling and execution [105]. To this end, our approach, named the
SmartPM approach, will allow to adapt automatically dynamic processes at run-time
when unanticipated exceptions occur, without the need to the define any recovery
policy at design-time.

In the following section we show which classes of business processes currently
exist on the market, we classify them on the basis of their degree of structure and
we provide a systematic view of the different approaches and methodologies that
have emerged to support different classes of processes. Moreover, we make clear the
main requirements for modeling, executing and adapting dynamic processes.

1.2 The Spectrum of Process Management and Modeling Paradigms 7

1.2 The Spectrum of Process Management and Model-
ing Paradigms

When realizing a PMS based on executable process models, there is a variety of
processes showing different characteristics and needs. On one hand, there exist
well-structured and highly repetitive processes whose behavior can be fully pre-
specified; on the other hand, many processes are knowledge-intensive and highly
dynamic: typically, they can not be fully pre-specified and require loosely specified
models [105]. In this section, we will analyze how operational and business processes
can be classified on the basis of the degree of structuring they exhibit [63], which
directly influences the level of automation, control, support and flexibility that they
can provide.

1.2.1 Structured Processes

Figure 1.1(b) shows how processes can be classified on the basis of their “degree
of structure” [63]. Traditional PMSs perform well with structured processes and
controlled interactions between participants. Structured processes are characterized
by a well defined structure in terms of activities to be executed and relations
among them. They reflect highly repeatable routine work with low flexibility
requirements (such as back-office financial transactions, manufacturing, production
and administrative processes) that can be easily standardized and automated to
increase efficiency [73]. A major assumption is that such processes, after having
been modeled, can be repeatedly instantiated and executed in a predictable and
controlled manner. All possible options and decisions (alternative paths) that can
be made during process enactment are statically pre-defined at design time.

Structured processes with ad hoc exceptions have similar characteristics, but
events and exceptions can occur that make the structure of the process less rigid
and require process adaptation strategies. In the presence of expected exceptions,
possible events and deviations that can be encountered are predictable and defined in
advance, along with the specific handling logic, whereas the handling of unanticipated
exceptions typically require (manual) structural process changes at run-time [104].

Structured processes can be completely captured by procedural process models
that explicitly define the tasks and their execution constraints, participants, roles and
input/output data. Most of classical process management environments deal with
structured processes and are driven by imperative languages and procedural models,
such as XPDL [146], WS-BPEL [92], Event-driven Process Chains (EPCs) [131],
BPMN [143], UML Activity Diagrams (UML) [35] and YAWL nets [124]. All these
languages mainly focus on the control-flow perspective and are widely used in research
prototypes (e.g., YAWL [124]) and in open-source/free (e.g., jBPM [22], Apache
ODE) and commercial products (e.g., Tibco Staffware Process Suite [125], Oracle
BPEL Process Manager, IBM Process Manager [60]). While YAWL was directly
defined starting from the Petri Nets formalism [88, 98], most of the aforementioned
languages have been mapped to (variants of) Petri Nets (e.g., in [122, 34]) in order
to provide a formal semantics and enable different verification techniques.

8 1. Introduction

1.2.2 Loosely Structured Processes

In many application domains, pre-specifying the entire process model is not possible.
A wide range of processes exhibit a loosely structured or semi-structured behavior
(cf. unstructured processes with pre-defined fragments in Figure 1.1(b)), for which
it is important to balance between flexibility and support (such as clinical guidelines
and medical treatment procedures) and events and exceptions can occur that make
the structure for the process significantly less rigid. While parts of the process
logic are known at design-time, other parts are undefined or uncertain and can only
be specified at run-time. For loosely specified processes, decisions regarding the
specification of (parts of) the process have to be deferred to run-time.

Looseness is a characteristic of Knowledge-intensive Processes, that are processes
characterized by being non repeatable (the models of two process instances may differ
one another), non predictable (the course of the actions depends on context-specific
parameters, whose values are not known a priori and may change during process
execution) and emergent (the course of the actions only emerges during process
execution, when more information is available) [105]. To some extent, knowledge-
intensive processes and the looseness of their execution can be supported exploiting
constraint-based process models. However, similarly to structured processes, loosely
specified processes are still activity-centric, i.e., they focus on a set of activities that
may be performed during process execution. Procedural models are not able to
provide the degree of flexibility required in these settings as they may unnecessarily
limit possible execution behaviors, with either over-specified or over-constrained
models [86]. Process models should define tasks and their relationships in a less rigid
manner, so that activities can be executed in multiple orders (or even multiple times)
until the intended goals are achieved. Different modeling languages and management
systems have been proposed and developed to meet these requirements, such as
ADEPT2 [104], Flower [6], as well as service-oriented architectural solutions for the
integration of different modeling approaches and PMS technologies [129].

Recent and ongoing work shows that declarative languages and models can be
effectively used to increase the degree of flexibility for process specifications, still
allowing to provide a good level of support. Languages such as ConDec [97] and
DecSerFlow [134], supported by the Declare tool [96], propose a declarative constraint-
based approach for modeling, enacting and monitoring business processes. Instead
of strictly and rigidly defining the control-flow of process tasks using a procedural
language, they exploit the concept of control-flow constraints, defined as Linear
Temporal Logic (LTL) formulae [137], for the specification of relationships among
tasks (generally classified as existence, choice, relation, negation and branching
constraints over process activities). Constraints implicitly define possible execution
alternatives by prohibiting undesired execution behavior, and they reflect policies
and business rules to be satisfied and followed in order to successfully perform a
process and achieve the intended goals.

1.2.3 Unstructured Processes

Unstructured processes are characterized by a low level of structuring and an high
degree of flexibility. Process participants decide on the activities to be executed

1.2 The Spectrum of Process Management and Modeling Paradigms 9

as well as their execution order, and the structure of a process thus dynamically
evolves and strongly depends on user decisions made during process execution. These
processes reflect knowledge work and collaboration activities driven by rules and
events, for which no predefined models can be specified and little automation can be
provided. Knowledge workers rely on their experience and capabilities to perform
ad hoc tasks on a per-case basis and handle unexpected events and changes in the
operational context.

For processes with these characteristics only their goal is known a priory and
they can not be fully pre-specified at a fine-grained level at design time. In practice,
approaches that focus on the role of data as main driver for process execution and
activity coordination are required. In this direction, Adaptive Case Management
(ACM) [147] has emerged as a way for supporting unstructured, unpredictable and
unrepeatable business cases. ACM adopts a data-centric (rather than an activity-
centric) approach, focusing on the concept of case (an insurance claim, a customer
purchase request, patient medical records, etc.) as primary object of interest, and the
progress of the case itself is driven by the availability, values, changes and evolution
of data objects and their dependencies. Each execution of a case management
process involves a particular situation (the case) and a desired outcome (or goal)
for that case, and the determination of actions to take in each case involves the
exercise of human judgement and decision-making at run-time. In 2009, the Object
Management Group (OMG) issued a Request for Proposal [94] for a meta-model
extension to BPMN 2.0 to support modeling of case management processes but, to
date, there exist no standards for supporting case management process modeling
and execution.

Another approach for dealing with unstructured processes is the object-aware
approach proposed in [67]. For object-aware processes, the information perspective
is predominant and captures object types, their attributes, and their interrelations,
which together form a data structure or information model. In accordance to data
modeling, the modeling and execution of processes can be based on two levels of
granularity: object behavior and object interactions. At run-time, the different
object types comprise a varying number of inter-related object instances, that evolve
according to their specified behavior and interaction models. Process execution and
possible actions are thus related to objects and their states [66]: the enabling of
a process step or action does not directly depend on the completion of preceding
steps (i.e., on the control-flow as for activity-centric approaches), but rather on the
changes and evolution of object states and relations.

Similarly, artifact-centric models [91, 56] aim at providing a declarative data-
centric modeling approach where, rather than prescribing control-flow constraints
between tasks (as in process-centric models), process specification and enactment
are driven by data dependencies and evolutions of business entities.

1.2.4 Dynamic Processes

Both structured and loosely specified processes are activity-centric; i.e., they are based
on a set of activities that may be performed during process execution. However, the
class of dynamic processes is transversal with respect to the classification proposed
in [63]. These processes represent activities in highly dynamic situations and

10 1. Introduction

unforeseen exceptions (e.g., emergency management scenarios) and that are executed
in a world with little structure and possibly imperfect information. The scenario
dictates who should be involved and who is the right person to execute a particular
step of the process, and collaborative interactions among the users typically is a
major part of such processes.

When trying to support and implement dynamic processes through a PMS,
a complete integration of processes, data and users has to be achieved. Usually,
the structure of a dynamic process can be completely captured with a procedural
process model that explicitly defines the tasks and their execution constraints.
However, a dynamic process is thought to be enacted in pervasive and highly dynamic
scenarios, where exceptions and exogenous events “are not the exception but the rule”.
Therefore, there is the need to explicitly represent the contextual data describing
the scenario in which the process will be enacted, constraints that evaluate if a
particular activity can be applied in a specific state of the contextual scenario and
dependencies to specify execution dependencies between activities.

The execution of process tasks may affect the data associated to the contextual
scenario, and it may happen that the undesirable outcome of some activities
causes changes in the contextual environment that may prevent the achievement of
the business goals. The same risk comes from exogenous events, that represent
external events that come from the environment and correspond to changes in
the data associated to the contextual scenario. In both cases, in order to make a
dynamic process adaptable to the contextual environment, a PMS implementation
should automatically (i) detect exceptional situations, (ii) derive at run-time
and (iii) correctly apply the recovery procedures necessary to handle them, by
involving some form of reasoning on the available process tasks and contextual
data. In particular, the third point imposes a strong requirement: any structural
change made to the process instance at run-time must not violate the
process model correctness and process instance execution.

In order to meet these requirements, in Chapters 3 and 4 we propose a modeling
language, an approach and a PMS realization named SmartPM that allow to perform
automatic adaptation of those processes at run-time. In the meanwhile, an extensive
case study involving a real dynamic process is shown in the following section.

1.3 Case Study

The SmartPM system has been validated in laboratory tests through the use of a real
process of the Italian Railway company (that is “Reti Ferroviarie Italiane”). Specifi-
cally, let us consider the emergency management scenario described in Fig. 1.2(b). It
concerns a train derailment and depicts a map of the area (as a 4x4 grid of locations)
where the disaster happened. For the sake of simplicity, we suppose that the train
is composed of a locomotive (located in loc33) and two coaches (located in loc32
and loc31 respectively). The goal of an incident response plan defined for such a
context is to evacuate people from the coaches located in loc32 and loc31 and to
take pictures for evaluating possible damages to the locomotive, located in loc33.

Thus, a response team can be sent to the derailment scene. The team is composed
of four first responders (in the remainder, we refer to them as actors) and two robots,

1.3 Case Study 11

Figure 1.2. Area (and context) of the intervention.

initially located in loc00. We assume that actors are equipped with mobile devices
(for picking up and executing tasks) and provide specific capabilities. For example,
actor act1 is able to extinguish fire and take pictures, while act2 and act3 can
evacuate people from train coaches. The two robots, instead, may remove debris
from specific locations. Each robot has a battery and each action consumes a given
amount of battery charge. When the battery of a robot is discharged, actor act4 can
charge it. Moreover, the battery charge consumption amounts are provided for each
action (e.g., taking pictures in a given location consumes 1 unit of battery charge,
removing debris consumes 3 units, etc.).

In order to carry on the overall process, all the actors/robots need to be continually
inter-connected. The connection between mobile devices is supported by a network
provided by a fixed antenna (whose range is limited to the dotted squares in
Fig. 1.2(b)), and the robots rb1 and rb2 can act as wireless routers for extending the
network range in the area. A robot provides a connection limited to the locations
adjacent (in any direction) to its position. Each robot can move in the area, but it
is constrained to be always connected to the main network. This is guaranteed if
the intersection between the squares covered by the main network and the squares
covered by the robot connection is not empty. A robot connected to the main
network can act as a “bridge”, allowing the other robot to be connected through it
to the main network.

Collected information is used for defining and configuring at run-time an incident
response plan, defined by a contextually and dynamically selected set of activities
to be executed on the field by first responders. A possible concrete realization of
the incident response plan is shown in Figure 1.2(a). The process is composed by
three parallel branches with tasks that instruct first responders to act for evacuating
people from train coaches, to take pictures and to assess the gravity of the accident.
Despite the simple structure of the incident response plan, the high dynamism of
the operating environment can lead to a wide range of exceptions. In general, for
dynamic processes there is not a clear, anticipated correlation between a change in

12 1. Introduction

Figure 1.3. Effects of a task with an outcome different from the one expected.

the context and corresponding process changes. Suppose, for example, that the task
go(loc00,loc33) is assigned to actor act1 (cf. Fig. 1.3(a)), which reaches instead the
location loc03 (cf. Fig. 1.3(b)). This means that act1 is now located in a different
position than the desired one, and s/he is out of the optimal network range. Since
all the actors/robots need to be continually inter-connected to execute the process,
the PMS has to find a recovery procedure that first instructs the robots to move in
specific positions for maintaining the network connection, and then re-assign the
task go(loc03,loc33) to act1.

Even this very simple example shows that the same failure may require signifi-
cantly different adaptation activities depending on the current context. For example,
if robots rb1 and rb2 have enough battery charge, the PMS can instruct first rb1 to
move in loc03 (cf. Fig. 1.4(a) and Fig. 1.4(b)), in order to re-establish the connection
of actor act1 with the network. Then, robot rb2 can be instructed to reach loc23 (cf.
Fig. 1.4(a) and Fig. 1.4(c)) and to broaden the network range and make loc33 (the
expected destination of act1) covered by the network connection. Finally, the task
go(loc03,loc33) can be effectively reassigned to act1 (cf. Fig. 1.4(a) and Fig. 1.4(d)).

After having executed the recovery procedure, the enactment of the main process
can be resumed to its normal flow. The execution of a dynamic process can be
also prevented by the occurrence of external events (a.k.a. exogenous events).
These are events coming from the external environment that change asynchronously
some contextual properties of the scenario in which the process is under execution.
For example, in Fig. 1.5(a) we are supposing that a rock slide has collapsed on
location loc31. The presence of a rock slide modifies the contextual properties of the
scenario in a way not expected when the dynamic process was designed, by possibly
jeopardizing the correctness of the dynamic process itself. Since a dynamic process -
by definition - has to be adaptable to the context, the PMS needs to find a recovery
procedure that allows to remove the rock slide from loc31 by maintaining all the
process participants inter-connected. A possible solution is shown in Fig. 1.5(b) and
Fig. 1.5(c), and consists in moving the robot rb1 in loc31 and letting it remove

1.3 Case Study 13

Figure 1.4. Synthesis and enactment of the recovery process after an undesirable outcome.

debris.
It is unrealistic to assume that the process designer can pre-define all possible

compensation activities for dealing with these exceptions (apparently simple), since
the process may be different every time it runs and the recovery procedure strictly
depends on the actual contextual information (the positions of actors/robots, the
range of the main network, the battery level of each robot, etc.). In the worst
case, the number of recovery processes to pre-define may depend to all the possible
combinations of contextual information. For the same reason, it is also difficult to
manually define an ad-hoc recovery procedure at run-time, as the correctness of the
process execution is highly constrained by the values (or combination of values) of
contextual data.

The main purpose of the SmartPM system is to develop a PMS providing
automatic mechanisms that, starting from a process model, are able to adapt
the process instance without explicitly defining handlers/policies to recover from
exceptions and exogenous events and without the intervention of domain experts.

14 1. Introduction

Figure 1.5. Synthesis and enactment of the recovery process after the occurrence of an
exogenous event.

15

Chapter 2

State of the Art

Process adaptation refers to the ability of a PMS to modify its behavior according
to environmental changes and exceptions that may occur during process execution.
If not detected and handled effectively, exceptions can result in severe impacts on
the cost and schedule performance of PMSs [64].

Nowadays, PMSs provide wide support for different modeling styles and for
all phases of the process life-cycle, from the specification and enactment to the
verification, monitoring and analysis of process models [36]. In addition, PMSs
provide tools for modelling business processes that are predictable and repetitive.
However, in many real world scenarios, enabling process adaptation is crucial for
any PMS, as implemented processes may have to be adapted to deal with changing
environments and evolving needs.

In this chapter, we focus on the exception handling perspective provided by
current state-of-the-art PMSs, by first showing some of the best known techniques
for exception handling and then by reviewing some of the most interesting current
commercial and academic prototype PMSs in relation to their approaches to process
adaptation. Finally, in Section 2.2 we analyze a number of techniques from the
field of Artificial Intelligence (AI) that were applied to BPM, with the purpose to
facilitate automatic adaptation of a business process at run-time.

2.1 Process Adaptation

Over the last years, there was a trend in providing PMSs with a growing support
for adapting business processes. Proposed approaches can be analyzed considering
to what extent users are involved in the process of defining exception conditions and
handling policies, and the degree of automation provided in the exception resolution
and process adaptation stages.

This section is thought for discussing the current state-of-the-art in process
adaptation and exception handling (cf. Section 2.1.1) and for reviewing some of
the most interesting current commercial and academic prototype PMSs in relation
to their approaches to process adaptation (cf. 2.1.2). In Section 2.1.3 we provide a
comparative analysis between the existing techniques and the SmartPM approach
we are going to present in this thesis.

16 2. State of the Art

2.1.1 Exception Handling Techniques

One of the first attempts to define and categorize exceptions in PMSs was proposed
in the nineties in [39], where possible exceptions were classified as basic failures,
application failures, expected exceptions and unanticipated exceptions. While basic
failures (which reflect a failure at system level, e.g., DBMS or network failure) and
application failures (corresponding to the failure of an application implementing a
given task) are generally handled at the system and application levels, PMSs are in
charge to provide support for exception handling.

An expected exception is an exception that can be planned at design-time,
i.e., a process designer can provide an exception handler which is invoked during
run-time to cope with the exception itself. In [13], Casati identifies 4 potential
sources for expected exceptions:

• Process Exceptions. They can occur during the process enactment, and are
strictly related to task failures. More in detail, a task can fail due to an
abnormal termination of the invoked application or web service implementing
the specific task, or because of a negative termination of the task itself (which
returns an output different from the expected one).

• Constraint Violations. They refer to violations of constraints over data (e.g.,
data required for task execution might be missing), tasks (e.g., in terms of
pre/post-condition of a task not satisfied before/after task execution) and
resources (e.g., unavailability of resources during process execution).

• Temporal Exceptions. They can be associated with deadlines, and upon deadline
expiration an exception is launched.

• External Exceptions. They happen when an external event may affect the
control/data flow of the process under execution.

To enable an expected exception to be detected at run-time, a PMS has to
notice its occurrence during process enactment. To this end, a process designer
needs to associate pre-specified process models with exception handlers at design-
time. Along this line, in [71] the authors propose a patterns-based approach to
exception systematization, defining a general classification framework and language
for exception handling. Specifically, exception handlers are modeled as alternative
branches of the process model that add or cancel behavior to the normal flow of the
process instance under execution.

Among early attempts to address the problem of exception handling, it is worth
mentioning the transaction oriented Workflow Activity Model WAMO [38]. The
model allows the designer to define expected exceptions which may arise during
process execution and to derive compensation tasks for exception handling. The
specification of compensation activities avoids the designer to explicitly model all
possible process execution alternatives in presence of exceptions, and allows the
system to automatically control the reliable execution of exceptions and failures.
Handling capabilities depend on task properties and range from simple re-execution
of failed activities to the execution of complex compensation strategies.

In [51] the authors proposed Self-Adaptive Recovery Nets (SARNs), an extended
Petri net model for specifying exceptional behavior in PMSs at design time. SARNs
can adapt the structure of the underlying Petri net model at run time to handle

2.1 Process Adaptation 17

pre-specified exceptions. Process adaptation is achieved by applying high-level
recovery policies (such as skipping, redoing or compensating tasks when specific
events occur) defined at design time for single tasks or sets of tasks.

In [11], authors argue that the majority of exceptions are asynchronous (they
can occur at any time during the process execution, rather than before/after a task
execution), and that they can not be suitably represented within the process model.
Therefore, they advocate that the only way to handle exceptions is programmatically
via Event-Condition-Action (ECA) rules. ECA rules have the form “on event if
condition do action” and specify to execute the action (i.e., the exception handler)
automatically when the event happens (i.e., when the exception is caught), provided
the a specific condition holds.

ECA rules represent a good way for separating the graphical representation
of the process with the “exception handling flow”. A similar principle has been
applied in YAWL [124]. In YAWL, for each exception that can be anticipated, it
is possible to define an exception handling process, named exlet, which includes
a number of exception handling primitives (for removing, suspending, continuing,
completing, failing and restarting a workitem/case) and one or more compensatory
processes in the form of worklets (i.e., self-contained YAWL specifications executed
as a replacement for a workitem or as compensatory processes). Exlets are linked to
specifications by defining specific rules (through the Rules Editor graphical tool), in
the shape of Ripple Down Rules specified as “if condition then conclusion”, where
the condition defines the exception triggering condition and the conclusion defines
the exlet.

The above approaches use to deal with exceptions by attempting to anticipate
all possible failures. This greatly complicates the process models and thereby
obscures the main “preferred” process if the number of exceptions to define is too
large [64]. Moreover, in many cases, exceptions can only be modeled at the technical
level, although their handling requires organizational knowledge and thus should be
expressed in semantic process models as well. Hence, authorized users should be
allowed to situationally adapt single process instances during run-time to cope with
unanticipated exceptions [105].

An unanticipated exception can be detected during the execution of a process
instance, when a mismatch between the computerized version of the process and the
corresponding real-world business process occurs. To cope with those exceptions, a
PMS is required to allow structural adaptation of its corresponding process model
at run-time.

In [105] is presented a basic taxonomy and respective patterns for applying
structural changes to running process instances in case of unanticipated exceptions.
Specifically, a structural change can be applied on the state of the process instance
or/and on the structure of its process model and concerns the application of change
primitives to the process model (i.e., by adding or deleting single tasks or transitions)
or of high-level change operations (i.e., by inserting, deleting or moving activities
or entire process fragments). Another dimension concerns the degree of automation
in applying a change. The majority of the approaches dealing with unanticipated
exceptions provide a manual definition of a structural change [119, 141, 4, 108, 104];
an expert user suspends the process instance, loads it into a process editor and
manually adjusts its structure.

18 2. State of the Art

Since this procedure is quite complex for non expert end-users, a growing number
of systems [109, 139, 84] is providing a semi-automatic way for assisting end-users
in defining structural changes at run-time by exploiting the Case-Based Reasoning
(CBR) approach [68]. CBR is a paradigm based on reasoning and machine learning,
and solves an emerging problem by drawing on past experiences and by adapting
respective solutions to the new problem situation. Problems and their solutions are
described as cases and stored in case-bases. Each problem that has been solved
provides a new case that is stored for future reuse, making learning a natural side-
effect of the reasoning process. When using CBR, the end-user is required to provide
a complete problem specification at design-time for case retrieval.

By the way, even systems that do support manual and semi-automatic dynamic
process model modification at run-time do not help determine the best response
to a given exception, leaving this often difficult decision to end-users [64]. In
order to relieve end-users from building complex adaptation tasks, there are few
systems [83, 74, 40, 43] that provide approaches for automatically adapting a process
in presence of unanticipated exceptions. While we will present the goal-based
approaches [74, 40, 43] in Section 2.2, it is interesting to say a few words about the
work [83]. It concerns a recent framework dealing with automatic adaptation of
processes through CBR. The method employs process adaptation cases that record
adaptation episodes from the past. The recorded changes can be automatically
transferred to a new process that is in a similar situation of change. The case-based
adaptation method includes the so-called anchor mapping algorithm which identifies
the parts of the target process where to automatically apply the changes.

2.1.2 Analysis of Existing PMSs

Generally, existing commercial PMSs provide only basic support for handling excep-
tions in a proprietary manner [148]. They typically require the process model to
be fully defined before it can be instantiated, and changes must be incorporated by
modifying the model statically:

• COSA [20] allows to associate sub-processes to external “triggers” and events.
All events, sub-processes and adaptation policies must be defined at design-time,
although models can be modified at run-time (but only for future instantiations).
If a task fails, the associated activity can be rolled back or restarted. When
a deadline expires, a compensating activity is triggered. COSA also allows
manual ad-hoc run-time adaptation by using change patterns [138] such as
reordering, skipping, repeating, postponing or terminating steps.

• Tibco iProcess Suite [125] provides constructs called “event nodes”. For each
event node, a separate pre-defined exception handler can be activated when an
exception occurs at that point. If no handler exists for the specific exception,
the identified exception is forwarded into a “default exception queue” where
it may be manually handled. Moreover, the designer can decide to manually
skip tasks at run-time.

• WebSphere MQ Workflow [60] supports deadlines and, when they expire, some
pre-defined exception handlers are invoked and/or notification messages are
sent to the process administrator, which can manually suspend, restart or
terminate processes, as well as s/he can reallocate tasks.

2.1 Process Adaptation 19

• SAP Workflow [85] allows to provide exception events for checking tasks pre-
and post-constraints and for waiting until an external trigger occurs. Exception
handlers are pre-defined at design-time and, when an exception occurs at run-
time, the process administrator can manually select the most appropriate
recovery procedure from the pre-specified ones. When an exception handler is
found, all tasks in the block where the exception is caught are cancelled.

The main issue with the above approaches is that they provide solid support for
transaction-level exceptions and very few support for exceptions at process or instance
level. Moreover, exceptions are mainly thrown when some deadline expires, and
also the behavior of those systems after a deadline is occurred depends mainly
by a process administrator [2]. Research in process adaptation has born mainly
for overcoming the above limitations, with the purpose to increase the degree of
automatic adaption of business processes. There have been a number of academic
prototypes developed in the last decade, and we limit the discussion to the more
popular and recent systems and prototypes1:

• The OPERA prototype [17] borrows its main ideas from a combination of
programming language concepts and transaction processing techniques, adapt-
ing them to the special characteristics of PMSs. OPERA was one of the first
systems that integrate language primitives for exception handling into PMSs.
It has a modular structure in which activities are nested. When a task fails,
its execution is stopped and a pre-specified exception handler is launched for
dealing with that kind of exception. If the handler cannot solve the problem,
it propagates the exception up the activity tree; if no handler is found the
entire process instance aborts.

• In the ADOME system [18], the problem of exception handling is addressed
adopting an integrated event-driven approach that covers exception detection,
exception resolution, reuse of exception handlers, and automated resolution
of expected exceptions. As exceptions are identified by specific events, Event-
Condition-Action (ECA) rules are used to dynamically bind exception handlers
to exception conditions at design time, and enable automatic exception detec-
tion and resolution at run-time.

• An interesting approach for dealing with process adaptation is provided by
the YAWL system [124]. Exception handling capabilities provided by YAWL
were designed and implemented starting from the conceptual framework for
workflow exception handling presented in [113]. For each exception that can be
anticipated, it is possible to define at design time exception handling processes
(exlets) linked to process specifications by defining triggering conditions and
rules in the form of Ripple Down Rules [1]. Handling processes, which include
exception handling primitives (for removing, suspending, continuing, complet-
ing, failing and restarting a work item/case) and one or more compensatory
processes, are dynamically selected and incorporated at run-time in process
instances. More details about YAWL are given in Chapter 7.

• Strong support for adaptive process management and exception handling is
provided by the ADEPT system. ADEPTflex offers modeling capabilities to
explicitly define pre-specified exceptions, and supported changes of process

1A more detailed analysis can be found in [2].

20 2. State of the Art

instances to enable different kinds of ad-hoc deviations from the pre-modeled
process schemas in order to deal with run-time exceptions [103]. These features
have been extended an improved in ADEPT2 [108, 104], which provides full
support for the structural process change patterns defined in [138], and in
ProCycle, which combines ADEPT2 with conversational case-based reasoning
(CCBR) methodologies [109]. CCBR is an extension od CBR, where the user
is not required to provide a complete a priori specification for case retrieval.
Specifically, process instance changes are manually performed and stored as
cases in a case-base, to be retrieved and reused to perform similar changes
in the future. Users are supported in finding relevant cases and adapting
processes by taking into account how similar events were previously handled
and reusing information about similar changes applied to previously executed
instances.

• The AdaptFlow prototype [48] supports ECA rules-based detection of ex-
ceptions and the dynamic adaptation of process instances, although each
adaptation must be confirmed manually by a process administrator before it
is applied. If the exception handler does not satisfy the process administrator,
s/he can manually deals with the exception. The prototype has been designed
as an overlay to the ADEPT system, providing dynamic extensions.

• Similarly, AgentWork [87] relies on ADEPT and exploits a temporal ECA
rule model to automatically detect logical failures and enable both reactive
and predictive process adaptation of control- and data-flow elements. Here,
exception handling is limited to single tasks failures, and the possibility exists
for conflicting rules to generate incompatible actions, which requires manual
intervention and resolution.

• Conversational CBR has been also applied in the CBRFlow system [139] for
supporting adaptation of pre-defined process models to changing circumstances
by allowing (manual) annotation of business rules during run-time via incre-
mental evaluation by the user. Thus users must be actively involved in the
inference process during each case.

2.1.3 Discussion

All the approaches analyzed so far share a common background. At design-time
the process modeler identifies possible exceptions that can occur, explicitly defines
exception conditions, triggering events and handling policies, and integrates such
information into the the process model. At run-time exceptions are detected and
handled either manually or (semi-)automatically, adapting affected processes at the
instance level.

A good way for understanding and comparing the kind of adaptation we are
proposing with the other existing approaches is to consider the try-catch approach
used in some programming languages such as Java2. If the try block encloses the
code that might throw an exception, the catch is the definition of the possible
exceptions and the specification, defined at design-time by the process modeler, of
how to deal with them.

2http://www.java.com/en/

http://www.java.com/en/

2.2 AI-based Process Adaptation 21

For expected exceptions, both the try and the catch blocks need to be completely
pre-specified, i.e., for each kind of exception that is envisioned to occur, a specific
exception handler is defined. Systems like [20, 125, 60, 85, 17, 18, 124] provide
mainly this kind of support to process adaptation.

On the contrary, for unanticipated exceptions, the try is automatically derived
as the situation in which the PMS does not adequately reflect the real-world process
anymore. As a consequence, one or several process instances have to be adapted,
and the catch block should include those recovery procedures required for realigning
the computerized processes with the real-world ones. The common strategy used
by the current adaptive PMSs [103, 48, 87, 104, 109, 139] is to manually or semi-
automatically define at run-time the catch block, by devising an ad-hoc recovery
procedure that deals with the specific exception captured.

Our proposal - instead - aims at synthesizing at run-time the catch block, without
the need of any manual intervention at run-time. This because the design-time
specification of all possible compensation actions requires an extensive manual effort
for the process designer, which has to anticipate all potential problems along with
possible ways to overcome them. This is particularly true in real-world and dynamic
scenarios, where the process designer often lacks the needed knowledge to model all
the possible contingencies at design-time, or this knowledge can become obsolete as
process instances are executed and evolve, by making useless his/her initial effort.
For the same reason, analyzing and defining these adaptations “manually” becomes
time-demanding and error-prone in real-world scenarios. Indeed, the designer should
have a global vision of the application and its context to define appropriate recovery
actions, which becomes complicated when the number of relevant context features
and their interleaving increases.

2.2 AI-based Process Adaptation

The Artificial Intelligence (AI) community has been involved with research on process
management for several decades [89]. While BPM has concentrated on business
and manufacturing processes, the AI community has been motivated primarily by
domains that involve active control of computational entities and physical devices
(e.g., robots, antennas, satellites, computer networks, software agents, etc.). Despite
their differing origins and emphases, there is much overlap between the objectives,
requirements, and approaches for process management within these two communities.
Specifically, AI technologies can play an important role in the construction of the
PMS engines that manage complex processes, while remaining robust, reactive, and
adaptive in the face of both environmental and tasking changes. An interesting
report that describes how techniques from the AI community could be leveraged to
provide several of the advanced process management capabilities envisioned by the
BPM community is shown in [89].

The advantage of integrating AI planning techniques [90] for several applications
in the field of BPM has long been acknowledged. For example, in [61] the authors
take a broad view of the problem of adaptive PMSs, and show that there is a
strong mapping between the requirements of such systems and the capabilities
offered by AI techniques. The work describes how planning can be interleaved with

22 2. State of the Art

process execution and plan refinement, and investigates plan patching and plan
repair as means to enhance flexibility and responsiveness. The approach presented
in [100] highlights the improvements that a legacy workflow application can gain
by incorporating planning techniques into its day-to-day operation. The use of
contingency planning [32] to deal with uncertainty increases system flexibility, but it
does suffer from a number of problems. Specifically, contingency planning is often
highly time-consuming and does not guarantee a correct execution under all possible
circumstances.

Also the use of planning techniques for process adaptation purposes is not strictly
new. One of the first work dealing with this research challenge is [5]. It discusses
the use of an intelligent assistant based on planning techniques, whose purpose is to
suggest compensation procedures or the re-execution of activities if some failure arises
during the process execution. The intelligent assistant makes use of a meta-level
knowledge incorporated into the process model.

A number of goal-based approaches exist for enabling automatic process instance
change in case of emerging exceptions. Those approaches [74, 40, 43] explicitly
formalize an output for the process to be executed in terms of a process goal.
Starting from the process goal, they are able to automatically derive a process model
(i.e., the activities to be performed and their execution order) that complies with
the goal itself. In addition, if an activity failure occurs at run-time and leads to a
goal violation, the process instance is adapted accordingly. Specifically:

• EPOS [74] presents a general, incremental replanning algorithm, which allows
to automatically adapting process instances when process goals change. The
adaptation consists in synthesizing a new process specification that reflects
the changes in the process goal.

• A similar approach is proposed in [43], where the authors present a concept for
dynamic and automated workflow re-planning that allows recovering from task
failures. To handle the situation of a partially executed process, a multi-step
procedure is proposed that includes the termination of failed activities, the
sound suspension of the process, the generation of a new complete process
definition and the adequate process resumption.

• A new life cycle for workflow management based on the continuous interplay
between learning and planning is proposed in [40]. The approach is based
on learning business activities as planning operators and feeding them to a
planner that generates a candidate process model that is able of achieving some
business goals. If an activity fails during the process execution at run-time, an
alternative candidate plan is provided on the same business goals.

Planning techniques are also used in [42] to define a self-healing approach
for handling exceptions in service-based processes and repairing faulty activities.
The purpose of [42] is to provide a tool that analyzes the repairability of service-
based processes and generates repair plans based on a set of design-time repair
actions. At design time, the process description is augmented with information
about: (i) the data dependencies within the process, (ii) the desired process results,
and (ii) available repair actions for each process activity. In addition, an heuristic-
based approach is used for reasoning about the repairability of the process schema,
by checking if it includes some design flaw that may possibly affects the repairability

2.2 AI-based Process Adaptation 23

of its activities. When a failure is detected during the process execution, a diagnosis
tool determines what caused the failure and where (i.e., in which point of the process)
the error took place. Such knowledge, obtained by the diagnosis tool or - if needed -
with the support of a human process modeler, is used together with the repairability
information inferred at design time for generating a repair plan dealing with the
exception. Repair is specified as a planning problem whose goal is to build a plan
consisting of recovery actions that, after being executed, should recover the faulty
process instance. The repair plan is generated by taking into account constraints
posed by the process structure and by applying or deleting repair actions taken
from a given generic repair plan. The generic repair plan is built by considering all
possible applications of the recovery actions in a specific state.

The work [9] proposes a goal-driven approach to business process adaptation
in service-based applications. The authors provide an approach that allows to
automatically adapt business processes to run-time context changes that impede
achievement of a business goal. The execution of the business process and the
evolution of its context are continuously monitored against the desired model of
the application, which is based on the notion of goal and on service annotations
describing how services contribute to goal achievement. The model encodes also the
business policies defined over the elements of the domain; each contextual property
is modeled with a state transition system capturing all possible values of the specific
property, and their evolution after a precondition violation or the occurrence of an
exogenous event. The adaptation mechanism is based on service composition via
automated planning techniques [90]: whenever a deviation is detected (that results
in a violation of some business policy), a specific planner will be in charge to generate
a composition of available services that achieves the adaptation goals in compliance
with the business policies. In this approach, compensation activities that compose
a recovery procedure are not required to be explicitly represented at design-time,
but are automatically derived from the various aspects of the environment (the
contextual properties, the business policies, the available services, etc.).

Another interesting work dealing with process interference is [126]. Process
interference is a situation that happens when several concurrent business processes
that depend on some common data are executed in a highly distributed environment.
During the processes execution, it may happen that some of these data are modified
causing unexpected or wrong business outcomes. To overcome this limitation,
the work [126] proposes a run-time mechanism which uses Depepency Scopes - for
identifying critical parts of the processes whose correct execution depends on some
shared variables - and Intervention Processes for solving the potential inconsistencies
generated from the interference. In [127], the authors present an algorithm for
automating the discovery of critical sections and the generation of dependency
scopes, whereas intervention processes need to be manually defined at design time.
One of the future work claimed by the authors concerns to devise a technique for
the automatic synthesis of intervention processes through a domain independent
planner based on CSP techniques. Details about the planner and the algorithm used
for synthesizing a plan are shown in [62].

24 2. State of the Art

2.2.1 Discussion

If compared with the above works, our approach provides some unique features in
dealing with unanticipated exceptions for dynamic processes:

• The goal-based approaches [74, 40, 43] apply planning techniques to auto-
matically derive a process model from business goals, and to repair it during
run-time if goals change by replanning the process specification. However, the
structure of a dynamic process usually derives from a pre-defined high-level
procedure, and it is difficult to extract a goal representing the correct execu-
tion of the process. Moreover, current planning methods do not still cover
adequately all relevant modeling aspects (e.g., treatment of loops, appropriate
handling of data flow, etc.). But the major issue lies in the replanning stage
used for adapting a faulty process instance. In fact, dynamic processes usually
involve real human participants acting in pervasive scenarios, and to re-define
completely the process specification at run-time when the process goal changes
(due to some activity failure) means to completely revolutionize the work-list
of tasks assigned to the process participants. On the contrary, our approach
adapts a running process instance by modifying only those parts of the process
that need to be changed/adapted by keeping other parts stable.

• In the work [42], it is required to explicitly define repair activities at design-time.
But, for a dynamic process, it is not an easy task to predict how the process
instances will unfold and to understand which recovery actions effectively will
be required for adapting the processes. Instead, in our approach, the recovery
procedure will be built by composing tasks stored in a specific repository. The
repository contains both tasks used for defining the specific process instance
under execution and other tasks built on the same contextual scenario and
possibly used in past executions of the process. This means we don’t explicitly
define at design time any recovery action, by letting an external planner to
decide which tasks are really required for building the recovery procedure.
By the way, the real bottleneck of the approach presented in [42] consists in
the presence of a generic recovery plan from which an ad-hoc repair plan is
derived when an exception occurs. The authors exploit the disjunctive logic
programming system DLV [70] to search for successful repair plans starting
from the generic one. However, given n repair actions, there exist, in the worst
case, at least O(nn) possible repair plans, since all possible permutations of
repair actions have to be considered. For avoiding such a complexity authors
apply heuristics that limit the search space. The drawback is that some
successful repair plans may be possibly not computed.

• The work [9] presents the interesting feature of providing services with non-
deterministic outcomes. However, in this approach, service operations as well as
context properties are modeled through state transition systems, by requiring
a considerable manual effort at design-time. Furthermore, the approach does
not support numeric variables and would suffer of state explosion and poor
performance if monitored variables range over large domains. The main
difference between the SmartPM approach and the one presented in [9] is that
in SmartPM the recovery procedure is synthesized at runtime, without the
need to define any recovery policy at design-time. On the contrary, in [9], the

2.2 AI-based Process Adaptation 25

process modeler is required to define some “business policies” for detecting the
exceptions.

• The work presented in [126] is the closest to the SmartPM approach, but it
does not still provide automatic mechanisms for the building of the recovery
procedure (however, it has been claimed to be one of the main future direction
of this work) and it only considers external events as a source of failure (we
focus on both external events and tasks failures).

27

Chapter 3

The SmartPM Approach

Approaches enabling automated process instance adaptation at run-time aim at
reducing error-prone and costly manual ad-hoc changes, and thus at relieving users
from complex adaptations tasks [105]. As a prerequisite for such automated changes,
a PMS must be able to:

• automatically detect exceptional situations;
• derive at run-time a recovery procedure to handle them;
• correctly apply the recovery procedure to the process instance involved in the

specific exception.

To address this research issue, in the following two chapters we present SmartPM
(that is the acronym for Smart Process Management), which is a model and a
prototype PMS featuring a set of techniques providing support for automatic adap-
tation of processes at run-time. Such techniques are able to automatically adapt
process instances without explicitly defining handlers/policies to recover from tasks
failures and exogenous events at run-time and without the intervention of domain
experts. While in Chapter 4 we will describe in detail the architecture and the
technological aspects of the SmartPM software prototype, in this chapter we focus on
the theoretical aspects of our general approach for adaptation of dynamic processes.

To accomplish this, we make use of well-established techniques and frameworks
from Artificial Intelligence, such as Situation Calculus[107], IndiGolog [25] and
automatic planning [90]. After presenting in Section 3.1 an overview of our general
approach, in Section 3.2 we will discuss some preliminary notion around these
challenging topics. Then, in Section 3.3 we show how we explicitly formalize
processes in situation calculus and IndiGolog and in Section 3.4 we discuss how this
formalization can be used for devising a technique that automatically detect and
recover from failures. Finally, in Section 3.5 we present three different adaptation
mechanisms developed within the SmartPM prototype.

3.1 Overview of the Approach
SmartPM adopts a service-based approach to process management, that is, tasks are
executed by services (that could be software applications, human actors, robots). In
SmartPM a process model is defined as a set of n task definitions, where each task ti

28 3. The SmartPM Approach

can be considered as a single step that consumes input data and produces output
data. Data are represented through a set F of fluents fj whose definition depends
strictly on the specific process domain of interest. In AI, a fluent is a condition that
can change over time. Such fluents can be used to constrain the task assignment (in
terms of task preconditions), to assess the outcome of a task (in terms of task effects)
and as guards into the expressions at decision points (e.g., for cycles or conditional
statements).

Choosing the fluents that are used to describe each activity falls into the general
problem of knowledge representation. To this end, the environment, services and tasks
are grounded in domain theories described in Situation Calculus [107]. Situation
Calculus is specifically designed for representing dynamically changing worlds in
which all changes are the result of the tasks’ execution. Processes are represented as
IndiGolog programs. IndiGolog [25] allows for the definition of programs with cycles,
concurrency, conditional branching and interrupts that rely on program steps that
are actions of some domain theory expressed in Situation Calculus. The dynamic
world of SmartPM is modeled as progressing through a series of situations. Each
situation is the result of various tasks being performed so far. Fluents may be
thought of as “properties” of the world whose values may vary across situations.

SmartPM provides mechanisms for adapting process schemas that require no
pre-defined handlers. To this end, a specialized version of the concept of adaptation
from the field of agent-oriented programming [27] is used. Specifically, adaptation in
SmartPM can be seen as reducing the gap between the expected reality, the (idealized)
model of reality that is used by the PMS to reason, and the physical reality, the
real world with the actual values of conditions and outcomes. The physical reality
Φs reflects the concept of “now”, i.e., what is happening in the real environment
whilst the process is under execution. In general, a task can only be performed in a
given physical reality Φs if and only if that reality satisfies the preconditions Prei of
that task. Moreover, each task has also a set of effects Effi that change the current
physical reality Φs into a new physical reality Φs+1.

A PMS that takes in input such a process specification should guarantee that each
task is executed correctly, i.e., with an output that satisfies the process specification
itself. In fact, at execution time, the process can be easily invalidated because of
task failures or since the environment may change due to some external event. For
this purpose, the concept of expected reality Ψs is given. A recovery procedure is
needed if the two realities are different from each other. An execution monitor is
responsible for detecting whether the gap between the expected and physical realities
is such that the original process δ0 cannot progress its execution. In that case, the
PMS has to find a recovery process δa that repairs δ0 and removes the gap between
the two kinds of reality.

We developed three different mechanisms for deriving a recovery procedure δa.
Currently, the adaptation algorithm deployed in SmartPM synthesizes a linear process
δa (i.e., a process consisting of a sequence of tasks) and inserts it at a given point
of the original process - specifically, that point of the process where the deviation
was first noted. To provide more details, let us assume that the current process is
δ0 = (δ1; δ2) in which δ1 is the part of the process already executed and δ2 is the

3.1 Overview of the Approach 29

part of the process which remains to be executed when a deviation is identified.
The adapted process is δ′0 = (δ1; δa; δ2). However, whenever a process needs to be
adapted, every running task is interrupted, since the “repair” sequence of tasks
δa = [t1, . . . , tn] is placed before them. Thus, active branches can only resume their
execution after the repair sequence has been executed. This last requirement is
fundamental to avoid the risk of introducing data inconsistencies during the repair
phase.

3.1.1 Representing Tasks in SmartPM
An end user that wants to interact with the SmartPM prototype is not required to
model a process and contextual data through complex languages such as Situation
Calculus and IndiGolog. We use those languages for reasoning on the process under
execution and for building automatically recovery procedures at run-time. In the
following chapter, we describe how the end-user can build an admissible process
specification for SmartPM with the SmartPM Definition Tool, that allows to graphi-
cally represent the control flow of a process through the BPMN language [143] and
to annotate in a descriptive way (through the SmartML language) the tasks com-
posing the process. Before to execute a process defined with BPMN and annotated
with SmartML, the SmartPM system automatically translates those specifications in
situation calculus and IndiGolog readable formats.

In SmartPM, tasks are collected in a specific repository, and each task can be
considered as a single step that consumes input data and produces output data. For
example, if we consider our case study introduce in Section 1.3, the task go can be
described with SmartML as follows:

<task>
<name>go</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[SRVC] == from AND

isConnected[SRVC]
</precondition>
<effects>

<supposed>at[SRVC] = to</supposed>
</effects>

</task>

The task go involves two input parameters from and to of type Location, repre-
senting the starting and arrival locations, while SRV C represents the service (i.e.,
the process participant) that will execute the task at run-time. An instance of this
task can be executed only if the service SRV C is currently at the starting location
from and is connected to the team’s network. The supposed consequence of task
execution is that SRV C moves from the starting to the arrival location, and this is
reflected by assigning to at[SRV C] the value to in the effect. But, in the real world,
the execution of go can lead to a different outcome from the expected one. If SRV C
reaches a location to′ different from to, it means that the expected reality changes
as the task was executed correctly, while the physical reality continues to reflect the

30 3. The SmartPM Approach

real world, by assuming that SRV C has reached to′. In those cases, SmartPM will
be able to adapt the process for re-aligning the two realities without any pre-defined
policy.

Let us consider that not every task has an outcome that requires the SmartPM
system to monitor the two realities. This is the case of the task move:

<task>
<name>move</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>atRobot[SRVC] == from AND

batteryLevel[SRVC]>=moveStep[] AND
isRobotConnected[SRVC]

</precondition>
<effects>

<supposed>atRobot[SRVC] = to</supposed>
<automatic>batteryLevel[SRVC] -= moveStep[]</automatic>

</effects>
</task>

A service SRV C that execute the task move (this task has been thought for repre-
senting the robots movement) should reach the location to, but the supposed effect
involves a contextual property (i.e., atRobot[SRVC], used for recording the current
position of a robot) flagged at design-time as not relevant, meaning that we need
only to update the physical reality with the real output returned by the task, but no
update to the expected reality is required. The same is true for the automatic effect
that decreases the battery level of the robot of a fixed quantity equal to moveStep[].
An automatic effect is automatically applied when the task completes without the
need to consider the task outcomes.

A thorough description of the SmartML language is given in Section 4.3.1. In this
chapter, we concentrate on modeling processes, data and tasks through situation
calculus and IndiGolog, that allow us to perform some reasoning for automatically
adapting faulty process instances ar run-time.

3.1.2 Resource Model and Task Life-Cycle in SmartPM

When allocating tasks to the resources involved in business process execution, PMSs
typically adopt a pull-based approach where the system offers each task to one or
more resources qualified for it (e.g., using a role-based distribution approach) and a
resource chooses among the offered items and commits to undertake the execution.
This approach is motivated by the fact that, in business settings, a PMS has to
leverage the interests, priorities, needs and constraints of single participants, and
the overall revenue of the organizations they belong to.

The SmartPM prototype was instead initially developed for coordinating emer-
gency management processes. Those dynamic processes are highly critical and time
demanding, as well as they often need to be carried out within strictly specified
deadlines. Therefore, it is inapplicable to use a pull mechanism for task assignment,
as the risk is to have some task(s) waiting indefinitely for being chosen and executed.

3.2 Preliminaries 31

Figure 3.1. The task-life cycle in SmartPM.

In emergency management, the personal benefit of single operators is unimportant
with respect to the overall effectiveness of rescue operations. Consequently, it is
preferable a push-based approach, where the system dynamically selects a resource
qualified for executing a given task (e.g., using a role-based or a more specific
capability-based distribution approach) and directly allocates the work item to the
selected resource. According to this approach, in SmartPM each task is assigned
to only one resource, and moreover, each resource gets assigned at most one
task. In our model, resources involved in process executions are classified as either
human (e.g., first responders that act on the field), or non-human (e.g., robots whose
purpose is to maintain the network connection). However, we abstract all possible
resources as services, i.e., entities capable of executing specific tasks [112].

The allocation of tasks to services and their execution during process enactment,
as well as performed recovery and adaptation procedures, determine the life-cycle
of a task, as illustrated in the state-transition diagram in Fig. 3.1. In SmartPM,
each task making part of the process control flow that was never been assigned to
any service lies in a Not Assigned state. A task becomes Assigned after the PMS
assigns it to a specific service qualified for executing the task and upon fulfillment
of control-flow preconditions. With respect to the general task life-cycle defined
in [112], in our model a task is never offered to one or more services and is directly
assigned to a service for execution. When a service is ready for executing the task,
it notifies the SmartPM system through its Task Handler about the starting of the
task itself; as a consequence the task moves to the started state. A started task may
then be temporarily suspended, specifically when the system needs to restructure
and modify the process for adaptation purposes, and successfully completed. A task
failure due to the impossibility of the task complete its execution is seen by SmartPM
as the task has completed with an “undefined” outcome.

3.2 Preliminaries

In this section we introduce some preliminary notions, namely Situation Calculus
and IndiGolog, that are used as proper formalisms to reason about processes and
exogenous events. Then, we will give some insights around the use of classical
planning techniques. This section is not meant to give an all-comprehensive and
very formal introduction of the notions. It aims mostly at giving an overall insight

32 3. The SmartPM Approach

to those who are not very expert on such topics.

3.2.1 Situation Calculus

The Situation Calculus [82, 107] is a logical language specifically designed for
representing dynamically changing worlds in which all changes are the result of
named actions. A possible history of actions is represented by a so-called situation,
a first-order term in the language. The constant S0 denotes the initial situation,
where no actions have yet been performed. Sequences of actions are built using the
special function symbol do(a, s), that denotes the successor situation resulting from
performing action a in situation s.

Example 3.2.1. Let us suppose we defined an action open(x) concerning the
opening of a door x. The situation term do(open(d2), do(open(d1), S0)) denotes
the situation resulting from first opening door d1 in S0 and then opening door d2.

In general, the Situation Calculus can be seen as a “dialect” of the first-order
logic in which situations and actions are explicitly taken to be objects in the domain.
Note that constants and function symbols for actions are completely application
dependent. Properties that hold in a situation are called fluents. Technically, these
are predicates taking a situation term as their last argument.

Example 3.2.2. The fluent DoorOpen(x, s) may denote that door x is open in
situation s. The formula ¬DoorOpen(d1, s) ∧DoorOpen(d1, do(open(d1), s)) says
that the door d1 is closed in some situation s, but it will be opened in the situation
that results from opening it in s.

A distinguished predicate Poss(a, s) is used to state that action a is executable
in s.

Example 3.2.3. The predicate Poss(open(x), S0) says that is possible to open
the door x in the initial situation S0.

To reason about a changing world, it is necessary to have beliefs not only about
what is true initially, but also about how the world changes as result of actions.
Actions typically have preconditions, that is, conditions that need to be true for the
action to occur. Formulas like the one in the Example 3.2.4 are called preconditions
axioms.
Example 3.2.4. The action of opening a door in situation s is possible only if
the door is closed in s:

Poss(open(x), s) ≡ ¬DoorOpen(x, s).

Actions typically have also effects, that is, fluents that are changed as a result of
performing the action.

Example 3.2.5. If a door x is closed and not locked, the action open(x) can be
used to open it:

(¬DoorOpen(x, s) ∧ ¬Locked(x, s)) ⊃ DoorOpen(x, do(open(x), s)).

3.2 Preliminaries 33

Example 3.2.6. To close a door causes it to be no more opened:

¬DoorOpen(x, do(close(x), s)).

These formulas are called effects axioms; they can be positive (cf. Example 3.2.5)
if they describe when a fluent becomes true, and negative (cf. Example 3.2.6)
otherwise. In general, for any fluent F (~x, s) we can rewrite all positive effects axioms
as a single formula of the form:

PF (~x, a, s) ⊃ F (~x, do(a, s)) (3.1)

and all the negative effect axioms as a single formula of the form:

NF (~x, a, s) ⊃ ¬F (~x, do(a, s)) (3.2)

If we assume that formulas 3.1 and 3.2 characterize all the conditions under which an
action a changes the value of a fluent F (this is called the completeness assumption,
cf. [8]), and if we state that no action a satisfies the condition of making the fluent
F both true and false at the same time, then all the effects axioms that are linked to
a specific fluent F can be combined in a single successor state axiom that completely
characterizes the value of F in the successor state resulting from performing action
a in situation s.

F (~x, do(a, s)) ≡ PF (~x, a, s) ∨ (F (~x, s) ∧ ¬NF (~x, a, s)) (3.3)

Specifically, F is true after doing a if and only if before doing a, PF (the positive
effect condition for F) was true, or both F and ¬NF (the negative effect condition
for F) were true.

Example 3.2.7. The successor state axiom for fluent DoorOpen(x, s) is as follows:

DoorOpen(x, do(a, s)) ≡
(a = open(x) ∧ ¬Locked(x, s) ∧ ¬DoorOpen(x, s))∨
DoorOpen(x, s) ∧ a 6= close(x);

That is, a door is open after an action a has been performed in s iff a denotes the
action of opening that door and the door is closed and not locked, or the door is
already open in s and the action a is not that one of closing it.

The use of of successor state axioms for capturing how a specific fluent changes
after performing some action solves automatically the so-called frame problem [8].
In fact, to really know how the world can change, it should be also necessary to
know what fluents are unaffected by performing an action.

Example 3.2.8. To open a door x does not change its color c:

¬Color(x, c, s) −→ Color(x, c, do(open(x), s)).

These kinds of formulas are called frame axioms, because they limit or frame the
effects of an action, and they would be required to fully capture the dynamism of a
situation. Usually, it is expected that only a very small number of actions affects
the value of a specific fluent; the rest leave it invariant (e.g., the color of a door

34 3. The SmartPM Approach

is unaffected by opening that same door). The frame problem forces to know and
reason with a large number of frame axioms; if A is the number of actions and F
the number of fluents, we should reason on about 2xAxF facts that do not change
when we are performing an action. A simple solution to the frame problem has been
proposed in [107, 8], and consists of using:

• precondition axioms, one per action (specifying when the action is executable);
• successor state axioms, one per fluent (capturing the effects and non-effects of

actions);
• initial state axioms describing what is true initially (i.e., what is true in the

initial situation S0);
• unique name axioms for actions (stating that the only action terms that can

be equal are two identical actions with identical arguments):

– A(~x) = A(~y) ⊃ (x1 = y1) ∧ ... ∧ (xn = yn)
– A(~x) 6= B(~y) where A and B are distinct action names.

The completeness assumption for the effects of actions allows to conclude that action
that are not mentioned explicitly in the effect axioms leave the fluent invariant (so,
we do not need anymore to represent explicitly frame axioms).

Using the Situation Calculus

Given a knowledge base KB containing facts expressed in the situation calculus, there
are various sorts of reasoning tasks we can consider [107, 8]. Two basic reasoning
tasks are projection and legality testing.

Given a sequence of actions and some initial situation S0, the projection task
aims at determining what would be true if those actions were performed starting in
that initial situation. In [8], the problem is formalized as follows:

Projection Task Suppose that ξ(s) is a formula with a single free variable s of
the situation sort, and that ~a is a sequence of actions <a1, ..., an>. To find
out if ξ(s) would be true after performing ~a starting in the initial situation
S0, we determine whether or not KB |= ξ(do(~a, S0)), where do(~a, S0) is an
abbreviation for do(an, do(an−1, ..., do(a2, do(a1, S0))...)), and for S0 itself when
n = 0.

Example 3.2.9. Let us suppose that in S0 the doors d1 and d2 are closed and
locked:

Locked(d1, S0) ∧ Locked(d2, S0) ∧ ¬DoorOpen(d1, S0) ∧ ¬DoorOpen(d2, S0)

and ξ(s) ≡ (DoorOpen(d1, s) ∧DoorOpen(d2, s)). The sequence of actions:

< unlock(d1), open(d1), unlock(d2), open(d2) >

makes the formula ξ(s) equal to true. In other words, ξ(s) holds in the situation:

s = do(open(d2), do(unlock(d2), do(open(d1), do(unlock(d1), S0))))

3.2 Preliminaries 35

Another interesting task performable through situation calculus is the legality
testing task, that determines whether a sequence of actions leads to a legal situation.
In [8], the problem is formalized as follows:

Legality Task Suppose that ~a is a sequence of actions <a1, ..., an>. To find out if
~a can be legally performed starting in the initial situation S0, we determine
whether or not KB |= Poss(ai, do(<a1, ...ai−1>, S0)) for every i such that
1 ≤ i ≤ n.

Example 3.2.10. For example, given the initial situation:

Locked(d1, S0) ∧ Locked(d2, S0) ∧ ¬DoorOpen(d1, S0) ∧ ¬DoorOpen(d2, S0)

although the situation term do(open(d2), do(unlock(d1), S0)) is well-formed, it is
not a legal situation, because the precondition for opening d2 states that d2 has
to be unlocked, while the first action in the situation term unlocks door d1. The
situation term:

s = do(open(d2), do(unlock(d2), do(open(d1), do(unlock(d1), S0))))

is instead legal, since the sequence of actions can be legally performed starting
from S0.

3.2.2 Indigolog

On top of Situation Calculus action theories, one can define complex control behaviors
by means of high-level programs expressed in Golog-like programming languages.
Specifically we focus on IndiGolog [25], which provides a set of programming constructs
sufficient for defining every well-structured process as defined in [136].

IndiGolog is a programming language for autonomous agents that sense their
environment and do planning as they operate. The programmer provides a high-level
nondeterministic program involving domain-specific actions and tests to perform
the agent’s tasks. The IndiGolog interpreter then reasons about the preconditions
and effects of the actions in the program to find a legal terminating execution. To
support this, the programmer provides a declarative specification of the domain (i.e.,
primitive actions, preconditions and effects, what is known about the initial state)
in the Situation Calculus. IndiGolog programs are executed online together with
sensing the environment and monitoring for events.

IndiGolog derives from ConGolog to which it adds basically the lookahead search
operator. Such operator allows to simulate the execution of a process with the aim of
searching for a successful termination before actually performing the program in the
real world. In its, turn ConGolog [24] extends the original Golog [72] by introducing
construct for current execution of different operations. Table 3.1 summarizes the
constructs of IndiGolog used in this thesis.

In the first line, a stands for a situation calculus action term whereas, in the
second line, σ? stands for a formula over situation calculus predicates and fluents
that needs to be evaluated when reached.

There are some constructs for concurrent programming. In particular (δ1 ‖ δ2)
expresses the concurrent execution (interpreted as interleaving) of the programs δ1

36 3. The SmartPM Approach

Table 3.1. IndiGolog constructs.

Construct Meaning
a A primitive action.
σ? Wait while the σ condition holds.
(δ1; δ2) Sequence of two sub-programs δ1 and δ2.
proc P (−→v) δ Invocation of a IndiGolog procedure δ passing a vector −→v of parameters.
(δ1|δ2) Non-deterministic choice among (sub-)programs δ1 and δ2.
if σ then δ1 else δ2 Conditional statement: if σ holds, δ1 is executed; otherwise δ2.
while σ do δ Iterative invocation of δ.
(δ1 ‖ δ2) Concurrent execution.
(δ1 〉〉 δ2) Prioritized concurrent execution.
δ∗ Non-deterministic iteration of program execution.
πa.δ Non-deterministic choice of argument a followed by the execution of

δ.
〈σ → δ〉 δ is repeatedly executed until σ becomes false, releasing control to

anyone else able to execute.
Σ(δ) search operator
send(Υ,−→v) a vector −→v of parameters is passed to an external program Υ.
receive(Υ,−→v) a vector −→v of parameters is received by an external program Υ.

and δ2. Another concurrent programming construct is (δ1 〉〉 δ2), where δ1 has higher
priority than δ2, and δ2 may only execute when δ1 is done or blocked.

The list in Table 3.1 includes also some nondeterministic constructs. For example,
(δ1 | δ2) nondeterministically chooses between programs δ1 and δ2. Test actions σ?
can be used to control which branches may be executed, e.g., [(σ?; δ1)|(¬σ?; δ1)] will
perform δ1 when σ is true and δ2 when σ is false (we use [...] and (...) interchangeably
to disambiguate structure in programs). The construct π a. δ, nondeterministically
picks a binding for the variable a and performs the program δ for this binding of
a. Finally, δ∗, performs δ zero or more times. π a1, . . . , an. δ is an abbreviation for
π a1.π an δ.

The constructs if σ then δ1 else δ2 and while σ do δ are the synchronized
versions of the usual if-then-else and while-loop. They are synchronized in the sense
that testing the condition σ does not involve a transition per se: the evaluation of the
condition and the first action of the branch chosen are executed as an atomic unit.
So these constructs behave in a similar way to the test-and-set atomic instructions
used to build semaphores in concurrent programming.

Let’s focus on the interrupt construct:

〈 σ → δ 〉 def= while Interrupts_running do
if σ then δ else false endIf
endWhile

To see how this works, first assume that the special fluent Interrupts_running
is identically true. When an interrupt 〈σ → δ〉 gets control from higher priority
processes, suspending any lower priority processes that may have been advancing, it
repeatedly executes δ until σ becomes false. Once the interrupt body δ completes its
execution, the suspended lower priority processes may resume. The control release
also occurs if σ cannot progress (e.g., since no action meets its precondition).

Since IndiGolog provides flexible mechanisms for interfacing with other program-
ming languages such as Java or C and for socket communication (cf. Section 4.2), for

3.2 Preliminaries 37

our convenience we have defined here two more abstract constructs to send/receive
parameters as well as values with external programs, defined out of the range of the
IndiGolog process.

From a formal point of view, two predicates are introduced to specify program
transitions:

• Trans(δ′, s′, δ′′, s′′), given a program δ′ and a situation s′, returns (i) a new
situation s′′ resulting from executing a single step of δ′, and (ii) δ′′ which is
the remaining program to be executed.

• Final(δ′, s′) returns true when the program δ′ can be considered successfully
completed in situation s′, i.e., δ′ is legally terminated in situation s′.

The predicates Trans and Finals for programs are characterized by the following
set of axioms:

1. Empty program:
Trans(nil, s, δ′, s′) ⇔ false.

Final(nil, s) ≡ True.

2. Primitive actions:

Trans(a, s, δ′, s′) ⇔ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s).

Final(a, s) ≡ false.

3. Test/wait actions:

Trans(σ?, s, δ′, s′) ⇔ σ[s] ∧ δ′ = nil ∧ s′ = s.

Final(σ?, s) ≡ false.

4. Sequence:

Trans(δ1; δ2, s, δ
′, s′) ⇔

∃γ.δ′ = (γ; δ2) ∧ Trans(δ1, s, γ, s
′) ∨ Final(δ1, s) ∧ Trans(δ2, s, δ

′, s′).

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

5. Nondeterministic branch:

Trans(δ1 | δ2, s, δ
′, s′) ⇔ Trans(δ1, s, δ

′, s′) ∨ Trans(δ2, s, δ
′, s′).

Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s).

6. Nondeterministic choice of argument:

Trans(πv.δ, s, δ′, s′) ⇔ ∃x.Trans(δvx, s, δ′, s′).

Final(πv.δ, s) ≡ ∃x.Final(δvx, s).

38 3. The SmartPM Approach

7. Nondeterministic iteration:

Trans(δ∗, s, δ′, s′) ⇔ ∃γ.(δ′ = γ; δ∗) ∧ Trans(δ, s, γ, s′).

Final(δ∗, s) ≡ True.

8. Synchronized conditional:

Trans(if σ then δ1 else δ2 endIf, s, δ′, s′) ⇔
σ[s] ∧ Trans(δ1, s, δ

′, s′) ∨ ¬σ[s] ∧ Trans(δ2, s, δ
′, s′).

Final(if σ then δ1 else δ2 endIf, s) ≡
σ[s] ∧ Final(δ1, s) ∨ ¬σ[s] ∧ Final(δ2, s).

9. Synchronized loop:

Trans(while σ do δ endWhile, s, δ′, s′) ⇔
∃γ.(δ′ = γ;while σ do δ) ∧ σ[s] ∧ Trans(δ, s, γ, s′).

Final(while σ do δ endWhile, s) ≡ ¬σ[s] ∨ Final(δ, s).

10. Concurrent execution:

Trans(δ1 ‖ δ2, s, δ
′, s′) ⇔

∃γ.δ′ = (γ ‖ δ2) ∧ Trans(δ1, s, γ, s
′) ∨ ∃γ.δ′ = (δ1 ‖ γ) ∧ Trans(δ2, s, γ, s

′).

Final(δ1 ‖ δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

11. Prioritized concurrency:

Trans(δ1 〉〉 δ2, s, δ
′, s′) ⇔

∃γ.δ′ = (γ 〉〉 δ2) ∧ Trans(δ1, s, γ, s
′) ∨

∃γ.δ′ = (δ1 〉〉 γ) ∧ Trans(δ2, s, γ, s
′) ∧ ¬∃ζ, s′′.Trans(δ1, s, ζ, s

′′).

Final(δ1 〉〉 δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s).

12. Concurrent iteration:

Trans(δ||, s, δ′, s′) ⇔ ∃γ.δ′ = (γ ‖ δ||) ∧ Trans(δ, s, γ, s′).

Final(δ||, s) ≡ True.

The off-line execution of programs, which is the kind of execution originally
proposed for Golog [72] and ConGolog [24] is characterized using the Do(δ, s, s′)
predicate, which means that there is an execution of program δ that starts in
situation s and terminates in situation s′:

Do(δ, s, s′)⇔ ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

where Trans∗ is the definition of the reflective and transitive closure of Trans. Thus
there is an execution of program δ that starts in situation s and terminates in

3.2 Preliminaries 39

situation s′ if and only if we can perform 0 or more transitions from program δ in
situation s to reach situation s′ with program δ′ remaining, at which point one may
legally terminate. Notice that there may be more than one resulting situation s′
since IndiGolog programs can be non-deterministic (e.g., due to concurrency).

The off-line execution model of Golog and ConGolog requires the executor to
search over the whole program to find a complete execution before performing any
action. This is obviously problematic for agents that need to sense their environment
as they operate. On the contrary, the strength of IndiGolog is that it provides an
online execution model that allows to execute actions on the real world, to update
its knowledge after each action execution and to monitor for possible exogenous
events or actions not executed as expected.

Finally, to cope with the impossibility of backtracking actions executed in the
real world, IndiGolog incorporates a new programming construct, namely the search
operator Σ(δ), which is used to specify that lookahead should be performed over the
(nondeterministic) program δ to ensure that nondeterministic choices are resolved
in a way that guarantees its successful completion. More precisely, let δ be any
IndiGolog program, which provides different alternative executable actions. When the
interpreter encounters program Σ(δ), before choosing among alternative executable
actions of δ, it performs reasoning in order to decide for a step which still allows the
rest of δ to terminate successfully. Formally, according to [26], the semantics of the
search operator is:

Trans(Σ(δ), s,Σ(δ′), s′) ⇔ Trans(δ, s, δ′, s′) ∧ ∃s∗.Do(δ′, s′, s∗).

If δ is the entire program under consideration, Σ(δ) emulates completely its off-line
execution as if it is executed on-line.

3.2.3 Classical Planning

Automated Planning [90] is the branch of AI that consists in the deliberation process
of building plans, i.e., organized actions, in order to fulfill some pre-stated objectives.
Typically, these plans are executed by intelligent agents, and the solution amounts
to synthesize agent’s plans satisfying a goal specification.

There exist several forms of planning. We can distinguish between classical
planning domains, conditional planning and conformant planning. Classical planning
domains are fully observable, static, and deterministic, in which plans can be
computed in advance and then applied unconditionally. Therefore a plan is a simple
sequence a0, a1, . . . , an ∈ Act∗ of actions, for a fixed action alphabet Act. Conditional
(or contingency) planning deals instead with bounded indeterminacy by constructing
a conditional plan with different branches for the different contingencies that may
arise, and even though plans are pre-computed, the agent finds out which part of the
plan to execute by including sensing actions in the plan to test for the appropriate
conditions. Therefore, conditional plans can be thought of as tree-like structures, in
contrast with sequential plans that are instead action sequences. Finally, conformant
planning [120] aims to construct standard, sequential plans that are executed in
partially-observable settings, without perception. Namely, they are required to
achieve the goal in all possible circumstances, regardless of the true initial state and
the actual action outcomes.

40 3. The SmartPM Approach

In this thesis, we focus on classical planning techniques. Classical planning has
made huge advances in the last twenty years, leading to solvers able to create plans
with thousands of actions for problems described by hundreds of propositions. The
standard representation language for classical planners is known as the Planning
Domain Definition Language (PDDL (cf. [46])); it allows one to formulate a problem
PR through the description of the initial state of the world initPR, the description of
the desired goal condition goalPR and a set of possible actions. An action definition
defines the conditions under which an action can be executed, called preconditions,
and its effects on the state of the world. The set of all action definitions Ω is the
domain PD of the planning problem. Each action a ∈ Ω has a precondition list and
an effect list, denoted respectively as Prea and Effa. For example, let us consider
the following (trivial) planning domain named “example”:

(define (domain example)
(:predicates

(x) (y) (z)
(k) (v) (s)

)
(:action t1

:precondition (x)
:effect (and (not(x) (z) (k))))

(:action t2
:precondition (z)
:effect (y))

(:action t3
:precondition (v)
:effect (s))

(:action t4
:precondition (k)
:effect (x))

)

The meaning is straightforward. There are 6 predicates and 4 planning actions,
and for each action some preconditions and effects are defined. For example, the
first action definition states that for executing t1, the predicate x must hold. Then,
it states that a successful execution of t1 guarantees that predicates ¬x, z and k will
hold together. Given a specific planning domain, it is possible to define a proper
planning problem:

(define (problem pr) (:domain example)
(:init
(x) (v)
)
(:goal
(and
(y) (s)
))
)

It states that in initPR only predicates x and v are known to be true, and the
goal condition goalPR is a formula where the conjunction of y and s is true. Note that
one of the main assumption we rely in building planning problem is the well known
closed-world assumption [106]. Basically, it states that all unmentioned literals in a

3.3 Formalizing processes in IndiGolog 41

planning problem are considered to be false. Hence, for example, in the planning
problem defined above we are supposing that predicates z, k, y and s are initially
false.

A planner that works on such inputs generates a sequence of actions (the plan)
that corresponds to a path from the initial state to a state meeting the goal condition.
A simple plan satisfying the above planning problem consists first in executing action
t3 (since predicate v is true in the initial state), that makes s equal to true, and
then on executing t1 and t2 in sequence, for turning the value of y to true. This
simple sequence composed by three actions is an optimal solution, since it requires
the minimum number of steps for satisfying the goal condition. Other possible plans
that satisfy the goal condition but require more steps if compared with the optimal
solution, are called suboptimal.

In this chapter, we represent planning domains and planning problems making use
of PDDL version 2.2 [37]. PDDL 2.2 is characterized for enabling the representation
of realistic planning domains, which include (in particular) actions and goals involving
numerical expressions, operators with universally quantified effects or existentially
quantified preconditions, operators with disjunctive or implicative preconditions,
derived predicates and plan metrics. However, currently, our formalism does not
allow to represent conditional and universally quantified effects.

Specifically, we synthesize our recovery plan through the LPG-td planner [45]
(Local search for Planning Graphs). It is a planner based on local search and
planning graphs that handles PDDL 2.2 domains. The basic search scheme of
LPG-td is inspired by Walksat [118], an efficient procedure to solve SAT-problems.
The search space of LPG consists of “action graphs”, particular subgraphs of the
planning graph representing partial plans. The search steps are certain graph
modifications transforming an action graph into another one. LPG-td exploits a
compact representation of the planning graph to define the search neighborhood and
to evaluate its elements using a parametrized function, where the parameters weight
different types of inconsistencies in the current partial plan, and are dynamically
evaluated during search using discrete Lagrange multipliers. The evaluation function
uses some heuristics to estimate the “search cost” and the “execution cost” of
achieving a (possibly numeric) precondition. The planner can produce good quality
plans in terms of one or more criteria. This is achieved by an anytime process
producing a sequence of plans, each of which is an improvement of the previous ones
in terms of its quality. More details on the search algorithm and heuristics devised
for this planner can be found at [45, 44].

3.3 Formalizing processes in IndiGolog

Our approach to process management relies on the IndiGolog platform [25], that is
able to reason about a dynamic changing world by updating its knowledge after each
action execution. The PMS provided by the SmartPM system has been developed on
top of the IndiGolog platform (in the rest of this thesis, when we refer to the IndiGolog
PMS, or to the IndiGolog engine, we always mean the PMS developed through the
IndiGolog platform). The IndiGolog PMS takes in input a theory of actions - specified
in the situation calculus - representing the contextual environment in which the

42 3. The SmartPM Approach

process operates, and an IndiGolog program (specified through the constructs shown
in Table 3.1) that reflects the control flow of the dynamic process to be executed.
To this end, in this section, we describe how processes can be formalized in situation
calculus and IndiGolog. We refer to our case study introduces in Section 1.3.

To denote the various objects of interest, we make use of the following domain-
independent predicates (that is, non-fluent rigid predicates):

• Service(c): c is a service (i.e., a process participant);
• Task(t): t is a task;
• Capability(b): b is a capability;
• Provides(c, b): service c provides the capability b;
• Requires(t, b): task t requires the capability b.

Example 3.3.1. Let us consider the case study defined in Section 1.3. We
need to define 6 services (4 human actors and 2 robots), a repository of
emergency-management tasks and a number of capabilities to be associated both
to services and tasks.

Service(act1), Service(act2), Service(act3), Service(act4), Service(rb1), Ser-
vice(rb2).

Capability(hatchet), Capability(extinguisher), Capability(camera), Capabil-
ity(battery), Capability(movement), Capability(gprs), Capability(digger),
Capability(powerpack).

Task(chargebattery), Task(go), Task(move), Task(extinguishfire), Task(evacuate),
Task(removedebris), Task(takephoto), Task(updatestatus).

Provides(act1,movement), Provides(act1,gprs), Provides(act1,extinguisher),
Provides(act1,camera), Provides(act2,movement), Provides(act2,gprs),
Provides(act2,hatchet), Provides(act3,movement), Provides(act3,gprs),
Provides(act3,hatchet), Provides(act4,movement), Provides(act4,powerpack),
Provides(act4,gprs), Provides(rb1,battery), Provides(rb1,digger),
Provides(rb2,battery), Provides(rb2,digger).

Requires(go,movement), Requires(evacuate,hatchet), Requires(takephoto,camera),
Requires(updatestatus,gprs), Requires(extinguishfire,extinguisher),
Requires(move,battery), Requires(removedebris,digger),
Requires(chargebattery,powerpack).

To refer to the ability of a service c to perform a certain task t, we introduce the
following abbreviation:

Capable(c, t) def= ∀b.Requires(t, b)⇒ Provides(c, b). (3.4)

That is, service c can carry out a certain task t if and only if c provides all capabilities
required by the task t.

The life-cycle of a task involves the execution of four basic actions:

3.3 Formalizing processes in IndiGolog 43

Figure 3.2. The protocol for task assignment and execution.

• assign(c, id, t,~i, ~p): a task t with input ~i = [i1, ..., iz] is assigned to a service c.
With ~p = [p1, ..., pw] we denote the list of expected outputs that t is supposed
to return if its execution is successful;

• start(c, id, t): service c is notified to start task t;
• ackCompl(c, id, t): service c acknowledges of the completion of task t;
• release(c, id, t,~i, ~p, ~q): service c releases task t, that was executed with the

list of inputs ~i and expected outputs ~p, and returns a list of physical outputs
~q = [q1, ..., qw].

Every running task will be associated with a unique identifier id (to this end,
we provide a list of admissible identifiers and a further predicate Identifier(id) that
is true if id represents a valid identifier) and with a number of input and output
parameters. In this sense, the terms~i, ~p and ~q denote arbitrary sets of input/output,
which depend on the specific task. The special constant ∅ denotes empty input or
output. Note that we suppose to work with domains in which services, tasks, input
and output parameters are finite.

The actions performed by the process need to be “complemented” by other
actions executed by the services themselves. The following are used to inform the
PMS engine about how tasks execution is progressing:

• readyToStart(c, id, t): service c declares to be ready to start performing t;
• finishedTask(c, id, t, ~q): service c declares to have completed the execution of

task t with a list of physical outputs denoted by ~q.

The protocol for a successful execution of a specific task tj can be described as
follows. After the PMS assigns tj to a service c through the action assign(c, id, tj ,~i, ~p),
the service c has to report to be ready to execute the task itself by launching the action
readyToStart(c, id, tj). When it does happen, the PMS can eventually perform the
action start(c, id, tj), meaning that c has been formally allowed to start executing tj .
When c completes the execution of tj , it invokes the action finishedTask(c, id, tj , ~q),
with ~q representing the real outcomes (we also call them “physical” outcomes) of
tj applied on the contextual environment. At this point the PMS can update the
properties (i.e., the situation calculus fluents, see later) reflecting the evolution of the
contextual scenario in which the process is under execution. In addition, the PMS first
acknowledges the completion of tj through the action ackCompl(c, id, tj), and then

44 3. The SmartPM Approach

releases the service c from the task tj . After the execution of release(c, id, tj ,~i, ~p, ~q),
service c is again ready for a new task assignment. In Fig. 3.2 we describe the
protocol for assigning the task go to service act1 and executing it properly. In fact,
when act1 launches the finishedTask action (meaning the task has been completed
by act1) it returns an expected output equal to the desired destination expected at
design time. On the contrary, note that the scenario described in Fig. 1.3 reflects a
wrong execution of go, with an output different from the one expected.

In order to describe the contextual scenario in which the process will be executed
and to bound task inputs and outputs, there is the need to define some basic data
types. The IndiGolog language already provides the Boolean_type (for representing
boolean values) and the Integer_type (for representing integers from 0 to a specific
customizable maximum value - the default is 30). Furthermore, to clearly delineating
our case study, we also need to define a data type Location_type that represents
locations in the area and a data type Status_type for describing if a specific location
is on fire or buried by debris.

Example 3.3.2. The list of required data types for our case study is as follows:

Boolean_type(true).
Boolean_type(false).
Integer_type(0).
...
Integer_type(30).
Status_type(ok).
Status_type(fire).
Status_type(debris).
Location_type(loc00).
...
Location_type(loc33).

Data types can be associated to tasks for bounding input and output parameters.
For this aim, we introduce the concept of workitem, that reflects the run-time
container of a task, including the task identifier and its input/output parameters.
This means that the same task can be assigned multiple times to services if and
only if it is associated with different identifiers, i.e, if it is contained in different
workitems. Before to execute the process, we need to clearly state which workitems
are admissible for being executed by the PMS.

Example 3.3.3. The task go can be executed by the PMS if and only if it
is associated to a couple of inputs from and to, that represent starting and
arrival locations, and to an expected output to, that corresponds to the expected
destination to be reached after the task execution. Note that in this specific case
the expected output corresponds to the second argument given as input to the
task go.

∀ (from, to, id) s.t. Identifier(id) ∧ Location_type(from) ∧
Location_type(to)⇒ workitem(go, id, [from, to], [to]).

3.3 Formalizing processes in IndiGolog 45

The formalization of processes in IndiGolog requires two distinct sets of fluents.
A first set includes those domain-independent fluents that the PMS uses to manage
the task life-cycle and the resource perspective of a process. Domain-independent
fluents do not change across different domains. The second set concerns those fluents
that we use to denote the data needed by a process instance and the properties
of the contextual scenario in which the process is under execution. We call them
data fluents, and their definition depends strictly on the specific process domain of
interest.

Representing domain-independent fluents.
Task assignment is driven by the fluent Free(c, s), which denotes whether a

service c is available for task assignments in situation s. Basically, Free(c, s) holds if
the service c is free from any assignment in situation s. The corresponding successor
state axiom can be defined as follows:

Free(c, do(a, s))⇔(
∃ t, id,~i, ~p, ~q s.t. a = release(c, id, t,~i, ~p, ~q)

)
∨(

Free(c, s) ∧ @ t, id,~i, ~p s.t. a = assign(c, id, t,~i, ~p)
) (3.5)

Therefore, service c is considered as free in the current situation if and only if it has
just been released from a task assignment or it was free in the previous situation
and no task has been assigned to it.

The domain-independent fluent Assigned(c, id, t, s) aims at representing if a task
t with identifier id has been assigned to a service c in situation s.

Assigned(c, id, t, do(a, s))⇔(
∃ ~i, ~p s.t. a = assign(c, id, t,~i, ~p)

)
∨(

Assigned(c, id, t, s) ∧ @ ~i, ~p, ~q s.t. a = release(c, id, t,~i, ~p, ~q)
) (3.6)

The fluent holds when a task t with identifier id is assigned to a service c, or when t
has already been assigned to c, and no release action concerning t and c is launched
in the current situation s.

A third fluent used for constraining the protocol for task assignment and execution
is Reserved. The corresponding successor-state axiom can be defined as follows:

Reserved(c, id, t, do(a, s))⇔(
Assigned(c, id, t, s) ∧ a = readyToStart(c, id, t)

)
∨(

Reserved(c, id, t, s) ∧ @ ~q s.t. a = finishedTask(c, id, t, ~q)
) (3.7)

This fluent holds when a service c is ready for start executing a task t with identifier
id that was already assigned to it, or if c is still executing t and no finishedTask
action has been launched from c.

The Reserved fluent can be complemented with the precondition axioms defined
for the start and ackCompl actions:

Poss(start(c, id, t), s)⇔ Reserved(c, id, t, s)
Poss(ackCompl(c, id, t), s)⇔ ¬Reserved(c, id, t, s) (3.8)

The meaning of those axioms is straightforward: start(c, id, t) can be launched
by the PMS only if Reserved(c, id, t, s) is true, therefore after c has performed the

46 3. The SmartPM Approach

action readyToStart(c, id, t) (cf. Equation 3.7). The action ackCompl(c, id, t) can be
instead invoked when Reserved(c, id, t, s) does not hold anymore, so when c launches
finishedTask(c, id, t, ~q) (cf. again Equation 3.7). The combination of precondition
axioms defined in Equation 3.8 and of the state-successor axiom represented in
Equation 3.7 states that ackCompl(c, id, t) never comes before start(c, id, t), by
guaranteeing the synchronization of the single steps provided by the protocol for
task assignment and execution.

Representing data fluents.
Data Fluents need to be customized for every domain, and they can be used to

constrain the task assignment and as guards into the expressions at decision points
(e.g., for cycles, conditional statements). However, a data fluent Xϕ

1 is mainly
meant to capture one of the outcomes of a (specific) task T . The general way for
expressing a successor-state axiom of a data fluent is as follows:

Xϕ(~o, do(a, s)) = qj ≡(
∃c, id,~i, ~p, ~q s.t. a = release(c, id, T,~i, ~p, ~q)

)
∧ ~q = [q0, ..., qj , ..., qw] ∨(

Xϕ(~o, s) = qj ∧
¬∃c, id,~i, ~p, ~q′ s.t. a = release(c, id, T,~i, ~p, ~q′) ∧ ~q′ = [q′0, ..., q′j , ..., q′w] ∧ (q′j 6= qj)

)
.

(3.9)
The value of Xϕ is changed to value qj when the task T finishes with out-
put ~q = [q0, ..., qj , ..., qw] or, more formally, when the PMS launches the action
release(c, id, T,~i, ~p, ~q), with qj ∈ ~q. With ~o we denote the list (possibly empty) of
arguments of a data fluent, which can be customized in according to the process
needs. For example, one can require some fluents defined for each service c in the
formalization:

Example 3.3.4. The task go is used for instructing a service (specifically, a human
actor) act to move from a location from to a location to. When act terminates the
execution of the task go that was assigned to her/him with identifier id1, its final
position qj in situation s is stored in a specific data fluent Atϕ.

Atϕ(act, do(a, s)) = qj ≡(
∃ qj s.t. Location_type(qj) ∧
a = release(act, id1, go, [from, to], [to], [qj])

)
∨(

Atϕ(act, s) = qj ∧
¬∃ q′j s.t.Location_type(q′j) ∧
a = release(act, id1, go, [from, to], [to], [q′j]) ∧ (q′j 6= qj)

)
.

(3.10)

Example 3.3.5. The task move is used for instructing a robot rb to move from
a location from to a location to. When rb terminates the execution of the task
move that was assigned to it with identifier id2, its final position qj in situation s
is stored in a specific data fluent AtRobotϕ.

1Sometimes we use arguments-suppressed formulas; these are uniform formulas with all arguments
suppressed (e.g. Xϕ denotes the arguments-suppressed expression for Xϕ(~o, s)).

3.3 Formalizing processes in IndiGolog 47

AtRobotϕ(rb, do(a, s)) = qj ≡(
∃ qj s.t. Location_type(qj) ∧
a = release(rb, id2,move, [from, to], [to], [qj])

)
∨(

AtRobotϕ(rb, s) = qj ∧
¬∃ q′j s.t. Location_type(q′j) ∧
a = release(rb, id2,move, [from, to], [to], [q′j]) ∧ (q′j 6= qj)

)
.

(3.11)

Data fluents are mainly used for recording the effects of a task. If we analyze the
descriptions of the tasks go and move provided in Section 3.1.1, we can see that the
content of the <effects> tag coincides with the successor state axioms described
above.

When a task returns some real-world outcome after its completion, we define that
outcome as supposed, since its physical value may be different from the expected one
as thought at design-time. However, sometimes it may happen that a task effect is
automatic, i.e., it is applied every time a task completes its execution, independently
by the outcomes returned by the task itself.

Example 3.3.6. After a robot rb completes the execution of the task move with
identifier id2, its battery level decreases of a fixed quantity equal to MoveStepϕ(s).
The battery charge level of a robot can be represented with a fluent BatteryLevelϕ:

BatteryLevelϕ(rb, do(a, s)) = v ≡(
∃ ~i, ~p, ~q s.t. a = release(rb, id2,move,~i, ~p, ~q) ∧
v = BatteryLevelϕ(rb, s)−MoveStepϕ(s) ∧ Integer_type(v)

)
∨(

BatteryLevelϕ(rb, s) = v ∧
¬∃ ~i, ~p, ~q s.t. a = release(rb, id2,move,~i, ~p, ~q)

)
.

(3.12)

The fluent holds every time a release action involving the task move and the service
rb is launched by the PMS, and it results in decreasing the level of the battery of
the fixed quantity MoveStepϕ(s) by obtaining a new battery charge level equal to
v.

The representation of a dynamic scenario may require to define some fixed data
fluents that reflect the contextual properties of the scenario itself. For example, our
case study requires to define a data fluent Neigh(loc1, loc2, s) that expresses the neigh-
borhood property between two locations loc1 and loc2, and a fluent Covered(loc, s)
that indicates which locations loc are directly covered by the radio range provided by
the main antenna. Moreover, some data fluents can be used for recording constant
values. For example, the fluent MoveStep(s) indicates the fixed quantity of battery
that will be consumed by a robot after the execution of a move task. Those kinds
of fluents, in general, never change their values during process execution.

Representing complex formulae and exogenous events.
The contextual scenario presented in the case study in Section 1.3 requires also

to define some properties that help to understand if a service is connected to the
network provided by the main antenna. To this end, we can express some situation
calculus abbreviations for verifying the connection status of each service in every
possible situation s. An abbreviation is a complex formula that does not depend
directly from tasks effects, and that can be evaluated in each situation s. Specifically,

48 3. The SmartPM Approach

given a human service act, the abbreviation isConnected(act, s) holds in situation s
if the service act is situated in a location covered by the main network. Otherwise,
if act is outside the main network, it results as being connected only if it is close
(cf. fluent Neigh) to a location where a robot rb is situated, and the robot is - in its
turn - connected to the network.

isConnected(act, s) ≡
provides(act,movement) ∧ Atϕ(act, s) = loc ∧ Location_type(loc) ∧(
Covered(loc, s) ∨

(∃ rb s.t. provides(rb, battery) ∧ AtRobot(rb, s) = locrb ∧
Location_type(locrb) ∧ Neigh(loc, locrb, s) ∧ isRobotConnected(rb, s))

)
.

(3.13)
We omit here the definition of the second abbreviation isRobotConnected (interesting
readers can found it in the appendix), that holds if a robot is connected to the main
network on the basis of the connection policy described in Section 1.3.

Abbreviations can be used together with the data fluents for defining the precon-
ditions of each task. In IndiGolog, we make explicit task preconditions through the
axiom Poss applied on the assign basic action:

Poss(assign(c, id, t,~i, ~p), s)⇔ workitem(t, id,~i, ~p) ∧
(Xϕ,1 ∧ ... ∧Xϕ,m) ∧ (...list of abbreviations...).

A task t with input ~i and expected outputs ~p can be assigned to a service c iff
the task t combined with the associated inputs/outputs represents an admissible
workitem. Moreover, values of data fluents Xϕ,y (where y ranges over {1..m}) and
abbreviations possibly included in the axiom should be evaluated.

Example 3.3.7. A task go with inputs from and to can be assigned to a service
act in situation s if and only if act is located in from and is connected to the
network.

Poss(assign(act, id, go, [from, to], [to]), s)⇔
workitem(go, id, [from, to], [to]) ∧ Atϕ(act, s) = from ∧ isConnected(act, s).

(3.14)

Finally, we conclude the section by pointing out that in dynamic domains it is
typical that variables asynchronously change their value in an impredicative fashion.
In order to represent this, we define exogenous events as external actions coming
from the environment that may change the values of data fluents. If we consider our
case study, we have defined three different exogenous events :

• photoLost(loc) indicates that all the pictures taken in location loc have been
lost;

• fireRisk(loc) alerts about a fire that is broken out in location loc;
• rockSlide(loc) alerts about a rock slide collapsed in location loc.

When an exogenous event is detected, it possibly causes an update in the values of
some data fluent. This means that interested fluents has to capture the possible
exogenous event modification through their successor state axiom.

3.3 Formalizing processes in IndiGolog 49

Example 3.3.8. The task takephoto is used for instructing a service (specifically,
a human actor) act to move in a location loc in order to take some pictures. When
act completes the execution of the task takephoto that was assigned to her/him,
the physical outcome qj of the task is stored in a specific data fluent PhotoTakenϕ.
Note that if an exogenous event photoLost is captured in s, the value of the fluent
PhotoTakenϕ (that holds in s) switches to false in the situation do(a,s).

PhotoTakenϕ(loc, do(a, s)) = true ≡(
∃ qj s.t. a = release(act, id, takephoto, [loc], [true], [qj]) ∧ (qj = true)

)
∨(

PhotoTakenϕ(loc, s) = true ∧(
(a 6= photoLost(loc)) ∨
¬∃ q′j s.t. (a = release(act, id, takephoto, [loc], [true], [q′j]) ∧ (q′j = false))

)
.

(3.15)

The list of all predicates, fluents, exogenous events and abbreviations defined
through IndiGolog can be named as the SitCalc Theory. Remember that, given a
SitCalc Theory, before to execute a process linked to the SitCalc Theory through
the IndiGolog PMS, there is the need to clearly specify the values of each data fluent
in the initial situation S0, that represents the situation in which no actions have yet
occurred. In the following example, we show how we set the values of data fluents
in S0 for representing the starting state of our contextual scenario.

Example 3.3.9. We complete the formalization of the scenario described in
our case study by providing the whole list of data fluents (all the corresponding
successor state axioms are shown in the Appendix), workitems and precondition
axioms:

• Atϕ(c, s) = loc records the location loc in which the human service c is
situated in situation s. In the initial situation S0, each human service is
located in loc00.

• AtRobotϕ(c, s) = loc records the location loc in which the robot service c
is situated in situation s. In the initial situation S0, each robot service is
located in loc00.

• Evacuatedϕ(l, s) is true if the location l is proven to be evacuated in situation
s. In S0, no location has been already evacuated.

• Statusϕ(l, s) = st records the status of a location l in situation s, that can
be equal to ’ok’ (meaning that nothing wrong still happened), or to ’fire’
(meaning that a fire has broken out in location l) or to ’debris’ (meaning that
a rock slide has collapsed in l). Asynchronously, in any moment, an exogenous
event fireRisk(l) can change the value of Statusϕ(l, s) to ’fire’. At the same
way, an exogenous event rockSlide(l) can turn the value of Statusϕ(l, s) to
’debris’. In S0, ∀ loc s.t Location_type(loc) ⇒ Statusϕ(l, S0) = ok.

• PhotoTakenϕ(l, s) is true if in situation s some pictures have been taken
in location l. If an exogenous event photoLost(l) is captured, the value of
PhotoTakenϕ(l, s) is turned asynchronously to false. In S0, no picture has
been captured in any location l.

50 3. The SmartPM Approach

• BatteryLevelϕ(c, s) stores the battery charge level of each robot c in situation
s. The level of the robot battery may decrease of a fixed quantity (equal to
the value of MoveStepϕ(s) or to DebrisStepϕ(s)) after c completes a move
task or a removedebris task. A human service can recharge the battery
of a robot by increasing its level of a fixed quantity equal to the value of
BatteryRechargingϕ(s). For each robot service c, BatteryLevelϕ(c, S0) = 3.

• GeneralBatteryϕ(s) reflects the total amount of battery contained in the
power pack used for recharging the battery of each robot. Each recharging
action, that corresponds to the execution of the chargeBattery task, decreases
the value of GeneralBatteryϕ(s) of a fixed quantity equal to the value of
BatteryRechargingϕ(s). In the initial situation S0, GeneralBatteryϕ(S0) =
30.

• BatteryRechargingϕ(s) is a data fluent that reflects the amount of each
recharging action. In the initial situation S0, BatteryRechargingϕ(S0) = 10.

• MoveStepϕ(s) indicates the fixed quantity of battery that will be consumed
by a robot after the execution of a move task. In the initial situation S0,
MoveStepϕ(S0) = 2.

• DebrisStepϕ(s) indicates the fixed quantity of battery that will be consumed
by a robot after the execution of a removedebris task. In the initial situation
S0, DebrisStepϕ(S0) = 3.

• Neighϕ(loc1, loc2, s) expresses the neighborhood property between two lo-
cations loc1 and loc2. In S0, the fluent holds for all that locations con-
sidered as adjacent in the scenario depicted in our case study. Hence,
Neighϕ(loc00, loc01, S0) = true, Neighϕ(loc00, loc10, S0) = true, etc.

• Coveredϕ(loc, s) indicates all that locations that are directly covered by the
radio range provided by the main antenna. In S0, Coveredϕ(loc00, S0) = true,
Coveredϕ(loc01, S0) = true, etc.

Now, we show the complete list of the admissible workitems executable by the
IndiGolog PMS and precondition axioms for each task.

• The task go can be executed by the PMS if and only if it is associated to a
couple of inputs, that represent two valid Location_type, and to an expected
output, that is again a Location_type.

∀ (from, to, id) s.t. Identifier(id) ∧ Location_type(from) ∧
Location_type(to)⇒ workitem(go, id, [from, to], [to]).

A task go with inputs from and to can be assigned to a service act in situation
s if and only if act is located in from and is connected to the network.

Poss(assign(act, id, go, [from, to], [to]), s)⇔
workitem(go, id, [from, to], [to]) ∧ Atϕ(act, s) = from ∧
isConnected(act, s).

3.3 Formalizing processes in IndiGolog 51

• The task move can be executed by the PMS if and only if it is associated to a
couple of inputs, that represent two valid Location_type, and to an expected
output, that is again a Location_type.

∀ (from, to, id) s.t. Identifier(id) ∧ Location_type(from) ∧
Location_type(to)⇒ workitem(move, id, [from, to], [to]).

A task move with inputs from and to can be assigned to a service rb in
situation s if and only if rb is located in from, is connected to the network
and has enough battery charge level for executing the task.

Poss(assign(rb, id,move, [from, to], [to]), s)⇔
workitem(move, id, [from, to], [to]) ∧ AtRobotϕ(rb, s) = from ∧
isRobotConnected(rb, s) ∧ BatteryLevelϕ(rb) >= MoveStepϕ(s).

• The task takephoto can be executed by the PMS if and only if it is associated
to an input that represents the Location_type where the pictures have to be
taken, and to an expected output corresponding to a boolean value indicating
the correct execution of the task.

∀ (loc, id) s.t. Identifier(id) ∧ Location_type(loc)⇒
workitem(takephoto, id, [loc], [true]).

A task takephoto with input loc can be assigned to a service act in situation
s if and only if act is located in loc and is connected to the network.

Poss(assign(act, id, takephoto, [loc], [true]), s)⇔
workitem(takephoto, id, [loc], [true]) ∧ Atϕ(act, s) = loc ∧
isConnected(act, s).

• The task evacuate can be executed by the PMS if and only if it is associated
to an input that represents the Location_type where it is required to evacuate
some people, and to an expected output corresponding to a boolean value
indicating the correct execution of the task.

∀ (loc, id) s.t. Identifier(id) ∧ Location_type(loc)⇒
workitem(evacuate, id, [loc], [true]).

A task evacuate with input loc can be assigned to a service act in situation s
if and only if act is located in loc and is connected to the network. Moreover,
it is required that loc is not affected by debris or fire in situation s, and it
has not already been evacuated.

Poss(assign(act, id, evacuate, [loc], [true]), s)⇔
workitem(evacuate, id, [loc], [true]) ∧ Atϕ(act, s) = loc ∧
Evacuated(loc, s) = false ∧ Status(loc, s) = ok ∧ isConnected(act, s).

52 3. The SmartPM Approach

• The task updatestatus can be executed by the PMS if and only if it is as-
sociated to an input that represents the Location_type where it is required
to update the status of the emergency, and to an expected output indicating
that the final status of the location is good (i.e., value ’ok’ for the expected
output).

∀ (loc, st, id) s.t. Identifier(id) ∧ Location_type(loc) ∧
Status_type(st)⇒ workitem(updatestatus, id, [loc], [ok]).

A task updatestatus with input loc can be assigned to a service act in situation
s if and only if act is located in loc and is connected to the network. Moreover,
it is required that loc is not affected by debris or fire in situation s.

Poss(assign(act, id,updatestatus, [loc], [ok]), s)⇔
workitem(updatestatus, id, [loc], [ok]) ∧ Atϕ(act, s) = loc ∧
Statusϕ(loc, s) = ok ∧ isConnected(act, s).

• The task extinguishfire can be executed by the PMS if and only if it is
associated to an input that represents the Location_type where it is required
to extinguish a fire, and to an expected output indicating that after the
execution of the task, the fire will be extinguished (i.e., value ’ok’ for the
expected output).

∀ (loc, st, id) s.t. Identifier(id) ∧ Location_type(loc) ∧
Status_type(st)⇒ workitem(extinguishfire, id, [loc], [ok]).

A task extinguishfire with input loc can be assigned to a service act in
situation s if and only if act is located in loc and is connected to the network.
Moreover, it is required that in location loc a fire broke out in situation s.

Poss(assign(act, id, extinguishfire, [loc], [ok]), s)⇔
workitem(extinguishfire, id, [loc], [ok]) ∧ Atϕ(act, s) = loc ∧
Statusϕ(loc, s) = fire ∧ isConnected(act, s).

• The task removedebris can be executed by the PMS if and only if it is
associated to an input that represents the Location_type where it is required
to remove some debris due to a rock slide, and to an expected output indicating
that after the execution of the task the debris will be removed (i.e., value ’ok’
for the expected output).

∀ (loc, st, id) s.t. Identifier(id) ∧ Location_type(loc) ∧
Status_type(st)⇒ workitem(removedebris, id, [loc], [ok]).

A task removedebris with input loc can be assigned to a service rb in situation
s if and only if rb is located in loc, is connected to the network and has
enough battery charge level for executing the task. Moreover, it is required
that in location loc a rock slide has collapsed in situation s.

Poss(assign(rb, id, removedebris, [loc], [ok]), s)⇔
workitem(removedebris, id, [loc], [ok]) ∧ AtRobotϕ(rb, s) = loc ∧
Statusϕ(loc, s) = debris ∧ BatteryLevelϕ(rb) >= DebrisStepϕ ∧
isConnected(act, s).

3.3 Formalizing processes in IndiGolog 53

• The task chargeBattery can be executed by the PMS if and only if it is
associated to an input that represents the robot that needs to be charged. The
task has no expected outputs, meaning that we consider a recharging activity
as if it always succeeds.

∀ (rb, id) s.t. Identifier(id) ∧ Service(rb)⇒
workitem(chargeBattery, id, [rb], []).

A task chargeBattery with input rb can be assigned to a service act in
situation s if act is connected to the network, rb provides a battery (meaning
that it is effectively a robot), and both rb and act are located in loc.

Poss(assign(act, id, chargeBattery, [rb], []), s)⇔
workitem(chargeBattery, id, [rb], [ok]) ∧
Atϕ(act, s) = AtRobotϕ(rb, s) ∧
Provides(rb, battery) ∧ isConnected(act, s).

3.3.1 Realizing the Framework

In Figure 3.3, we show how SmartPM has been concretely coded by the interpreter of
IndiGolog. The main procedure of the IndiGolog program is Main(), which involves
three interrupts running at different priorities. Each interrupt is guarded by the
fluent Finished; if it holds, it means that the process execution has been completed
successfully.

Finished(do(a, s)) = true ≡
a = finish ∨ (Finished(s) = true). (3.16)

The procedure Monitor(), which runs at higher priority, is in charge of monitor-
ing changes in the environment and adapting accordingly. The first step in Monitor
checks whether fluent RealityChanged holds true, meaning that a task has completed
its execution or that an exogenous (unexpected) action has occurred in the system.

RealityChanged(do(a, s)) = true ≡
∃ t, c, id,~i, ~p, ~q s.t. a = release(c, id, t,~i, ~p, ~q) ∨
exogenous(a) ∨(
RealityChanged(s) = true ∧ a 6= resetReality

)
.

(3.17)

If some change in the contextual data is considered as Relevant, the procedure
Adapt() is launched for the synthesis of the recovery procedure. Both if Relevant
holds or not, the Monitor() concludes by executing the action resetReality, which
turns the fluent RealityChanged to false. We give more details about the Relevant
fluent and the working of the Monitor() procedure in the following sections.

At a lower priority, the system runs the actual IndiGolog program representing
the dynamic process to be executed, namely procedure Process(). As shown in
Fig. 3.3, the process is composed by three branches of tasks to be executed in parallel
(cf. Section 3.2.2 for the list of IndiGolog constructs), that correspond exactly to the
emergency management process defined in Section 1.3. For example, the procedure
Branch1() depicts three tasks to be executed in sequence. Specifically, Branch1()

54 3. The SmartPM Approach

Figure 3.3. The core procedures of SmartPM.

instructs first a selected service to reach location loc33 starting from location loc00,
then to take pictures in that location (the expected output of this task is true,
meaning that the pictures have been correctly collected), and finally to update the
status of location loc33 (the ’ok’ value means that nothing strange, such as a fire or a
rock slide, has happened in loc33). Note that in Fig. 3.3 we make use of a Prolog-like
notation and lists of inputs/expected outputs/physical outputs are enclosed between
squared brackets.

Each Branch() procedure relies, in turn, on procedure ManageExecution.
Given a specific task T , the procedure ManageExecution first searches for a
service c that is Free in situation s and is Capable to execute the task and, if such
a service exists, the procedure will be in charge to manage task assignment, start
signaling, acknowledgment of completion, and final release.

In the list of interrupts, at the lowest priority, there is also a third possibility
for managing the progression of the process, that is activated only if the process

3.4 Monitoring for Failures 55

is still not finished, but for some reason, it can not progress in its execution. The
third interrupt, that consists just in waiting, reflects the fact that, for example,
a certain task can not be assigned to any qualified service (i.e., the π function is
unable to find any service providing all the capabilities required by that task) or
all qualified services are currently involved in the performance of other tasks. If
the third interrupt is activated, the control passes back to the process designer,
which can manually manage the situation (for example, by adding new services or
by updating the capabilities of the existing services).

3.4 Monitoring for Failures
In this section, we turn our attention to the mechanism for automatically detecting
failures. As described in Section 3.1, adaptation in SmartPM can be seen as reducing
the gap between the expected reality, the (idealized) model of reality that is used by
the PMS to reason, and the physical reality, the real world with the actual values
of conditions and outcomes. In order to understand how the proposed technique
works, we start by formalizing the concepts of physical and expected reality.
Definition 1. A physical reality Φ(s) is the set of all data fluents Xϕ,y (where y
ranges over {1..m}) defined in the SitCalc theory. Hence, Φ(s) =

⋃
y=1..m{Xϕ,y}.

The physical reality Φ(s) captures exactly the value assumed by each data fluent
in the situation s. Such value reflects what is really happening in the real environment
whilst the process is under execution. However, the PMS must guarantee that each
task in the process is executed correctly, i.e., with an output that satisfies the process
specification. For this purpose, the concept of expected reality Ψ(s) is needed. For
some data fluents, the ones affected by a supposed task effect (cf. Section 3.3), we
introduce a new expected fluent Xψ that is meant to record the “expected” value of
X after the execution of a task T . The successor state axiom for this new fluent is
straightforward:

Xψ(~o, do(a, s)) = pj ≡(
∃c, id,~i, ~p, ~q s.t. a = release(c, id, T,~i, ~p, ~q) ∧
~p = [p0, ..., pj , ..., pw]

)
∨(

Xψ(~o, s) = pj ∧ ¬∃c, id,~i, ~p′, ~q s.t. a = release(c, id, T,~i, ~p′, ~q) ∧
~p′ = [p′0, ..., p′j , ..., p′w] ∧ (p′j 6= pj)

)
.

(3.18)

The fluent states that, in the expected reality, a task is always executed correctly
(also when it is not), by forcing the value of Xψ to the value of the expected output
pj .

Example 3.4.1. When an actor act terminates the execution of the task go from
a location from to a location to, the expected fluent Atψ will assume the value to
without considering the real outcome of the task.

Atψ(act, do(a, s)) = to ≡(
∃ qj s.t. a = release(act, id, go, [from, to], [to], [qj])

)
∨(

Atψ(act, s) = to ∧
¬∃ to′, qj s.t. a = release(act, id, go, [from, to′], [to′], [qj]) ∧ (to′ 6= to)

)
.
(3.19)

56 3. The SmartPM Approach

Therefore, an expected fluent Xψ holds every time a task is completed with any
real effect, by storing one of the expected outcomes of the task. More precisely, given
a task T whose execution returns a list of real outcomes ~q = [q0, ..., qj , ..., qw] and a
list of expected outcomes ~p = [p0, ..., pj , ..., pw], there exists a data fluent Xϕ and a
corresponding expected fluent Xψ that will assume respectively the values qj and pj .
We need to underline that some data fluents do not provide an associated expected
fluent; for example, the fluent BatteryLevelϕ records the battery charge level of
each robot, and this value changes of a fixed quantity after each robot movement,
whatever is the real final position of the robot. On the contrary, given a data fluent
Xϕ that records one of the supposed effects of a task, an expected fluent Xψ could
be defined. For example, although the task move provides a “supposed” outcome,
there is no need to record the expected position of a robot. In fact, if a robot reaches
a location different from the one expected, the important aspect is that this physical
position allows in any way to guarantee the network connection.

Definition 2. An expected reality Ψ(s) is the set of all expected fluents Xψ,y (where
y ranges over {1..k}, with k ≤ m) defined in the SitCalc theory. Hence, Ψ(s) =⋃
y=1..k{Xψ,y}.

In Figure 3.4, the overall framework for detecting failures is depicted. The PMS
starts by taking in input a process specification δ0 formalized in IndiGolog, and builds
the SitCalc theory (i.e., the set of first-order predicates and situation calculus fluents)
representing the contextual environment in which the process has to be executed.
Finally, the PMS instantiates the initial situation S0, that indicates starting values
for each data and expected fluent.

The execution of a process can be interrupted by the Monitor module when a
misalignment between the physical and the expected reality is discovered. Specifically,
the Monitor blocks the execution of the main process δ (i) after the occurrence of a
release action in the current situation s, meaning that some service has completed
the execution of a task, or (ii) if some exogenous event has been catched in s. While
in the first case there is the possibility that some physical and expected fluent has
changed its value, an exogenous event may affect directly only some data fluent (i.e.,
the physical reality).

In this sense, our framework is able to capture - and to recover from - two
different kinds of task failure. An internal failure is related to the failure in the
execution of a task, i.e., the task does not terminate, or it is completed with an
output that differs from the expected one. An external failure is represented as an
exogenous event e, given in input by the external environment, that forces a set of
data fluents to assume a value imposed by the event itself. Such a new value could
differ from the expected one, by generating a discrepancy between the two realities.

A recovery procedure is needed if the two realities are different from each other,
i.e., some tasks in the process failed their execution by returning an output q whose
value is different from the expected output p, or if some exogenous event has modified
the physical reality in a undesirable way.

The reduction of this gap requires sufficient knowledge of both kinds of realities.
This knowledge, recorded in data and expected fluents, allows the PMS to sense
deviations and to modify the process to ensure that, at the end, the above gap will

3.4 Monitoring for Failures 57

Figure 3.4. Execution monitoring in SmartPM.

be removed. Formally, a situation s is known as Relevant- candidate for adaptation
- iff :

Relevant(δ, s) ≡ ¬SameState(Φ(s),Ψ(s)) (3.20)

Predicate SameState(Φ(s),Ψ(s)) holds iff the states denoted by Φ(s) and Ψ(s)
are the same2.

Definition 3. Given a situation s and a set ~F of fluents , a state(~F (s)) is the set
composed by the values - in situation s - of each fluent Fj that belongs to ~F . Hence,
state(~F (s)) = ⋃

j=1..m{Fj} s.t. Fj ∈ ~F .

Next, let us formalize how the monitor works. After the termination of a task,
or after the occurrence of an exogenous event, the PMS infers the new situation s′
derived from the execution of a release action (or from the arrival of an exogenous
event) and passes it to the Monitor, together with the fragment of process δ′
remaining to be executed. In case of task completion in situation s, the realities
Φ(s) and Ψ(s) will evolve in Φ(s′) and Ψ(s′), while in case of an exogenous event,
only Φ(s) evolves in Φ(s′), while Ψ(s′) remains equal to Ψ(s). Finally, it is obvious
that in case of exogenous events, δ′ = δ (i.e., an exogenous event does not reflects a
task completion, but a change in the physical reality).

Now the Monitor component checks if Relevant(δ′, s′) holds. If it does not hold,
it means that no adaptation is required for the process δ′, that can be still executed

2The evaluation of SameState is performed only for those data fluents for which there exists a
corresponding expected fluent. It is obvious that for data fluents considered as not relevant for
adaptation there is no need to monitor their evolution over situations.

58 3. The SmartPM Approach

in situation s′. In such a case, the Monitor put δ′′ equal to δ′ and carries on with
the main process execution.

On the contrary, if Relevant(δ′, s′) holds, adaptation of the process δ′ is needed.
Specifically, the purpose of SmartPM is to devise a recovery procedure δa that turns
the wrong physical reality Φ(s′) in the correct expected reality Ψ(s′). The SmartPM
system proposes two different adaptation mechanisms for recovering the process from
a failure or for adapting it to changing circumstances in the contextual environment
due to an exogenous event. The first technique consists in using the lookahead
search construct Σ provided by IndiGolog, while the second technique, which is the
one currently deployed on the SmartPM prototype, is based on classical planning
algorithms. Both the adaptation techniques are able to synthesize a linear process
δa, i.e., a process consisting of a sequence of tasks, such that δa = [ta0 ; ...; tan]. Such
a recovery procedure δa will be inserted just before δ′, by devising a new process
δ′′ = (δa; δ′). Note that whenever a process needs to be adapted, every running task
is interrupted, since the “repair” sequence of tasks δa is placed before them. Thus,
active branches can only resume their execution after the repair sequence δa has
been executed. This last requirement is fundamental to avoid the risk of introducing
data inconsistencies during the repair phase.

The adapted process δ′′ = (δa; δ′) must guarantee some properties in order to
ensure the correctness of the recovery mechanism:

• The recovery process δa has to be synthesized for being executed in situation
s′. Moreover, after the execution of δa, it should be guaranteed that Φ(s′) is
turned in Ψ(s′). We will discuss this aspect in the following sections.

• The execution of the recovery procedure δa corresponds to a new situation s′′
and to new realities Φ(s′′) and Ψ(s′′). In order to ensure that the remaining
part of the main process δ′ is still executable in s′′, the recovery mechanism
should guarantee that Ψ(s′) and Ψ(s′′) represent the same expected state of the
world, i.e., the fluent SameState(Ψ(s′),Ψ(s′′)) must hold after the execution
of δa. Specifically, we want that after the execution of the recovery process δa
in situation s′ (that results in a new situation s′′), the remaining process δ′ to
be executed in s′′ is equivalent to execute δ′ in s′.

We formalize this second point by exploiting the concept of bisimulation. In
Computer Science, two systems are bisimilar if they match each other’s moves, i.e.,
one system simulates the other and vice-versa. In this sense, each of the systems
can not be distinguished from the other by external an observer. For proving this,
we define the the predicate SameConfig(δα, sα, sβ, δβ) as follows:

Definition 1. A predicate SameConfig(δα, sα, δβ, sβ) is correct if for every
δα, sα, δβ, sβ:

1. Final(δα, sα)⇔ Final(δβ, sβ)
2. ∀ a, δα s.t. T rans

(
δα, sα, δα, do(a, sα)

)
⇒

∃ δβ s.t. T rans
(
δβ, sβ, δβ, do(a, sβ)

)
∧SameConfig

(
δα, do(a, sα), δβ, do(a, sβ)

)
3. ∀ a, δβ s.t. T rans

(
δβ, sβ, δβ, do(a, sβ)

)
⇒

∃ δα s.t. T rans
(
δα, sα, δα, do(a, sα)

)
∧SameConfig

(
δβ, do(a, sβ), δα, do(a, sα)

)

3.4 Monitoring for Failures 59

Intuitively, a predicate SameConfig(δα, sα, sβ, δβ) is said to be correct if δα
and δβ are terminable either both or none of them. Furthermore, for each action a
performable by δα in the situation sα, there exists the same action a performable
by δβ in the situation sβ (and viceversa). Moreover, the resulting configurations
(δα, do(a, sα)) and (δβ, do(a, sβ)) must still satisfy SameConfig.

In our case, we can adopt a specific definition for SameConfig, that we call
SameConfigPM (δα, sα, sβ, δβ):

SameConfigPM (δα, sα, sβ, δβ)⇔
SameState(Ψ(sα),Ψ(sβ)) ∧ δα = δβ

(3.21)

In other words, SameConfigPM states that δα,sα and δβ, sβ are the same con-
figuration if (i) all fluents have the same truth values in both Ψ(sα) and Ψ(sβ)
(SameState), and (ii) δβ is equal to δα (i.e., both δα and δβ correspond to the
remaining process to be executed δ′). The following shows that SameConfigPM is
correct.

Theorem 1. SameConfigPM (δα, sα, sβ, δβ) is correct.

Proof. We show that SameConfigPM is a bisimulation. Indeed:

• Since SameState(Ψ(sα),Ψ(sβ)) requires all expected fluents to have the same
values both in sα and sβ, we have that

(
Final(δα, sα)⇔ Final(δβ, sβ)

)
.

• Since SameState(Ψ(sα),Ψ(sβ)) requires all expected fluents to have the same
values both in sα and sβ, it follows that the PMS is allowed for the same
process δα to assign the same tasks both in sα and in sβ and moreover for each
action a and situation sα and sβ s.t. SameState(Ψ(sα),Ψ(sβ)), we have that
SameState(Ψ(do(a, sα)),Ψ(do(a, sβ)) hold. As a result, for each a and δα such
that Trans

(
δα, sα, δα, do(a, sα)

)
we have that Trans

(
δα, sβ, δα, do(a, sβ)

)
and

SameConfigPM
(
δα, do(a, sα), δβ, do(a, sβ)

)
. Similarly for the other direction.

We can now formalize a predicate Recovery that describes how our recovery
mechanism works:

Recovery(δ′, s′, s′′, δ′′)⇔
∃δa s.t. δ′′ = δa; δ′ ∧ Linear(δa) ∧
Do(δa, s′, s′′) ∧ ¬Relevant(δ′, s′′)∧
SameConfigPM (δ′, s′, s′′, δ′)

(3.22)

Intuitively, Recovery(δ′, s′, s′′, δ′′) holds if the program δ′ that was intended to be
executed in s′ is adapted in a new program δ′′. The adapted process δ′′ is a sequence
composed by the linear recovery procedure δa and the remaining part of the process
to be executed δ′. The execution of δa in s′ results in a new situation s′′, where
SameState(Φ(s′′),Ψ(s′′)) (i.e., ¬Relevant(δ′, s′′)) and SameConfigPM (δ′, s′, s′′, δ′))
hold.

The nice feature of Recovery is that it searches for a linear program that achieves
a certain formula, namely SameState(Φ(s),Ψ(s)). Moreover, restricting to sequential

60 3. The SmartPM Approach

programs obtained by planning with no concurrency does not prevent any recoverable
process from being adapted. In sum, we have reduced the synthesis of a recovery
program to a classical Planning problem in AI [90]. As a result we can adopt a
well-developed literature about planning for our aim. In particular, if services and
input/output parameters are finite, then the recovery can be reduced to propositional
planning, which is known to be decidable in general.

3.5 The SmartPM Adaptation Mechanisms

3.5.1 The Built-in Adaptation Mechanism

The first adaptation technique we analyze for SmartPM is based on synthesizing
a number of candidate recovery processes and on simulating them off-line. More
precisely, when the fluent Relevant holds, we need to find a recovery procedure which
is able to align the physical reality Φ(s) with the expected reality Ψ(s). A quick
solution to this problem consists of devising the recovery plan on-line, by trying
to execute performable actions in Φ(s) and senses what the next action should be,
on the basis of a “distance” notion between the two realities. Such a solution does
not require a reasoner to determine a lengthy course of action (formed perhaps of
hundreds of tasks) before executing the first step in the world.

However, on the other hand, once an action has been executed in the world,
there may be no way of backtracking it if it is later found out that it was performed
incorrectly. This aspects assumes a great value if we think that we are executing tasks
in an emergency management context, where delays or useless/incorrect activities
may easily prevent the correctness of the whole procedure. As a result, an on-line
execution of a program may fail where an off-line execution would succeed.

On Fig. 3.6, we show the fragment of the IndiGolog code related to our built-
in adaptation mechanism. Procedure Adapt() starts by invoking a basic action
adaptStart, whose effect is to make the fluent Adapting equal to true.

Adapting(do(a, s)) = true ≡
a = adaptStart ∨(
Adapting(s) = true ∧ a 6= adaptFinish

)
.

(3.23)

Then, Adapt() invokes the procedure AdaptingProgram() in order to build
and execute the recovery program and, at the same time (cf. the prioritized concur-
rency in line 2), it waits until the recovery procedure has been completely performed.
This will happen when AdaptingProgram() will terminate its execution, and the
basic action adaptFinish will turn the fluent Adapting to false.

Procedure AdaptingProgram() relies on the IndiGolog search operator Σ, that
provides a form of lookahead planning. The idea is that given any program δ, the
program Σ(δ) executes online just like δ does off-line. In other words, before taking
any action, it first ensures using online reasoning that this step can be followed
successfully by the rest of δ. More precisely, according to [26], the semantics of the
search operator is that:

Trans(Σ(δ), s,Σ(δ′), s′) ⇔ Trans(δ, s, δ′, s′) ∧ ∃s∗ s.t. Do(δ′, s′, s∗).

3.5 The SmartPM Adaptation Mechanisms 61

Figure 3.5. The built-in adaptation mechanism of SmartPM.

If δ is the entire program under consideration, Σ(δ) emulates complete off-
line execution. In SmartPM, we use a specialized version of Σ that relies on
some assumptions on the performable actions. Each assumption is of form
{actionPMS(~x), actionService(~y)}, meaning that any action actionPMS executed
by the SmartPM engine with input ~x will be eventually “complemented” by action
actionService executed by a service with input ~y. Vector of parameters ~y is a fully-
deterministic transformation of ~x. Here we are using the simple case where ~y is a
subset to ~x, but one can customize for specific tasks/actions.

Specifically, for SmartPM, we have coded two assumptions:
the first is that the action readyToStart(Srvc, Id, Task) performed
by a certain service Srvc is expected to follow the PMS action
assign(Srvc, Id, Task, Inputs,ExpectedOutputs)); the second concerns the
PMS action start(Task, Id, Srvc), which is supposed to come before the ac-
tion finishedTask(Srvc, Id, Task, Inputs, PhysicalOutputs, ExpectedOutputs),
executed by Srvc. (cf. also Fig. 3.2)

Finally, let us focus on the actual program in charge of building the recovery plan,
namely procedure SearchProgram() that, in turn, invokes procedure Plans(m,n).
Generally speaking, such procedure will try to reach a situation in which Relevant
does not hold anymore (see line 2). For this aim, the Plans procedure builds recovery
plans of growing length and simulates their execution starting from Φ(s). Recovery
plans may consist of a variable number of tasks to be executed in sequence, that
range from m to n tasks.

Let us suppose, for example, that m = 1, meaning that we are executing

62 3. The SmartPM Approach

Plans(1, 10) for the first time. As a consequence, the procedureActionSequence(1)
is invoked. It tries to generate all sequences composed by a single task. Then it
simulates their execution in Φ(s) (cf. the invocation of ManageExecution in line
3) and checks if at least one of those sequences can turn the value of Φ(s′) (s′
results from the simulated execution of the candidate recovery process) such that
SameState(Φ(s′),Ψ(s′)) (cf. line 2 of the procedure Plans). If it does not happen,
the value of m is increased of one unit (cf. line 2 of the procedure Plans) and
Plans(2, 10) is invoked.

Now, ActionSequence(2) searches for sequences of two tasks [t1; t2] to be
executed in Φ(s). The execution of each candidate recovery plan happens off-line
(i.e., when the main process has been stopped for waiting for the building of the
recovery plan itself), but the built-in algorithm simulates an on-line execution of
the plan, by applying the effects of the sequence directly on the current Φ(s). To
be more precise, ActionSequence(2) first picks an admissible workitem (cf. line
2 of the procedure ActionSequence), and then simulates its execution on Φ(s),
by obtaining a new reality Φ(s′). Now, starting from Φ(s′), ActionSequence is
invoked again for searching any task that is executable on Φ(s′), by devising the
new reality Φ(s′′). Again, the control is passed back to Plans, that verifies if
SameState(Φ(s′′),Ψ(s′′)).

We need to underline that every expected reality Ψ(sα) devised in any situation
sα (starting from the situation s) that comes from the simulated execution of
recovery processes of growing length, will be always equal to Ψ(s) (i.e., to the
expected reality stored after a failure has been sensed). In fact, when the fluent
Adapting holds, meaning that the system is searching and simulating the execution
of some recovery procedure, the system is not allowed to change the values of
expected fluents. This because the built-in algorithm tries to execute each task of
the recovery procedure as if it returns its expected outcomes, with the purpose to
turn Φ(s) into Ψ(s). This means that SameState(Ψ(s),Ψ(sα)) and, consequently,
SameConfigPM (δ′, s, sα, δ′)) hold. Moreover, if the Σ search operator is able to find
a recovery procedure δa composed by a sequence of tasks such that Do(δa, s, sα),
then also Recovery(δ′, s, sα, (δa; δ′)) is true.

In general, the search technique is iterative deepening: if there exists no sequence
whose length is less or equal to m tasks, it tries with length-(m+ 1) task sequences.
Observe also that ActionSequence uses a simple breadth-first search mechanism,
which specializes what proposed in [107]. The procedure tries to generate all
admissible sequences of tasks composed by m task. This keeps going deeper and
deeper till reaching a sequences of 10 tasks or any task sequence that recovers. If no
task sequence of at most 10 tasks exists, it is assumed that no recovery is possible.
We have adopted 10 as bound to the length of the sequence as it is a reasonable
assumption in our scenario.

It is worth highlighting that, because the monitor runs at a higher-priority
level than the actual process, the solution plan found for the recovery program
Σ[SearchProgram] would run at higher-priority than program Process. So, the
program Process cannot progress until the recovery has been finished and applied.
Consequently, after a sensed deviation, the program executed will be equivalent
to (Σ[SearchProgram()]; δ′), where δ′ is the program remaining from procedure
Process.

3.5 The SmartPM Adaptation Mechanisms 63

Figure 3.6. The plan-based adaptation mechanism of SmartPM.

Theorem 2. Let assume a domain in which services and input and output parameters
are finite. Then given a process δ′ and situations s′ and s′′, it is decidable to
compute a recovery process δ′′ with the built-in approach just devised such that
Recovery(δ′, s′, s′′, δ′′) holds.

Proof. In domains in which services and input and output parameters are finite, also
actions and fluents instantiated with all possible parameters are finite. Hence we can
phrase the domain as a propositional one and the thesis follows from decidability of
propositional planning [90].

3.5.2 The Plan-based Adaptation Approach

We now turn our attention to the plan-based adaptation mechanism currently
working in the SmartPM system. Before starting the execution of the process δ, the
PMS builds the PDDL representation of each task defined in the SitCalc theory
and sends it to an external planner. More in detail, SmartPM is able to build a
PDDL planning domain starting from a domain theory defined through SmartML,
our declarative language used for representing contextual properties of a dynamic
scenario. We show the syntax of SmartML in Section 4.3.1, but we anticipate that a
SmartML specification can be easily converted in a SitCalc theory (cf. Section 4.3.3).

When a misalignment between Φ(s′) and Ψ(s′) is sensed (we consider s′ as
the situation where something wrong has happened and δ′ as the faulty process),
the Monitor() launches the InvokePlanner() procedure for recovering the faulty
process δ′. InvokePlanner starts by building a PDDL planning problem that
reflects the gap between the two realities. Specifically, it first determines the initial
state Init of the planning problem, by making it equal to Φ(s′). In addition to
the values of data fluents, Init can also include the values of Provides(c, b) and
of Free(c, s′), for each capability b and service c defined in SitCalc theory. Such
values will be used by the planner for scheduling correctly recovery tasks during the
building of the plan.

Then, InvokePlanner builds the goal of the planning problem. Since our target
is to convert Φ(s′) into Ψ(s′), it is clear that the goal will be equal to Ψ(s′). There
exists the possibility to add to the goal some situation calculus abbreviation that is
considered to be relevant for adaptation. For example, in our case study we need to
guarantee that each service is connected to the network. Therefore, the goal can be

64 3. The SmartPM Approach

augmented with information stating that the execution of the synthesized recovery
plan would not prevent the connection of services to the main network. Since our
goals are basically a conjunction of literals, the presence of SitCalc abbreviations
does not prevent the reachability of the atomic goals contained in Ψ(s′) (unless the
SitCalc abbreviation directly contradicts some expected fluents value, but this would
be considered as a design-time error). The only effect deriving from the presence of
SitCalc abbreviations within the goal definition is that the searching for a recovery
plan will be a bit more constrained.

Example 3.5.1. Let us consider the example described in our case study. Specif-
ically, suppose, for example, that the task go(loc00,loc33) is assigned to actor
act1 (cf. Fig. 1.3(a)), which reaches instead the location loc03 (cf. Fig. 1.3(b)).
This means that act1 is now located in a different position than the desired one,
and s/he is out of the optimal network range. Therefore, after the release action
has been executed, the fluent Atϕ takes the value loc03. But this output does
not satisfy the expected outcome. The expected output loc33 is stored in the
fluent Atψ; it generates a discrepancy between Φ(s′) and Ψ(s′). This means that
Relevant(δ, s′) holds, and the main process δ′ needs to be adapted.

Now, the IndiGolog engine invokes an external planner by giving as inputs the init
and goal sets just computed. We have to underline that the communication between
the IndiGolog engine and the planner is mediated by a Synchronizer component,
that launches the planner and, when a recovery plan has been computed, translates
the plan in a new IndiGolog adapted process δ′′ = (δa; δ′). We give more information
about the Synchronizer in Chapter 4.

The receive command in line 4 of the procedure InvokePlanner is blocking,
i.e, the PMS waits until the recovery procedure has been devised. If the recovery
procedure is empty, it means that no plan exists for the current planning problem,
and the control passes back to the process designer, that can try to manage manually
the exception. Otherwise, if a recovery process δ′′ = (δa; δ′) is returned, the IndiGolog
engine can start to execute it. If we consider the example 3.5.1, the recovery plan
needed for removing the gap between the two realities is shown in Fig. 1.4(a).

The last command of the procedure InvokePlanner is used for forcing Ψ(s′)
to the current value of Φ(s′). This because the execution of the recovery plan δa
will turn the initial state (i.e., Φ(s′)) into the goal state (i.e., Ψ(s′)). Moreover,
after the execution of every recovery task of δa the situation s′ will evolve in a
situation s′′, where Ψ(s′′) is exactly the goal of the planning problem just reached.
This means that SameConfigPM (δ′, s′, s′′, δ′)) holds and, since the execution of the
recovery plan guarantees that also SameState(Φ(s′′),Ψ(s′′)) holds, the predicate
Recovery(δ′, s′, s′′, (δa; δ′)) is true.

Theorem 3. Let assume a domain in which services and input and output parameters
are finite. Then, given a process δ′ and situations s′ and s′′, it is decidable to
compute a recovery process δ′′ with the planning-based approach just devised such
that Recovery(δ′, s′, s′′, δ′′) holds.

Proof. The decidability of the plan-based approach relies on the external planner
used for the synthesis of the recovery procedure. In the SmartPM system, we have

3.5 The SmartPM Adaptation Mechanisms 65

Figure 3.7. Traditional “plan then execute” cycle (a) and the continuous planning approach.

used the LPG-td planner [45] for synthesizing recovery plans. LPG-td is a state-
based planner that is based on a stochastic local search in the space of particular
“action graphs” derived from the planning problem specification. The basic search
scheme of LPG-td is inspired to Walksat [118], an efficient procedure for solving
SAT-problems. If a domain in which services and input and output parameters are
finite, the LPG-td planner guarantees to terminate [45].

3.5.3 The Continuous Planning Approach

In this section, we show a third approach for adapting a process from failures or
exogenous events. It is based on Continuous Planning techniques and, if compared
with the two adaptation approaches employed on SmartPM and discussed above,
it provides two interesting features in adapting a process: (i) it is a non-blocking
technique, i.e., it does not stop directly any task in the main process during the
computation of the recovery procedure and (ii) it allows concurrent branches in the
recovery procedure. This approach, developed on the same SitCalc Theory defined
in Section 3.3, requires to modify the working of the Monitor procedure, and its
implementation on the IndiGolog platform is currently on going.

Continuous Planning [145] refers to the process of planning in a world under
continual change, where the planning problem is often a matter of adapting to the
world when new information is sensed. A continuous planner is designed to persist
indefinitely in the environment. Thus it is not a “problem solver” that is given a
single goal and then plans and acts until the goal is achieved; rather, it lives through
a series of ever-changing goal formulation, planning, and acting phases. Rather than
thinking of the planner and execution monitor as separate processes, one of which
passes its results to the other, we can think of them as a single process (cf. Fig. 3.7).

The proposed idea is to build the recovery procedure δa in parallel with the
execution of the main process δ, avoiding to stop directly any task in the main
process. Once ready, δa will be inserted as a new branch of δ and will be executed in
concurrency with every other task. This means that the recovery branch will turn δ
into a new process δ′′ = (δ||δa). Before to analyze how the whole approach works,
we need to provide some further formal definition.

Since we are working in a domain in which services and input/output parameters
are finite, each task defined in δ affects (or is affected by) only a finite number of
fluents. This means that each task is interested only in that fragment of reality it
contributes to modify.

Definition 4. A task T affects a data/expected fluent X iff ∃c, id,~i, ~p, ~q, a s.t. a =
release(c, id, T,~i, ~p, ~q). We denote it with T .X.

66 3. The SmartPM Approach

Definition 5. A task T is affected by a data/expected fluent X iff
∃c, id,~i, ~p, a s.t. a = assign(c, id, T,~i, ~p). We denote it with T /X.

The two latter definitions allow to state a new further definition of Φ(s) and
Ψ(s), whose range can be limited to a specific task T .

Definition 6. Given a specific task T, a T-limited physical reality Φ|T (s) is the
set of that data fluents Xϕ,y (where y ranges over {1..m}) such that T . Xϕ,y or
T / Xϕ,y. We denote these fluents as Xϕ|T . Hence, Φ|T (s) =

⋃
y=1..m{Xϕ,y|T } and

Φ|T (s) ⊆ Φ(s).

Definition 7. Given a specific task T, a T-limited expected reality Ψ|T (s) is the
set of that expected fluents Xψ,y (where y ranges over {1..m}) such that T .Xψ,y or
T / Xψ,y. We denote these fluents as Xψ|T . Hence, Ψ|T (s) =

⋃
y=1..m{Xψ,y|T } and

Ψ|T (s) ⊆ Ψ(s).

From definitions 6 and 7, the following ones stem :

Definition 8. Let T1, ..., Tn all tasks defined in the SitCalc theory. A physical
reality Φ(s) is the union of all T-limited physical realities that hold in situation s :
Φ(s) =

⋃
i=1..n Φ|Ti(s).

Definition 9. Let T1, ..., Tn all tasks defined in the SitCalc theory. An expected
reality Ψ(s) is the union of all T-limited expected realities that hold in situation s :
Ψ(s) =

⋃
i=1..n Ψ|Ti(s).

Now, the predicate Relevant can be easily refined in a way that focuses on a
specific task T :

RelevantT (δ, s) ≡ ¬SameState(Φ|T (s),Ψ|T (s)) (3.24)

Example 3.5.2. Let us consider again the example described in our case study.
The task go(loc00,loc33) was assigned to actor act1, which has reached the wrong
location loc03 (cf. Fig. 1.3(b)). Therefore, act1 is now located in a different
position than the desired one, and s/he is out of the optimal network range. After
the release action has been executed, the fluent Atϕ takes the value loc03, while
the expected output loc33 is stored in the fluent Atψ. This generates a discrepancy
between Φ|go(s) and Ψ|go(s). This means that Relevantgo(δ, s) holds, and the
main process δ needs to be adapted.

In Fig. 3.8 we show how we have concretely coded the continuous planning
approach with IndiGolog. Like in the plan-based adaptation approach, before starting
the execution of the process δ, the PMS builds the PDDL representation of each
task defined in the SitCalc theory and sends it to a whatever external planner that
implements the POP algorithm.

The main procedure involves four concurrent programs in priority. The interrupt
at lowest priority, that consists just in waiting, is activated only if the process is still
not finished, but for some reason, it can not progress in its execution (e.g., the PMS
is unable to find any service providing all the capabilities required by a specific task

3.5 The SmartPM Adaptation Mechanisms 67

Figure 3.8. The IndiGolog main procedure customized for the continuous planning approach.

to be executed). If the fourth interrupt is activated, the control passes back to the
process designer, which can manually manage the situation.

Then, the system runs the actual IndiGolog program representing the process to
be executed (the procedure Process). This procedure relies, in turn, on procedure
ManageExecution, which includes task assignment, start signaling, acknowledg-
ment of completion, and final release (cf. Section 3.3.1). The monitor, which
runs at higher priority, is in charge of monitoring changes in the environment and
adapting accordingly. The first step in procedure Monitor checks whether fluent
RealityChanged holds true, meaning that a service has terminated the execution of a
task or an exogenous (unexpected) action has occurred in the system. Basically, the
procedure Monitor is enabled when the physical or the expected reality (or both)
change.

If it happens, the monitor calls the procedure IndiPOP, whose purpose is to
manage the execution of the external planner by updating its initial states and
expected goals according with changes in the two realities. IndiPOP first builds
the two sets Start (the initial state) and Finish (the goal), by making them equal
respectively to Φ(s) and Ψ(s). As far as concerns the initial state, it will include, for
each task t and service c defined in SitCalc theory, the values of Capable(c, t) and of
Free(c, s) in addition to the values of data fluents.

Then IndiPOP catches the partial plan planp (that has the form of a set of
partial ordering constraints between tasks; it is empty if no failure has happened
yet) built till that moment by the external planner and updates it with the new sets

68 3. The SmartPM Approach

Start and Finish. Such updating finds something about planp that needs fixing in
according with the new realities. Since planp has been built working on old values of
the two realities, it is possible that some ordering constraints between tasks are not
valid anymore. This causes the generation of some conflicts, that need to be deleted
by planp through the external procedure RemoveConflicts. Basically, IndiPOP
can be seen as a conflict-removal procedure that revises the partial recovery plan
to the new realities. At this point, planu (that is, planp just updated, i.e., without
conflicts) is sent back to the external planner together with the sets Start and Finish.
The external planner can now restore its planning procedure.

Note that if the predicate Relevant(s) holds, meaning that a misalignment
between the two realities exists, the PMS tries to continue with its execution. In
particular, every Ti whose T-limited expected reality Ψ|Ti(s) is different from the
T-limited physical reality Φ|Ti(s) could not anymore proceed with its execution.
However, every task Tj not affected by the deviation can advance without any
obstacle. Once sent the sets of fluents composing the two realities to the external
planner, the monitor resets the fluent RealityChanged to false, and the control passes
to the process of interest (i.e., program Process), that may again execute/advance.

When the external planner finds a recovery plan that can align physical and
expected reality, the fluent Recovered is switched to true and the procedure
UpdateProcess is enabled. Now, after receiving the recovery process δa from
the planner, the PMS updates the original process δ to a new process δ′′ that,
respect to its predecessor, has a new branch to be executed in parallel; such branch
is exactly δa. It contains all that tasks able to repair the physical reality from the
discrepancies (i.e. to unblock all that tasks stopped in δ because their preconditions
did not hold). Note that when δa is merged with the original process δ, the two
realities are still different from each others. Therefore, the PMS makes them equal
by forcing Ψ(s) to the current value of Φ(s). This because the purpose of δa, after
that all recovery actions have been executed, is to turn the current Φ(s) into Ψ(s′),
where s′ is that situation reached after the execution of recovery actions.

Let us now formalize the concept of strongly consistency for a process δ.
Definition 10. Let δ a process composed by n tasks T1, .., Tn. δ is strongly con-
sistent iff:

• Given a specific task T and an input I, @c, c′, ~p, ~p′, ~q, ~q′, a, a′ s.t.
a = release(c, T, I, ~p, ~q) ∧ a′ = release(c′, T, I, ~p′, ~q′) ∧ (~p 6= ~p′).

• ∀y ∈ 1..m,@(Ti, Tk)i 6=k s.t.(Ti . Xϕ,y ∧ Tk . Xϕ,y).
Intuitively, a process δ is strongly consistent if a specific task, executed on a

given input, cannot return different values for its expected output; moreover, the
above condition holds if do not exist two different tasks that affect the same fluent.
For strongly consistent processes, we can state the concept of goal :
Definition 11. Given a strongly consistent process δ, composed by n tasks T1, , ..., Tn,
the goal of δ can be defined as the set of all expected fluents Xψ,y that are affected
by T1, T2, ..., Tn. Hence, Goal(δ) = {Xψ,y s.t. ∃i1..n.(Ti .Xψ,y)}.

After a recovery procedure δa, Goal(δ) ⊆ Goal(δ||δa) , since the recovery proce-
dure can introduce new tasks with respect to the original process δ. Anyway, the
original Goal(δ) is preserved also after the adaptation procedure.

3.5 The SmartPM Adaptation Mechanisms 69

Figure 3.9. An example of adaptation through the continuous planning approach.

Theorem 4 (Termination). Let δ be a strongly consistent process composed by a
finite number of tasks T1, ..., Tn. If δ does not contain while and iteration constructs,
and the number of exogenous events is finite, then the core procedure of IndiGolog
PMS terminates.

Proof. (Sketch) We have to consider every case in which one of the two reality
can change, since only in such a case the PMS updates the recovery plan under
construction and restarts the external planner with new values of initial state and
goals.

• Case 0 : No Failures. We know that both Φ(s) and Ψ(s) can change when
a task T ends its execution. As the number of tasks composing the original
process δ is finite, if no internal failures or exogenous events occur (meaning
that each task terminates its execution by returning the expected output), the
process terminates without any need to compute a recovery procedure.

• Case 1 : Internal Failures. Again, since the number of tasks composing the
original process δ is finite, also the number of internal failures that could

70 3. The SmartPM Approach

happen will be finite. In the worst case, in which δ = T1||T2||...||Tn, if every
task fails during its execution, we will have exactly n internal failures, meaning
that Φ(s) and Ψ(s) change n times. In such a case, no task can more proceed
in the execution, and the external planner can terminate (with a recovery plan
δa or with a failure) without any more alteration of its initial situation and
goals.

• Case 2 : Exogenous Events. As the number of exogenous events that affect
the execution of δ is finite, when the very last exogenous event has occurred,
the only way to change realities is either by the standard execution of δ, or by
internal failures, falling respectively into Case 0 or Case 1.

We want to underline that the termination cannot be guaranteed if δ contains
loops or iteration, since potentially the two realities could indefinitely change. The
same is true if the number of exogenous events is unbounded. In such a case, there
exists the possibility that IndiPOP updates continuously the external planner, that
would not be able to terminate by returning the expected recovery plan.

Example 3.5.3. Let us suppose that during the synthesis of the recovery plan
needed for dealing with the exception arose in the previous example 3.5.2, an
exogenous event rockSlide(loc32) is captured by the PMS. It aims at alerting about
a rock slide collapsed in location loc32 (cf. Fig. 3.9(a)). Hence, we have different
values for Statusϕ(loc32, s′) = debris and Statusψ(loc32, s′) = ok. Again, the PMS
invokes the external planner by obtaining the partial plan planp built till that
moment and verifies if it needs to be fixed according with new values of the two
realities. If no conflicts are individuated, the PMS sends back planp to the planner
together with the information about the initial state and the goal, updated to
situation s′. When the planner ends its computation, it returns a recovery process
δa that includes two concurrent branches. The left branch of δa instructs robot rb1
to reach a position where actor act1 is again connected to the network, and can
finally reach its original expected destination loc33 (cf. Fig. 3.9(c)). In parallel,
robot rb2 can reach location loc32 and remove debris. Note that δa can be executed
in concurrency with δ (see the right-hand side of Figure 3.9(d)) by preserving its
original goal.

3.6 Conclusion
In this chapter we have presented the formal foundations of our general approach
based on formalizing processes with Situation Calculus and IndiGolog, on detecting
exceptions with execution monitoring and on adapting automatically a dynamic
process through classical planning techniques. Such an approach is (i) practical,
since it relies on well-established planning techniques, and (ii) does not require the
definition of the adaptation strategy in the process itself (as most of the current
approaches do).

We also gave details on three different techniques for adapting a faulty process
instance. The built-in adaptation approach, based on the Σ search construct

3.6 Conclusion 71

provided by IndiGolog, allows to incorporate adaptation features directly into the
PMS. However, the computation of a recovery plan with this approach is very
inefficient, since it is based on a breadth first search algorithm that results in an
exponential explosion in the size of the inputs/services.

The plan-based technique for adapting processes is instead very efficient, since it
delegates the building of the plan to state-of-the-art external planners. Specifically,
we used the LPG-td planner [45] for the synthesis of the recovery plans, and in
Chapter 5 we clearly demonstrate the feasibility of this choice by showing some
interesting experimental tests. The drawback of this approach lies in the intrinsic
assumptions of classical planning (determinism in the effects, model completeness,
etc.), that could be too restrictive to address complex problems.

The continuous planning approach seems very promising for reducing the overall
response time during adaptation. The strength of the approach lies in the ability to
incorporate execution feedback directly into the plan, without blocking the execution
of the main process. In fact, during the plan synthesis, if a positive event occurs
(such as an external event or a task whose effects are to “adjust” the compromised
situation), the system is able to take advantage of such an opportunity without
the need of synthesizing a new plan. However, even though our intent is to make
the planning process very responsive, there still remains a synchronization process
between planning and execution, which can require a significant response time.
Another issue concerns the augmented response time needed by the planner when
more than one exception is treated at the same time. In such a case, the recovery
plan could be constituted by n recovery sub-processes independent one from another,
and the overall time depends by the number of steps required for finding the longest
one (in terms of recovery activities).

73

Chapter 4

The SmartPM System

The SmartPM approach described in Chapter 3 has shown that a PMS supporting
process adaptation at run-time requires an integrated approach that covers the
modeling, execution and monitoring stages of process life-cycle. The combination
of procedural and imperative models with declarative elements, along with the
exploitation of techniques from the field of artificial intelligence (AI) such as planning
algorithms and tools, is required for increasing the ability of a PMS of supporting
dynamic processes.

To this end, in this chapter we aim at presenting the overall architecture of
SmartPM and at giving technical details about its atomic components. In Section 4.1,
we show how software components of SmartPM have been organized into multiple
logical layers, which correspond to the system’s main features. Then, in Section 4.2
we presents the IndiGolog platform we used for building our PMS and the execution
monitor. In Section 4.3 we describe SmartML, which combines a modeling formalism
for representing the information of the contextual scenario linked to a specific dynamic
process, and a graphical tool (specifically, Eclipse BPMN1) for designing the control
flow of the process. We also show how a dynamic process formalized through SmartML
is automatically translatable in situation calculus and IndiGolog readable formats and
is therefore ready for being executed by SmartPM. Finally, in Section 4.4 we give some
high level detail on the translation algorithms used for building planning domains
and problems starting from SmartML/IndiGolog specifications, and in Section 4.5,
we show some screenshots of the SmartPM system in action.

4.1 System Architecture
Our approach to integration of process execution and planning for providing auto-
matic adaptation features at run-time relies on three main architectural layers as
shown in Fig. 4.1.

ThePresentation Layer has a twofold purpose. On one hand, it allows a human
process designer to define a dynamic process and all the contextual information
concerning the scenario in which the process will be enacted. To this end, we
provide a clarifying descriptive tool called SmartPM Definition Tool. It is a GUI-
based tool that can be used by a process designer to build a process specification

1http://www.eclipse.org/modeling/mdt/?project=bpmn2

http://www.eclipse.org/modeling/mdt/?project=bpmn2

74 4. The SmartPM System

Figure 4.1. The architecture of SmartPM.

defined according to the SmartPM Modeling Language (a.k.a. SmartML) presented in
Section 4.3.1. The language allows to specify a so-called Domain Theory, i.e., to
clearly represent the contextual properties reflecting a dynamic scenario. Moreover,
through SmartML a process designer can build a repository of tasks defined in a
declarative way, by explicitly providing tasks pre-conditions and effects based on the
domain theory previously defined. Finally, the process designer can build graphically
the control flow of a dynamic process through Eclipse BPMN 2, a graphical editor
that allows to specify business processes using the BPMN 2.0 notation [7]. Note that
the set of tasks composing the control flow of the dynamic process must be selected
from the repository of tasks specified through SmartML. In Section 4.3 we will show
how to build a dynamic process through the SmartPM Definition Tool, that integrates
the graphical features of Eclipse BPMN with the SmartML declarative language.
The outcome of the process design activity will be a complete XML-encoded process
specification to be passed to the IndiGolog engine.

On the other side, the Presentation Layer includes every real world device that
may interact with the IndiGolog engine. In order to manage such an interaction, there
is the need to installing and configuring a Task Handler module on top of every
device. The Task Handler is an interactive GUI-based software application that -
during process execution - supports the visualization of assigned tasks and allows
each participant to start task execution and notify task completion by selecting an
appropriate outcome. A task is seen by the Task Handler as a black-box activity, and
the only relevant information captured are the starting and the completion of the task
itself (together with the respective outcomes). Finally, since our SmartPM system
is mainly a proof-of-concept implementation of an adaptive PMS, we simulate the

2http://eclipse.org/bpmn2-modeler/

http://eclipse.org/bpmn2-modeler/

4.1 System Architecture 75

External Environment as a software module that sends asynchronously exogenous
events that may prevent the correct execution of the dynamic process.

The Execution Layer is in charge of managing and coordinating the execution
of dynamic processes. It performs task assignments and it manages and stores
information about services and tasks involved in process executions, tasks to be
completed and variables/data modified during task executions. The Execution Layer
is basically a customized version of the IndiGolog platform, whose details are provided
in Section 4.2.

A dynamic process built through Eclipse BPMN and annotated with SmartML is
taken as input from the XML-to-IndiGolog Parser component, which translates
this specification in Situation Calculus and IndiGolog readable formats, in order to
make the process executable by the IndiGolog engine.

The IndiGolog Engine provides a proper execution engine that manages the
process routing and decides which tasks are enabled for execution, by taking into
account the control flow, the value of predicates and preconditions and effects of each
task. Before a process starts its execution, the IndiGolog engine builds its physical
reality Φs by taking the initial context from the environment, and the expected
reality Ψs, which initially is equal to Φs.

Once a task is ready for being assigned, a component named Communication
Manager is in charge of assigning it to a proper service (which may be a human
actor, a robot, a software application, etc.) that is available (i.e., free from any
other task assignment) and that provides all the required capabilities for task
execution. Every step of the task life cycle - ranging from the assignment to the
release of a task - requires an interaction between the Communication Manager and
the devices. For each real world device, the Communication Manager generates a
separate Device Manager , which is a software component that is able to interact
with the Task Handlers deployed on the devices. Each device manager establishes a
communications channel with the associated device by using TCP/IP stream sockets.
Such an interaction is mainly intended for notifying the corresponding device of
actions performed by the IndiGolog engine as well as for notifying the engine of
actions executed by the Task Handlers of the corresponding device. Finally, the
Communication Manager allows also to catch exogenous events coming from the
environment and, when the process terminates, to notify the process completion to
the devices (again, through the Device Managers).

The Monitor component, which interacts continually with the IndiGolog engine,
is in charge of monitoring contextual data in order to identify changes, modifications
or events which may affect process execution, and notify them to the Adaptation
layer. Specifically, at each execution step - i.e., when the ending of a task or an
exogenous event has turned Φs into Φs+1 - the monitor checks if the new situation
s+ 1 can be classified as relevant (cf. Equation 3.20). If this is the case, the monitor
collects the physical reality Φs+1, the expected reality Ψs+1 and sends them to the
synchronization component. In a nutshell, the Monitor component decides whether
adaptation is needed.

TheAdaptation Layer is in charge of reacting to undesired or unforeseen events
which may invalidate process execution. The Synchronization component acts as
unique entry point for incoming notifications from the Execution Layer, in order to
adapt process execution through specific recovery/adaptation techniques. It enforces

76 4. The SmartPM System

synchronization between the IndiGolog engine, the monitor and the planner. Every
time it receives from the monitor the two realities, it builds a corresponding planning
problem in PDDL (through the Problem Builder component), by converting the
physical reality Φs into the initial state and the expected reality Ψs into the goal.

The Planner component is invoked when the Synchronization component builds
a new planning problem. In addition to the initial state and the goal, the Planner
needs a specification for the planning domain too (that is, a PDDL specification with
tasks and predicates). For this purpose, theDomain Builder component translates
the domain theory defined in SmartML in a PDDL planning domain readable by
the Planner. In the SmartPM system, we synthesize our recovery plans through the
LPG-td planner [45] (Local search for Planning Graphs). It is a planner based on
local search and planning graphs that handles PDDL 2.2 domains and can produce
good quality plans in terms of one or more criteria. In order to invoke the planner,
the Synchronization component needs to specify the value of three parameters
indicating: (i) a file containing a set of PDDL operators (i.e., the planning domain,
provided by the Domain Builder), (ii) a file containing a planning problem (i.e., the
initial state and goal of the problem, provided by the Problem Builder) formalized
in PDDL and (iii) a running mode, which is either “speed” (for devising sub-optimal
solutions) and “quality” (for devising optimal solutions). More details about the
planner are given in Section 5.1.

Finally, when a plan satisfying the goal is found, it is sent back to a Translator
component, that converts it in a readable format for the IndiGolog engine and
passes it back to the Synchronization component. The Synchronization component
combines the faulty process instance δ′ with the recovery plan δa just built, and
obtains the adapted process δ′′ = (δa; δ′) to be executed by the IndiGolog engine. If
the Planner is not able to find any recovery plan for a specific deviation, the control
is given back to the process manager.

4.2 The IndiGolog Platform

The IndiGolog platform is a logic-programming implementation of IndiGolog that
allows the incremental execution of high-level Golog-like programs. Part of this
section is a summary of the work published in [25], that we customized to our
needs in collaboration with the creators of IndiGolog. Although most of the code is
written in vanilla Prolog, the overall architecture is written in the well-known open
source SWI-Prolog3 [144]. SWI-Prolog provides flexible mechanisms for interfacing
with other programming languages such as Java or C, allows the development of
multi-threaded applications, and provides support for socket communication and
constraint solving.

Generally speaking, the IndiGolog implementation provides an incremental in-
terpreter of high-level programs as well as a framework for dealing with the real
execution of these programs on concrete platforms or devices. This amounts to
handling the real execution of actions on concrete devices (e.g., a PDA), the collec-
tion of sensing outcome information (e.g., retrieving some sensor’s output), and the
detection of exogenous events happening in the world. To that end, the architecture

3Available at http://www.swi-prolog.org/

http://www.swi-prolog.org/

4.2 The IndiGolog Platform 77

Main Cycle

Execute the

sense-think-act

loop

Communication

Manager

Manage the

communication with

each Device

Manager

BPMN +

XML Notations

Process Designer

Device 1

Device 2

...

Device N

Transition

System

Compute the

evolution of

high-level

programs

Temporal

Projector

Handle the

current situation

and fluent

values

Domain Programs

Encode the IndiGolog

program representing

a businnes process

Domain Axioms

Encode the action

theory for the current

program

Process.pl

SmartPM Architecture
Environment &

Services

XML to IndiGolog

Parser

Translation

in a format readable

by SmartPM

Device

Manager #2

Device

Manager #1

Device

Manager #2

Device

Manager #3
Device

Manager #N

...

Execution Monitor

Tackle adaptivity

XML

TCP/IP

Figure 4.2. The architecture of the IndiGolog platform.

is modularly divided into six parts, namely, (i) the top-level main cycle; (ii) the
language semantics; (iii) the temporal projector; (vi) the communication manager;
(v) the set of device managers; and finally (vi) the domain application. The first
four modules are completely domain independent, whereas the last two are designed
for specific domain(s). The architecture is depicted in Fig. 4.2.

4.2.1 The Top-level Main Cycle and Language Semantics

The IndiGolog platform codes the sense-think-act loop well-known in the agent
community [65]:

1. check for exogenous events that have occurred;
2. calculate the next program step; and
3. if the step involves an action, execute the action.

While executing actions, the platform keeps updated an history, which is the sequence
of actions performed so far.

The main predicate of the main cycle is indigo/2; a goal of the form indigo(E,H)
states that the high-level program E is to be executed online at history H.

The first thing the main cycle does is to assimilate all exogenous events that
have occurred since the last execution step. After all exogenous actions have been
assimilated and the history progressed as needed, the main cycle goes on to actual
executing the high-level program E. First, if the current program to be executed
is terminating in the current history, then the top-level goal indigo/2 succeeds.

78 4. The SmartPM System

Otherwise, the interpreter checks whether the program can evolve a single step by
relaying on predicate trans/4 (explained below). If the program evolves without
executing any action, then the history remains unchanged and we continue to
execute the remaining program from the same history. If, however, the step involves
performing an action, then this action is executed and incorporated into the current
history, together with its sensing result (if any), before continuing the execution of
the remaining program.

As mentioned above, the top-level loop relies on two central predicates, namely,
final/2 and trans/4. These predicates implement relations Trans and Final,
giving the single step semantics for each of the constructs in the language. It is con-
venient, however, to use an implementation of these predicates defined over histories
instead of situations. Indeed, the constructs of the IndiGolog interpreter never treat
about situations but they are always assuming to work on the current situation. So,
for example, these are the corresponding clauses for sequence (represented as a list),
tests, nondeterministic choice of programs, and primitive actions:

final([E|L],H) :- final(E,H), final(L,H).
trans([E|L],H,E1,H1) :- final(E,H), trans(L,H,E1,H1).
trans([E|L],H,[E1|L],H1) :- trans(E,H,E1,H1).

final(ndet(E1,E2),H) :- final(E1,H) ; final(E2,H).
trans(ndet(E1,E2),H,E,H1) :- trans(E1,H,E,H1).
trans(ndet(E1,E2),H,E,H1) :- trans(E2,H,E,H1).

trans(?(P),H,[],H) :- eval(P,H,true).
trans(E,H,[],[E|H]) :- action(E), poss(E,P), eval(P,H,true).
/* Obs: no final/2 clauses for action and test programs */

These Prolog clauses are almost directly “lifted” from the corresponding axioms
for Trans and Final. Predicates action/1 and poss/2 specify the actions of the
domain and their corresponding precondition axioms; both are defined in the domain
axiomatization (see below). More importantly, eval/3 is used to check the truth of
a condition at a certain history, and is provided by the temporal projector, described
next.

The naive implementation of the search operator would deliberate from scratch
at every point of its incremental execution. It is clear, however, that one could do
better than that, and cache the successful plan obtained and avoid planning in most
cases:

final(search(E),H) :- final(E,H).
trans(search(E),H,path(E1,L),H1) :-

trans(E,H,E1,H1), findpath(E1,H1,L).

/* findpath(E,H,L): solve (E,H) and store the path in list L */
/* L = list of configurations (Ei,Hi) expected along the path */
findpath(E,H,[(E,H)]) :- final(E,H).
findpath(E,H,[(E,H)|L]) :- trans(E,H,E1,H1), findpath(E1,H1,L).

4.2 The IndiGolog Platform 79

So, when a search block is solved, the whole solution path found is stored as the
sequence of configurations that are expected. If the actual configurations match,
then steps are performed without any reasoning (first final/2 and trans/4 clauses
for program path(E,L)). On the other hand, if the actual configuration does not
match the one expected next, for example, because an exogenous action occurred
and the history thus changed, re-planning is performed to look for an alternative
path (code not shown).

4.2.2 The Temporal Projector

The temporal projector is in charge of maintaining the agent’s beliefs about the
world and evaluating a formula relative to a history. The projector module provides
an implementation of predicate eval/3: goal eval(F,H,B) states that formula F
has truth value B, usually true or false, at history H.

Predicate eval/3 is used to define trans/4 and final/2, as the legal evolutions
of high-level programs may often depend on what things are believed true or false.

We assume then that users provide definitions for each of the following predicates
for fluent f , action a, sensing result r, formula w, and arbitrary value v:

fun_fluent(f) f is a functional fluent;

rel_fluent(f) f is a functional fluent;

prim_action(a) a is a ground action;

init(f,v) v is the value for fluent f in the starting situation;

poss(a,w) it is possible to execute action a provided formula w is known to be true;

causes_val(a,f,v,w) action a affects the value of f

Formulas are represented in Prolog using the obvious names for the logical
operators and with all situations suppressed; histories are represented by lists of the
form o(a, r) where a represents an action and r a sensing result. We will not go over
how formulas are recursively evaluated, but just note that there exists a predicate
(i) kTrue(w, h) is the main and top-level predicate and it tests if the formula w is at
history h. Finally, the interface of the module is defined as follows:

eval(F,H,true) :- kTrue(F,H).
eval(F,H,false) :- kTrue(neg(F),H).

4.2.3 The Communication Manager

The IndiGolog system was meant for being used with concrete agent/robotic platforms,
as well as with software/simulation environments. To this end, the online execution
of IndiGolog programs must be linked with the external world. To this end, the
communication manager (CM) provides a complete interface with all the external
devices, platforms, and real-world environments that the application needs to interact
with. In turn, each external device or platform that is expected to interact with the
application (e.g., a robot, a software module, or even a user interface) is assumed to

80 4. The SmartPM System

have a corresponding device manager, a piece of software that is able to talk to the
actual device, instruct it to execute actions, as well as gather information and events
from it. The device manager understands the “hardware” of the corresponding
device and provides a high-level interface to the CM. It provides an interface for
the execution of exogenous events (e.g., assign, start, etc.), the retrieval of sensing
outcomes for actions, and the occurrence of exogenous events (e.g., photoLost as well
as finishedTask and readyToStart). Because actual devices are independent of the
IndiGolog application and may be in remote locations, device managers are meant to
run in different processes and, possibly, in different machines; they communicate
then with the CM via TCP/IP sockets. The CM, in contrasts, is part of the IndiGolog
agent architecture and is tightly coupled with the main cycle. Still, since the CM
needs to be open to the external world regardless of any computation happening in
the main cycle, the CM and the main cycle run in different (but interacting) threads,
though in the same process and Prolog run-time engine.4 So, in a nutshell, the CM
is responsible of executing actions in the real world and gathering information from
it in the form of sensing outcome and exogenous events by communicating with the
different device managers.

More concretely, given a domain high-level action (e.g.,
assign(Srvc, Id, Task, Inputs,ExOutputs)), the CM is in charge of: (i) de-
ciding which actual “device” should execute the action; (ii) ordering its execution
by the device via its corresponding device manager; and finally (iii) collecting the
corresponding sensing outcome. To realize the execution of actions, the CM provides
an implementation of exec/2 to the top-level main cycle: exec(A,S) orders the
execution of action A, returning S as its sensing outcome.

When the system starts, the CM starts up all device managers required by the
application and sets up communications channels to them using TCP/IP stream
sockets. Recall that each real world device or environment has to have a corresponding
device manager that understands it.

After this initialization process, the CM enters into a passive mode in which it
asynchronously listens for messages arriving from the various devices managers. This
passive mode should allow the top-level main cycle to execute without interruption
until a message arrives from some device manager.

In general, a message can be an exogenous event, a sensing outcome of some
recently executed action, or a system message (e.g., a device being closed unex-
pectedly). The incoming message should be read and handled in an appropriate
way, and, in some cases, the top-level main cycle should be notified of the occurred
event.

4.2.4 The Domain Application

From the user perspective, probably the most relevant aspect of the architecture is
the specification of the domain application. Any domain application must provide:

1. An axiomatization of the dynamics of the world. Such axiomatization would
depend on the temporal projector to be used.

4SWI-Prolog provides a clean and efficient way of programming multi-threaded Prolog applications.

4.3 The SmartPM Definition Tool 81

2. One or more high-level agent programs that will dictate the different agent
behaviors available. In general, these will be IndiGolog programs.

3. All the necessary execution information to run the application in the external
world. This amounts to specifying which external devices the application relies
on (e.g., the device manager for the ER1 robot), and how high-level actions
are actually executed on these devices (that is, by which device each high-level
action is to be executed). Information on how to translate high-level symbolic
actions and sensing results into the device managers’ low-level representations,
and vice-versa, could also be provided.

4.3 The SmartPM Definition Tool

A process modeling language provides appropriate syntax and semantics to pre-
cisely specify business process requirements, in order to support automated process
verification, validation, simulation and automation. One of the main obstacles in
applying AI techniques to real problems is the difficulty to model the domains.
Usually, this requires that people that have developed the AI system carry out the
modeling phase since the representation depends very much on a deep knowledge
of the internal working of the AI tools. On the contrary, during the realization
of the SmartPM system we took care of the above aspect, and we worked on the
definition of a language (named SmartML) that allow non-experts entering knowledge
on processes through a user-friendly interface. Such knowledge, together with the
business process to be enacted, is automatically translated in Situation Calculus,
IndiGolog and PDDL.

In this section, we aim at describing the main components of the SmartPM
Definition Tool. Specifically, we first present SmartML, our declarative language
used for representing tasks and contextual data linked to a pervasive scenario, and
Eclipse BPMN, a graphical editor that allows to specify business processes using the
BPMN 2.0 notation [7]. Then, we focus on the XML-to-IndiGolog Parser component,
that translates a SmartML specification in a SitCalc Theory (which defines the
initial situation and the set of data fluents and available actions with their pre- and
post-conditions) and the BPMN control flow of the process in a IndiGolog program
corresponding to the process to be executed.

4.3.1 The SmartML Modeling Language

The synthesis of a dynamic process requires a tight integration of process activities
and contextual data in which the process is embedded in. The context is represented
in the form of a Domain Theory D, that involves capturing a set of tasks ti ∈ T
(with i ∈ 1..n) and supporting information, such as the people/agents that may be
involved in performing the process (roles or participants), the data and so forth.

Tasks are collected in a specific repository, and each task can be considered
as a single step that consumes input data and produces output data. Data are
represented through some ground atomic terms v1[y1], v2[y2], ..., vm[ym] ∈ V that
range over a set of tuples (i.e., unordered sets of zero or more attributes) y1, y2,
. . . ym of data objects, defined over some data types. In short, a data object depicts

82 4. The SmartPM System

an entity of interest. Some data types are pre-specified and used for representing
the resource perspective of the process.

For example, in our scenario we need to define data objects for representing
participants (e.g., data type Participant = {act1, act2, act3, act4, rb1, rb2}) and
capabilities (e.g., data type Capability = {extinguisher,movement, . . . hatchet}).

Resource Perspective :

Participant = {act1,act2,act3,act4,rb1,rb2}
Capability = {movement,hatchet,camera,gprs,extinguisher,battery,digger,powerpack}

The data types Participant and Capability are already pre-defined for being
used in the framework, and the Process Designer is only required to provide values
(i.e., to associate data objects) to the above types.

On the contrary, other data types need to be defined for describing the contextual
scenario in which the process will be embedded. In our example, we may need of a
data type Location_type = {loc00, loc10, . . . loc33}) for representing locations in
the area. Moreover, a data type Status_type = {ok, fire, debris} may be defined
for describing if a specific location is on fire or buried by debris.

User-Defined Data Types :

Location_type = {loc00,loc10,loc20,loc30,loc01,loc11,loc02,loc03,loc13,loc23,loc31,
loc32,loc33}
Status_type = {ok,fire,debris}

Under this representation, we consider possible values of a data type as constant
symbols that univocally identify data objects in the scenario of interest. Each tuple
yj may contain one or more data objects belonging to different data types. The
domain dom(vj [yj]) over which a term is interpreted can be of various types:

• Boolean_type: dom(vj [yj]) = {true, false};
• Integer_type: dom(vj [yj]) = {x...y} s.t. x, y ∈ Z ∧ (x <= y);
• Functional: the domain contains a fixed number of data objects of a designated

type.

The data type Boolean_type (and its respective “objects” true and false) and
the type Integer_type are already pre-specified. However, since integer numbers
form a countably infinite set, there is the need to set a lower and an upper bound to
specify which finite subset of integers is relevant for the case to deal with. In the
below example, we are considering the subset of the integers from 0 to 30.

Pre-Defined Data Types :

Boolean_type = {true,false}
Integer_type = {0,1,2,3,4,...,30}

Terms can be used to express properties of domain objects (and relations over
objects), and argument types of a term - taken from the set of data types previously

4.3 The SmartPM Definition Tool 83

defined5 - represent the finite domains over which the term is interpreted. Again,
some terms are pre-specified for being used in the framework. For example, since
each task has to be assigned to a participant that provides all of the skills required for
executing that task, there is the need to consider the participants “capabilities”. This
can be done through a boolean term provides[prt : Participant, cap : Capability]
that is true if the capability cap is provided by prt and false otherwise. At the same
way, a boolean term requires[task : Task, cap : Capability] is needed for specifying
which capabilities are required for executing a specific task6.

Pre-Defined Terms :

provides[prt:Participant,cap:Capability] = (bool:Boolean_type)
requires[task:Task,cap:Capability] = (bool:Boolean_type)

Moreover, we may need boolean terms for indicating if people have been evacu-
ated from a location (e.g., evacuated[loc : Location_type] = (bool : Boolean_type)),
integer terms for representing the battery charge level of each robot (e.g.,
batteryLevel[prt : Participant] = (int : Integer_type)) or for indicating the num-
ber of pictures taken in a specific location (e.g., photoTaken[loc : Location_type] =
(int : Integer_type)), and functional terms for recording the position of each actor
(e.g., at[prt : Participant] = (loc : Location_type)) and robot (e.g., atRobot[prt :
Participant] = (loc : Location_type)) in the area or for representing the updated
situation of each location (e.g., status[loc : Location_type] = (st : Status_type)).
Some terms may be used as constant values, and in this case the set of ar-
guments taken as input by the single term is empty. For example, the term
generalBattery[] = (int : Integer_type) reflects the battery charge level stored
in the power pack and used for recharging the battery of each robot (the term
batteryRecharging[] = (int : Integer_type) indicates the amount of battery that is
charged after each recharging action). The terms moveStep[] = (int : Integer_type)
and debrisStep[] = (int : Integer_type) reflects the amount of battery consumed
respectively after the robot has been moved from a location to another one and after
having removed debris from a specific location.

Finally, terms can also be used for expressing static relations over objects. The
term neigh[loc1 : Location_type, loc2 : Location_type] = (bool : Boolean_type)
indicates all adjacent locations in the area (for example, neigh[loc00, loc01] = true),
while the term covered[loc : Location_type] = (bool : Boolean_type) reflects the
locations covered by the network provided by the fixed antenna.

For each term, the process designer has to decide which ones are relevant for
adaptation and which ones have not to be considered for that. A term that is
considered as relevant for adaptation will be continuously monitored by the PMS,
and if its value becomes different from the one expected after a task execution, the
PMS will provide adaptation features.

5Predefined data types, like Boolean_type and Integer_type, can not be used as arguments of an
atomic term.

6The special data type Task will be defined later and can be used only as argument of the
pre-defined term requires.

84 4. The SmartPM System

Atomic Terms :

Relevant for Adaptation :

at[prt:Participant] = (loc:Location_type)
evacuated[loc:Location_type] = (bool:Boolean_type)
status[loc:Location_type] = (st:Status_type)

Not Relevant for Adaptation :

atRobot[prt:Participant] = (loc:Location_type)
batteryLevel[prt:Participant] = (int:Integer_type)
photoTaken[loc:Location_type] = (int:Integer_type)
generalBattery[] = (int:Integer_type)
batteryRecharging[] = (int:Integer_type)
moveStep[] = (int:Integer_type)
debrisStep[] = (int:Integer_type)
neigh[loc1:Location_type,loc2:Location_type] = (bool:Boolean_type)
covered[loc:Location_type] = (bool:Boolean_type)

In addition to atomic terms, we allow the designer to define complex terms. They
are declared as basic atomic terms, with the additional specification of a well-formed
first-order formula ϕ that determines the truth value for the term. In our case study,
we may need to express that an actor is connected to the network if s/he is in a
covered location or if s/he is in a location adjacent to a location where a robot is
located (and is thus connected through the robot):

isConnected(prt:Participant) {
EXISTS(l1:Location_type, l2:Location_type, rbt:Participant).((at(act)=l1) AND
(Covered(l1) OR (atRobot(rbt)=l2 AND Neigh(l1,l2) AND
isRobotConnected(rbt))))}.

The interpretation of complex terms derives from the corresponding first-order
formula and is enacted at run-time by the IndiGolog interpreter. Formulae can be
negated (NOT) and existentially or universally quantified (EXISTS and FORALL).
A complex term can not appear in task effects and can not involve recursion. On the
contrary, complex terms can be used within a task precondition. The description of
the complex term isRobotConnected is given in the Appendix.

Concerning the definition of process tasks, the process designer is required to
specify which tasks are applicable to the dynamic scenario under study. Those
tasks will be stored in a specific tasks repository, and can be used for composing the
control flow of the process (cf. Section 4.3.2) and for adaptation purposes.

Tasks Repository :

Tasks = {go, move, takephoto, evacuate, updatestatus, extinguishfire, chargebattery}

Each task is annotated with preconditions and effects. Preconditions are logical
constraints defined as a conjunction of atomic terms, and they can be used to
constrain the task assignment and must be satisfied before the task is applied, while
effects establish the outcome of a task after its execution.

Definition 12. A task t[x] ∈ T is a tuple t = (Actt, x, Pret, Efft) that consists of:

4.3 The SmartPM Definition Tool 85

• the name Actt of the action involved in the enactment of the task (it often
coincides with the task itself);

• a tuple of data objects x as input parameters;
• a set of preconditions Pret, represented as the conjunction of k atomic condi-

tions defined over some specific terms, Pret =
∧
l∈1..k pretl . Each pretl can be

represented as {vj [yj] op expr}, where:
– vj [yj] ∈ V is an atomic term, with yj ⊆ x, i.e., admissible data objects

for yj need to be defined as task input parameters;
– An expr can be a boolean value (if vj is a boolean term); an input

parameter identified by a data object (if vj is a functional term); an
integer number or an expression involving integer numbers and/or terms,
combined with the arithmetic operators {+,-} (if vj is a integer term);

– The condition op can be expressed as the equality (==) between boolean
terms or functional terms and an admissible expr. On the contrary, if vj
is a integer term, it is possible to define the op condition as an expression
that make use of relational binary comparison operators (<,>,=,≤,≥)
and involve integer numbers and/or integer terms in the expr field.

• a set of deterministic effects Efft, represented as the conjunction of h atomic
conditions defined over some specific terms, Efft =

∧
l∈1..h efftl. Each efftl

(with l ∈ 1..h) can be represented as {vj [yj] op expr}, where:
– vj [yj] ∈ V and expr are defined as for preconditions.
– The condition op may include assignment expressions to update the values
of integer terms. A numeric effect consists of an assignment operator, the
integer term to be updated and a integer number or a numeric expression.
Assignment operators include (i) direct assignment (=), to assign to a
integer term a value defined by an integer number; (ii) relative assignments,
which can be used to increase (+=) or decrease (−=) the value of a integer
term (additive assignment effects).

Note that if no preconditions are specified, then the task is always executable.
Moreover, the process designer is required to make explicit if a task effect can be
considered as supposed or automatic. A supposed effect indicates that the participant
executing the task has to physically return an outcome for the supposed effect,
that can be or not can be equal to the one declared during the task definition. If
a supposed effect involves a relevant term, it is clear that the outcome returned
assumes a great value for monitoring purposes. Otherwise, an effect can be flagged
as automatic, meaning that when the task terminates, the effect is automatically
applied without the need to consider the task outcomes.

As an example, the task go involves two input parameters from and to of type
Location_type, representing the starting and arrival locations. The participant that
will be assigned for executing the task Go is indicated with PRT . An instance of
this task can be executed only if PRT is currently at the starting location from
and provides the required capabilities for executing the task go. As a consequence of
task execution, the actor moves from the starting to the arrival location, and this is
reflected by assigning to the functional term at[actor] the value to in the effect. The

86 4. The SmartPM System

fact that the effect of the task go is supposed means that after the execution of the
task the participant will return the real outcome indicating her/his final position.
Each task ti ∈ T together with its preconditions, effects and parameters can be
represented as an XML annotation:

Description of the task go :

<task>
<name>go</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[PRT] == from AND isConnected[PRT] == true</precondition>
<effects>

<supposed>at[PRT] = to</supposed>
</effects>

</task>

Let us observe now the taskmoveL̇ike the task go it involves two input parameters
from and to of type Location_type, that represent the starting and arrival locations
given in input to the robot. We want to underline that the participant PRT which
will be assigned to execute a move task will be for sure a robot. This can be inferred
by analyzing the pre-defined terms provides and requires, that will be used by the
PMS for understanding if a specific participant is capable to execute a specific task.

Description of the task go :

<task>
<name>move</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>atRobot[PRT] == from AND batteryLevel[PRT] >= moveStep[] AND

isRobotConnected[PRT] == true
</precondition>
<effects>

<supposed>atRobot[PRT] = to</supposed>
<automatic>batteryLevel[PRT] -= moveStep[]</automatic>

</effects>
</task>

An instance of the task move can be executed only if the robot PRT is currently
at the starting location from and provides enough battery charge for executing the
movement. As a consequence of task execution, the robot moves from the starting
to the arrival location, and this is reflected by assigning to the functional term
atRobot[PRT] the value to in the effect. This first effect of move has been flagged
as supposed, meaning that after the execution of the task the robot will return the
real outcome indicating its final position. However, since atRobot is not considered
as a relevant term (see above), if the final position of the robot will differ with the
one declared at design time, no adaptation is required. The second effect of move is
automatic, and states that after the execution of a move task the battery level of
the robot has to be decreased of a fixed quantity, corresponding to moveStep[].

4.3 The SmartPM Definition Tool 87

We can also represents exogenous events with SmartML. They reflect possible
external events coming from the environment that can modify asynchronously atomic
terms at run-time. In our case study, we can deal with three different exogenous
events:

Exogenous Events :

Ex_events = {photoLost, fireRisk, rockSlide}

The definition of an exogenous event is similar to the classical task definition
provided by SmartML. However, for defining an exogenous event there is no need
to specify any precondition, and effects can only be considered as automatic (i.e.,
they are automatically applied to the involved terms when the exogenous event is
catched). For example, the exogenous event rockSlide(loc) alerts about a rock slide
collapsed in location loc, and its effect concerns to modify the value of the atomic
term [loc] to the value ’debris’.

Description of the exogenous event rockSlide :

<ex-event>
<name>rockSlide</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<effects>

<automatic>status[loc] = debris</automatic>
</effects>

</ex-event>

Finally, we want to underline that the SmartML syntax allows to represent
planning domains and problems with the complexity of those describable in PDDL
version 2.2 [37], that is characterized for enabling the representation of realistic
planning domains. The translation algorithms are described in Section 4.4.

4.3.2 Defining Processes in SmartPM through BPMN

Starting from a domain theory D, the control flow of a dynamic process in SmartPM
can be defined through the BPMN notation. The Business Process Modeling Notation
(BPMN) was released to the public in May 2004 by the BPMI Notation Working
Group and was adopted as OMG standard7 for business process modeling in February
2006. BPMN provides a graphical notation for specifying business processes based
on a flowcharting technique similar to activity diagrams from UML. In January 2001,
the version 2.0 of the language has been released [7]. If compared to the previous
specifications of the language, which provided only verbal descriptions of the graphic
notations elements and modeling rules, BPMN 2.0 received a formal definition in
the form of a meta-model, that defines the abstract syntax and semantics of the
modeling constructs. The BPMN specification also provides a mapping between the
graphic elements of the notation and the underlying constructs of BPEL (Business
Process Execution Language) [95].

7http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/

88 4. The SmartPM System

Formally, in SmartPM we define a dynamic process as as a directed graph
consisting of tasks, gateways, events and transitions between them.

Definition 13. Given a domain theory D and a set of tasks T, a dynamic process
P is a tuple (N,L) where:

• N = T ∪ E ∪W ∪X is a finite set of nodes, such that :
– T is a set of task instances, i.e., occurrences of a specific task t ∈ T in
the range of the dynamic process;

– E is a finite set of events, that consists of a single start event # and a
single end event �;

– W = WPS ∪WPJ is a finite set of parallel gateways, represented in the
control flow with the � shape with a “plus” marker inside.

– X = XES ∪XEJ is a finite set of exclusive gateways, represented in the
control flow with the � shape with a “X” marker inside.

• L = LT ∪ LE ∪ LWP S
∪ LWP J

∪ LXES
∪ LXEJ

is a finite set of transitions
connecting events, task instances and gateways:

– LT : T → (T ∪WPS ∪WPJ ∪XES ∪XEJ ∪ �)
– LE : #→ (T ∪WPS ∪XES ∪ �)
– LWP S

: WPS → 2T

– LWP J
: WPJ → (T ∪WPS ∪XES ∪ �)

– LXES
: XES → 2T

– LXEJ
: XEJ → (T ∪XES ∪WPS ∪ �)

Note that the constructs used for defining a dynamic process are basically a
subset of the ones definable through the BPMN notation. The intuitive meaning of
these structures should be clear: an execution of the process starts at # and ends at
�; a task is an atomic activity executed by the process; parallel splits WPS open
parallel parts of the process, whereas parallel joins WPJ re-unite parallel branches;
exclusive gateways are used to create alternative flows in a process where only one
of the path can be taken on the basis of a given condition. Transitions are binary
relations describing in which order the flow objects (tasks, events and gateways)
have to be performed, and determine the control flow of the dynamic process.

In the SmartPM system, we use the Eclipse BPMN editor8 for defining the control
flow of a dynamic process. The BPMN editor provides visual, graphical editing
and creation of BPMN 2.0 business processes. We have customized the tool for our
needs, by adding the possibility to link domain theories written through SmartML
to the control flow of the process.

Once a process is ready for being executed (i.e., the process designer has completed
the definition of the domain theory and of the process control flow), the last step
before sending the dynamic process to the IndiGolog engine for its enactment consists
in instantiating the domain theory with a starting condition, which reflects different
assignment of values to the atomic terms. We assume complete information about
the starting condition, since the logical framework described in Chapter 3 works

8http://eclipse.org/bpmn2-modeler/

http://eclipse.org/bpmn2-modeler/

4.3 The SmartPM Definition Tool 89

under the closed-world assumption [106]. Basically, this means we force the process
designer to instantiate every atomic term with an admissible value that represent
what is known in the starting state about the dynamic scenario. Specifically, the
starting condition is a conjunction {v1[y1] == val1∧v2[y2] = val2...∧vj [yj] == valj},
where valj (with j ∈ 1..m) represents the j-th value assigned to the j-th atomic term.

4.3.3 The XML-to-IndiGolog Parser

From a technical point of view, a dynamic process built through Eclipse BPMN and
annotated with SmartML is basically a file saved in the XML format that is taken as
input from the XML-to-IndiGolog Parser component, which translates the process
specification in situation calculus and IndiGolog readable formats, in order to make
the process executable by the IndiGolog engine.

We show the rules used for translating the SmartML specification of a dynamic
process in a SitCalc Theory:

• Each data type defined in SmartML, together with its associated data objects, is
converted in a corresponding situation calculus predicate. For example, the pre-
defined data type Participant corresponds to a predicate Service in situation
calculus. The same is valid for the user-defined data types Location_type
and Status_type, which are converted in the corresponding situation calculus
versions, and for the all the tasks stored in the SmartML tasks repository. A
situation calculus predicate Task indicates which tasks will be considered by
the PMS for the process execution and adaptation (if required).

• The SmartML pre-defined terms, such as provides and requires, have again a
corresponding translation as situation calculus predicates.

• Each atomic term will result in a situation calculus data fluent. For all those
terms that are flagged as relevant, an expected fluent is also provided. For exam-
ple, the non relevant term atRobot[prt : Participant] = (loc : Location_type)
will be translated in a situation calculus data fluent atRobotϕ(prt, s), where prt
is the participant (i.e., the robot) associated to the fluent and s is a situation
term. A non relevant data fluent is not monitored for adaptation purposes. On
the contrary, the relevant term at[prt : Participant] = (loc : Location_type)
will be converted in a data fluent atϕ(prt, s) and in an expected fluent
atΨ(prt, s), that will respectively record the physical and expected positions
of prt in every situation s, and are continuously monitored by the PMS.

• Tasks definitions are crucial for expressing situation calculus preconditions
axioms and successor state axioms for each fluent. Let us consider, for example,
the definition of the task go.

<task>
<name>go</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[PRT] == from AND

isConnected[PRT] == true
</precondition>

90 4. The SmartPM System

<effects>
<supposed>at[PRT] = to</supposed>
</effects>

</task>

First of all, the parser analyzes the structure of the XML element <task> for
defining which admissible workitems including the task go can be executed by
the IndiGolog PMS. By analyzing the structure of go, it is clear that it will
require two inputs (specifically, two Location_type elements) and it will return
only an outcome, that is again a Location_type element. This will led the
parser to generate the following code:

∀ (from, to, id) s.t. Identifier(id) ∧ Location_type(from)∧
Location_type(to)⇒ workitem(go, id, [from, to], [to]).

Then, the parser builds the precondition axiom for the task go by scanning
the content of the XML element <precondition>:

Poss(assign(prt, id, go, [from, to], [to]), s)⇔
service(prt) ∧ workitem(go, id, [from, to], [to]) ∧
Atϕ(prt, s) = from ∧ isConnected(prt, s).

Basically, the precondition axiom for the task go states that go can be assigned
to a service prt in situation s if and only if prt is located in from and is
connected to the network. Moreover, the precondition axiom verifies that by
associating at run-time a whatever identifier to the task go with inputs from
and to and expected effect equal to to, it is possible to define an admissible
workitem.
Finally, the parser analyzes all the elements nested in the XML element
<effects>. For each supposed effect, if the atomic term involved in the
effect has been flagged as relevant, then the parser generates a data fluent
for capturing the physical outcome of the task and an expected fluent for
recording the expected value after task execution. In the case of the task go,
the following fluents will be generated:

Atϕ(prt, do(a, s)) = loc ≡(
∃ loc s.t. Location_type(loc) ∧
a = release(prt, id, go, [from, to], [to], [loc])

)
∨(

Atϕ(prt, s) = loc ∧
¬∃ loc′ s.t. Location_type(loc′) ∧
a = release(prt, id, go, [from, to], [to], [loc′]) ∧ (loc′ 6= loc)

)
.

AtΨ(prt, do(a, s)) = to ≡(
∃ loc s.t. Location_type(loc) ∧
a = release(prt, id, go, [from, to], [to], [loc])

)
∨(

AtΨ(prt, s) = to ∧
¬∃ to′, loc s.t. Location_type(loc) ∧ Location_type(to′) ∧
a = release(prt, id, go, [from, to], [to′], [loc]) ∧ (to′ 6= to)

)
.

4.3 The SmartPM Definition Tool 91

When prt terminates the execution of the task go, its final position loc in
situation s is stored in a specific data fluent Atϕ, while the expected fluent
Atψ will assume the desired value to without considering the real outcome of
the task.
If a task description includes automatic effects or supposed effects involving
atomic terms flagged as non relevant, the parser will generate the successor
state axioms only for the data fluents associated to the terms. For example, the
definition of the task move (that instructs a robot to move from a position to
another) involves these two kinds of effects (cf. Section 4.3.1), meaning that the
parser will generate the successor state axioms for AtRobotϕ (cf. Equation 3.19)
and for BatteryLevelϕ (cf. Equation 3.12).

• Each exogenous event formalized through SmartML will be translated in a
corresponding situation calculus exogenous event. Specifically, the parser
analyzes the effects provided by the execution of the exogenous event and
applies it to the involved data fluent. Remember that exogenous events can
only change values of data fluents, by leaving the expected reality untouched.
Sometimes the effects of an exogenous event affect a data fluent for which
there exists another task whose execution can modify the value of the same
fluent. In such a case, the parser needs to combine the effects provided by an
exogenous event with the effects returned after a task execution, by generating
a single successor state axiom for the data fluent involved. For example, let us
consider the SmartML definition of the task takephoto and of the exogenous
event photoLost:

<task>
<name>takephoto</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>at[PRT] == loc AND isConnected[PRT] == true</precondition>
<effects>

<supposed>photoTaken[loc] = true</supposed>
</effects>

</task>

<ex-event>
<name>photoLost</name>
<parameters>
<arg>loc - Location_type</arg>
</parameters>
<effects>
<automatic>photoTaken[loc] = false</automatic>
</effects>

</ex-event>

The task takephoto is used for instructing a service (specifically, a human actor)
PRT to move in a location loc in order to take some pictures. When PRT
terminates the execution of the task takephoto, the physical outcome of the
task is stored in the atomic term photoTaken[loc]. The same happens when an
exogenous event photoLost is captured by the PMS, but in this last case the
atomic term is asynchronously switched to the false value. The parser, which

92 4. The SmartPM System

has already generated a data fluent PhotoTakenϕ, is in charge to associate
a single successor state axiom that reflect every possibility of changing the
fluent:

PhotoTakenϕ(loc, do(a, s)) = true ≡(
∃ qj s.t. a = release(prt, id, takephoto, [loc], [true], [qj]) ∧ (qj = true)

)
∨(

PhotoTakenϕ(loc, s) = true ∧(
(a 6= photoLost(loc)) ∨
¬∃ q′j s.t. (a = release(prt, id, takephoto, [loc], [true], [q′j]) ∧ (q′j = false))

)
.

Consider also that the effect of takephoto is a supposed one, and the involved
term photoTaken has been flagged as relevant. Therefore, the parser generates
an expected fluent PhotoTakenΨ where recording the desired outcome of
takephoto.

PhotoTakenΨ(loc, do(a, s)) = true ≡
∃ qj s.t. a = release(prt, id, takephoto, [loc], [true], [qj]) ∨(
PhotoTakenΨ(loc, s) = true ∧(
¬∃ q′j s.t. (a = release(prt, id, takephoto, [loc], [false], [q′j])

)
.

Clearly the successor state axiom of PhotoTakenΨ is not affected by exogenous
events, since they are though to modify only the physical reality.

• Complex terms are basically first-order formula evaluated on the atomic terms.
They are directly translated in situation calculus abbreviations.

• The initial condition used for instantiating any value of atomic terms in the
domain theory corresponds with the initial situation S0 in IndiGolog.

The XML-to-IndiGolog Parser is also able to convert the control flow of a dynamic
process, defined through the BPMN language, in a valid IndiGolog based process. The
conversion is straightforward, and concerns to map every possible BPMN construct
used for formalizing processes in SmartPM (cf. Section 4.3.2 for the list of admitted
constructs) in a valid IndiGolog construct, as shown in Table 3.1. We omit here
the full translation algorithm, but we refer the reader to [29] for a similar complete
mapping between IndiGolog and WS-BPEL.

4.4 Building the Planning Domain and the Planning
Problem

In order to exploit our planning-based recovery mechanism, every
task/annotation/property associated to a dynamic process needs to be translated
in PDDL. A PDDL definition consists of two parts: the domain and the problem
definition. The planning domain is built when a dynamic process is ready to be
executed, i.e., the process designer has completed the definition of the control flow of
the dynamic process with an associated domain theory represented in the SmartML
language (cf. Section 4.3.1). Specifically, the SmartML domain theory is given as
input to a software module named Domain Builder, that is in charge to convert such
specification in a planning domain that complies with the PDDL 2.2 [37] language,
characterized for enabling the representation of realistic planning domains.

4.4 Building the Planning Domain and the Planning Problem 93

Basically, the Domain Builder starts analyzing the definition of atomic/complex
terms and data types as formalized in the previous sections, and by making explicit
the actions associated to each annotated task stored in the repository linked to
the dynamic process under execution, together with the associated pre-conditions,
effects and input parameters. Basically, the planning domain describes how terms
may vary after a task execution, and reflects the contextual properties constraining
the execution of tasks stored in a specific tasks repository.

In the following, we discuss how a domain theory defined through SmartML can
be translated into a PDDL file representing the planning domain:

• each data type corresponds to an object type in the planning domain;
• boolean terms and complex terms have a straightforward representation as

relational predicates and derived predicates (to model the dependency of given
facts from other facts) in the planning domain;

• integer terms correspond to PDDL numeric fluents, and are used for modeling
non-boolean resources (e.g., the battery level of a robot) in the planning
domain;

• functional terms do not have a direct representation in PDDL 2.2, but may
be replaced as relational predicates. Since an object function f : Objectn →
Object map tuples of objects with domain types Dn to objects with co-domain
type U , it may be coded in the planning domain as a relational predicate P of
type (Dn, U);

• a given task, together with the associated pre-conditions and effects and
input parameters, is translated in a PDDL action schema. An action schema
describes how the relational predicates and/or numeric fluents may vary after
the action execution. In the following, it is shown the PDDL representation of
the task go:

(:action go
:parameters (?x - service ?from - location_type ?to - location_type)
:precondition (and (provides ?x movement) (free ?x)

(at ?x ?from) (isConnected ?x))
:effect (and (not (at ?x ?from)) (at ?x ?to))

)

This task can be executed only if the participant denoted with x is free and
is currently located in his/her starting location from and is connected to the
network. The desired effect turns the value of the predicate at(x, to) to true
and at(x, from) to false, meaning the actor moved in a new location. Let
us note that respect the definition of the task go given with SmartML, the
PDDL version of the task requires to explicitly specify in the preconditions
the capabilities required by a generic service x for executing the specific task
and the information about the availability of the service. Moreover, the list
of arguments is augmented with the information related to the service x that
will execute the task. These information are crucial for allowing the planner
to schedule correctly the task during the building of the plan.

When something relevant happens during the process execution, a new planning
problem is built at run-time on the same planning domain defined above, through

94 4. The SmartPM System

the description of an initial state and of a desired goal. As thoroughly discussed in
Chapter 3, process adaptation is required when it is sensed a misalignment between
Φ(s) (the “wrong” physical reality) and Ψ(s) (the “safe” expected reality). The
Problem Builder takes as input from the Synchronizer the two realities and converts
them in a PDDL planning problem. Specifically:

• for each data type defined in the SitCalc Theory, all the possible object
instances of that particular data type are explicitly instantiated as constant
symbols in the planning problem (e.g., the fact that act1, act2, act3, act4, rb1
and rb2 are Services, loc00, ..., loc33 are Location_type, etc.);

• Basically, the initial state of the planning problem corresponds to the physical
reality that need to be adjusted, plus some information for helping the planner
to build correctly the recovery procedure. The initial state is composed by the
conjunction of all data fluents defined in the SitCalc Theory (that correspond
to PDDL relational predicates or numeric fluents in the planning domain),
and the information concerning which services are possibly free for executing
the tasks in the recovery plan (i.e., if s is the situation where the deviation
has been sensed, for each service srv we need to make explicit which fluent
Free(srv, s) holds). Moreover, for each service srv and capability c defined
in the SitCalc theory, it is required the list of the predicates provides(srv, c)
equal to true.

• the goal state of the planning problem is a logical expression over facts. In our
approach, the goal state is built in order to reflect a safe state to be reached
after the execution of a recovery procedure. Therefore, it is composed by the
conjunction of all the expected fluents (and their corresponding values) in
situation s.

Appendix A shows the complete PDDL code that describes a planning domain
and a planning problem for solving the exception depicted in Fig. 1.3 and 1.4.

Finally, we want to briefly introduce the role of the Translator component.
Basically, it waits for a plan to be synthesized and, when the planner produces the
recovery plan, the Translator converts it in a IndiGolog procedure that is executable
by the IndiGolog PMS. The translation is straightforward, since the planner returns
a sequence of workitems w1, .., wn (i.e., the tasks to be executed together with
their input/outputs and the information about the services that will execute them),
corresponding to an IndiGolog procedure δa = (δa1 ; ...; δan). This procedure is sent
to the Synchronizer component, that will build the adapted process and sends it
back to the PMS.

4.5 SmartPM in Action
In this section, we show some screenshot of the SmartPM system while executing the
process defined in our case study described in Section 1.3. In Fig. 4.3 it is shown the
main window of the Eclipse BPMN modeler, that we use for building the control
flow of our dynamic processes.

A Java module named the SmartML Editor (cf. Fig. 4.4(a)) is used for building
domain theories based on the SmartML specification. The editor allows to load

4.5 SmartPM in Action 95

Figure 4.3. The Eclipse BPMN modeler.

previously saved specifications to be attached to a BPMN process, and to build
new specifications customized on the basis of the designer needs. An Edit menu
(cf. Fig. 4.4(b)) provides some guided masks for driving the user in the definition of
the various objects of the specification. Basically, the editor drives the user inputs
in order to facilitate the creation of a SmartML valid domain theory. The editor
integrates also a syntax checker that verifies on the fly if the current specification is
compliant with the SmartML formal one defined in Section 4.3.1.

a) b)

Figure 4.4. The SmartML editor (a) and the menu for inserting new
terms/tasks/objects/formulae to the specification (b).

Once a process is ready for being executed, a new window is opened for allowing
the process designer to instantiate the starting configuration for the atomic terms

96 4. The SmartPM System

in the domain theory and for binding actual input/output parameters with data
objects provided with SmartML. The SmartML specification plus the BPMN process
is now passed to the XML-to-IndiGolog parser component, that build an IndiGolog
program and passes it to the IndiGolog PMS for the execution. In parallel, the
Domain Builder component builds the PDDL planning domain to be used for a
possible future adaptation of the process.

Figure 4.5. The main window of the IndiGolog PMS

Fig. 4.5 depicts the main window of the IndiGolog PMS showing the log of all
actions exchanged between the PMS and services. In the screenshot, we can identify
an assign action that assigns to service act2 the task go(id_4, [loc00, loc32], [loc32]).

In Fig. 4.6 we show some screenshots representing our Task Handler for executing
tasks. The Task Handler is implemented in Java, by the use of standard Java
2D graphical libraries. Specifically, when the IndiGolog PMS assigns a task to a
service, this event is notified to the selected service through a popup window (cf.
Fig. 4.6(a)). When a service is ready to start a task, it pushes the button Start It,
and a readyToStart action is sent back to the IndiGolog PMS. In Fig. 4.5 we can also
see the presence of a row ========> EXOGENOUS EVENT, that represents the fact
that the PMS has captured the readyToStart action sent by the service. We have
to underline that the actions sent by services to PMS (i.e., the readyToStart and
the finishedTask actions) are recognized by the IndiGolog PMS as “good” exogenous
events. In response, the IndiGolog PMS can command the service to start the task
execution through a start action (cf. the bottom part of Fig. 4.5).

Now, let us suppose that service act1 has been instructed to start the task
go(id_1, [loc00, loc33], [loc33]). Service act1 can choose one of the valid outcomes
(i.e., a list of Location_type data objects) and pushes the button End Task when the

4.5 SmartPM in Action 97

a) b)

c) d)

Figure 4.6. The Work-list Handler of SmartPM.

task is completed (cf. Fig. 4.6(b)). If the outcome provided by act1 is different from
the one expected (meaning it reaches a different location respect the one desired),
the IndiGolog PMS senses the deviation, builds a planning problem that reflects the
gap between physical and expected reality and launches the LPG-TD planner (cf.
Fig. 4.7), which is in charge to synthesize the recovery plan. Note that the deviation
we are analyzing is the same shown in our case study; i.e., we are supposing that
act1 has reached location loc03 rather than location loc33 (cf. Fig. 1.3(b)).

During the synthesis of the recovery plan, every running task is interrupted for
the time required to the planner for building the plan and to the IndiGolog PMS
for executing it (cf. Fig. 4.6(c)). When the planner finds a recovery procedure, it
is passed back to the Synchronization component, that converts it in a executable
IndiGolog process and sends it to the IndiGolog PMS for its enactment.

98 4. The SmartPM System

Figure 4.7. The main window of the LPG-td planner.

Since all the actors/robots need to be continually inter-connected to execute the
process, the Planner finds a recovery procedure that first instructs the robots to move
in specific positions for maintaining the network connection, and then re-assigns the
task go(loc03,loc33) to act1 (cf. Fig. 1.4). In Fig. 4.6(d) it is shown the assignment
of a recovery task to the service rb1. Specifically, service rb1 executes the first task
of the recovery procedure dealing with the deviation (cf. Fig. 1.4(a)).

We conclude this chapter by pointing out that the SmartPM System is a real
working proof-of-concept prototype system that implements our approach to dynamic
process adaptation shown in Section 3. While other approaches and systems rely on
pre-defines rules to specify the exact behaviors when special events are triggered,
here we simply model (a subset of) the running environment and the actions’ effects,
without considering any possible exceptional event. We argue that, in most of
cases, modeling the environment, even in detail, is easier than modeling all possible
exceptions.

99

Chapter 5

Validation

This chapter reports on performance evaluation and system validation activities.
Specifically, in Section 5.1 we first report on experimental evaluation results, in
terms of time needed for automatically adapting the dynamic process taken from
our case study when exceptions of growing complexity arise. Then, in Section 5.2 we
measure the effectiveness of SmartPM in finding recovery procedures by simulating
the execution of thousands of processes instances having different structures of the
control-flows.

5.1 Performances of SmartPM in Computing Recovery
Procedures

In order to investigate the feasibility of the SmartPM approach, we performed some
testing to learn the time amount needed for synthesizing a recovery plan for different
adaptation problems. We made our tests by using the LPG-td planner1 [45]. Such
a planner is based on a stochastic local search in the space of particular “action
graphs” derived from the planning problem specification. The basic search scheme of
LPG-td is inspired to Walksat [118], an efficient procedure for solving SAT-problems.
More details on the search algorithm and heuristics devised for this planner can be
found at [45, 44].

We chose LPG-td as (i) it treats the full range of PDDL2.23 [37] and (ii) even if it
is primarily thought as a satisficing planner, it is able to compute also quality plans
under a pre-specified metric. In fact, LPG-td has been developed in two versions:
a version tailored to computation speed, named LPG-td.speed, which produces
sub-optimal plans, and a version tailored for plan quality, named LPG-td.quality.
LPG-td.speed generates sub-optimal solutions that do not prove any guarantee other
than the correctness of the solution. LPG-td.quality differs from LPG-td.speed

1LPG-td was awarded at the 4th International Planning Competition2 (IPC 2004) as the “top
performer in plan quality”.

3PDDLv2.2 [37] is characterized for enabling the representation of realistic planning domains,
which include (in particular) actions and goals involving numerical expressions, operators with
universally quantified effects or existentially quantified preconditions, operators with disjunctive or
implicative preconditions, derived predicates and plan metrics. However, currently, our formalism
does not allow to represent conditional and universally quantified effects.

100 5. Validation

Table 5.1. Time performances of LPG-td for adaptation problems of growing complexity.

Length of the Problem Avg. time needed for a Avg. length of a Avg. time needed for
recovery proc. instances sub-optimal sol. (sec) sub-optimal sol. a quality sol. (sec)

1 29 6,769 3 7,768
2 36 7,213 3 16,865
3 32 7,846 4 24,123
4 25 8,128 5 37,017
5 21 8,598 8 39,484
6 17 8,736 9 52,421
7 13 9,188 13 73,526
8 12 9,953 14 81,414

basically for the fact that it does not stop when the first plan is found but continues
until a stopping criterion is met. In our experiments, the optimization criteria was
fixed as the minimum number of actions needed for the planner to reach the goal.
Therefore, a quality plan uses the smallest number of actions needed for reaching a
goal state. It is important to underline that satisficing planning is easy (polynomial),
while optimal planning is hard (NP-complete) [54].

The experimental setup was performed with the test case shown in our running
example. We stored in the task repository 20 different emergency management tasks,
annotated with 28 relational predicates, 2 derived predicates and 4 numeric fluents,
in order to make the planner search space very challenging. Then, we provided
185 different planning problems of different complexity, by manipulating ad-hoc the
values of the initial state and the goal in order to devise adaptation problems of
growing complexity.

As shown in Table 5.1, the column labeled as “Length of the recovery procedure”
indicates the smallest number of actions needed for devising a plan of a specific
length. Our purpose was to measure (in seconds) the computation time needed for
finding a sub-optimal solution and a quality solution for problems that require a
recovery procedure of growing complexity. The column labeled as “Average length
of a sub-optimal solution” indicates the average number of actions that compose a
sub-optimal solution for a problem of a given complexity. A sub-optimal solution is
found in less time than a quality one, but generally it includes more tasks than the
ones strictly needed. This means that when the complexity of the recovery procedure
grows, the quality of a sub-optimal solution decreases. For example, as shown in
table 5.1, on 21 different planning problems requiring a recovery procedure of length
5, the LPG-td planner is able to find, on average, a sub-optimal plan in 8,598
seconds (with 3 more tasks, on average) and a quality plan (which consists exactly
of the 5 tasks needed for the recovery) in 39,484 seconds, without the need of any
domain expert intervention. Consequently, the approach is feasible for medium-sized
dynamic processes used in practice4.

5.2 Effectiveness of SmartPM in Adapting Processes

When developing a PMS with automatic adaptation features, an important aspect
that needs to be analyzed concerns the effectiveness of the PMS in executing process

4We did our tests by using an Intel U7300 CPU 1.30GHz Dual Core, 4GB RAM machine.

5.2 Effectiveness of SmartPM in Adapting Processes 101

instances that have different structures. We define effectiveness as the ability of
the PMS of executing every task included in the process control flow by adapting
automatically the process itself if some failure arises, without the need of any manual
intervention of the process designer at run-time.

In order to measure the effectiveness of the SmartPM system in executing dynamic
processes, we simulated the execution of 3600 process instances having different
structure. Starting from tasks repositories with growing sizes, we generated process
instances composed by sequences of tasks or by parallel branches. The simulation
has concerned the testing of:

• 1200 process instances with a control flow composed by a sequence of tasks;
• 1200 process instances with a control flow composed by 3 parallel branches

with tasks to be executed in concurrency;
• 1200 process instances with a control flow composed by 5 parallel branches

with tasks to be executed in concurrency.

Our purpose was to measure the success rate in executing correctly the above process
instances, by automatically adapting them if required. To this end, we developed a
software module named the SmartPM Simulator, which is able to build automatically
IndiGolog processes and SitCalc theories and simulating their execution on the basis
of some customizable parameters:

• Tasks repository size: We allowed the generation of tasks repositories
storing respectively 25, 50 or 75 tasks.

• Number of available services: This parameter indicates the number of
services available in the initial situation for tasks assignment. We fixed this
value to 5 services.

• Maximum number of conditions in tasks preconditions/effects: We
allowed the generation of tasks having a maximum of 5 logical conditions in
the precondition axioms, and a maximum of 5 different outcomes as effects.

• Number of available fluents: We allowed the generation of SitCalc theories
composed by 50 relevant data fluents (meaning that, for each data fluent, the
SmartPM Simulator automatically builds the corresponding expected fluent
for monitoring possible tasks failures). The generated fluents can assume only
boolean values.

• Percentage of failures: This parameter may assume two possible values
(30% or 70%), and affects the percentage of tasks error during the process
execution. For example, if a process instance is composed by 10 tasks, and the
percentage of failures is equal to 70%, this means that 7 tasks will terminate
with some outcomes different from the ones expected, and process adaptation
is required.

• Percentage of capabilities coverage: This parameter can assume two
possible values (30% or 70%), and affects the ability of each available service
to execute the tasks stored in the repository. We assumed that each task is
associated with a unique capability; therefore, if - for example - the tasks
repository stores 75 tasks and the percentage of capabilities coverage is equal
to 30%, this means that each available service will be able to execute at least

102 5. Validation

22 tasks in the repository. Moreover, we assume that for each task in the
control flow there exists at least one service that is able to execute that task.

• Number of tasks in the process control-flow: Given a specific structure
of the control flow, a fixed percentage of capabilities coverage and a fixed
percentage of failures, for each possible size of the tasks repository the SmartPM
Simulator generated 100 process instances with control flows composed respec-
tively by 5, 8, 10, 12, 14, 15, 18, 20, 22, 25 tasks. Tasks composing the control
flow are randomly picked from the tasks repository. For control flows with n
concurrent branches, tasks are organized in a way that allows every branch to
contain at least one task.

Test results are shown respectively in Figures 5.1, 5.2 and 5.3. Each figure
reports a diagram related to the execution of 1200 process instances having (i) a
control flow composed by a sequence of processes (cf. Fig. 5.1) (ii) a control flow
composed by 3 parallel branches (cf. Fig. 5.2) and (iii) a control flow composed by
5 parallel branches (cf. Fig. 5.3). For each diagram, on the y-axis it is reported the
size of the tasks repository, and on the x-axis is indicated the success rate (i.e., the
effectiveness) in executing process instances with specific characteristics.

For example, let us consider the diagram in Fig. 5.1, that shows the effectiveness
of SmartPM in executing processes with a structure composed by a sequence of
tasks. When the size of the tasks repository is fixed to 25 tasks, the 4 colored
bars denote respectively the effectiveness of the system in executing 400 process
instances (each bar reflects the enactment of 100 instances) with a percentage of
capabilities coverage and a percentage of failures varying from 30% to 70%. For
example, the blue bar represents the effectiveness of the system in executing 100
process instances (with a variable dimension of the number of tasks composing the
control flow, see above) with a percentage of failures of 30% and a percentage of
capabilities coverage equal to 30%. According to the results shown in the diagram,
the percentage of success is equal to 80%, meaning that 80 processes between the
100 that was executed have been correctly enacted and terminated, whereas for the
other 20% the system did not found any recovery plan for dealing with the exception,
meaning that a manual support to adaptation was required. The other bars, instead,
indicate the effectiveness of the system by increasing the percentage of failures and
the percentage of capabilities coverage. The analysis of the performed tests put in
evidence some interesting aspects, that are valid for each of the 3 process structures
we tested and for every possible size of the tasks repository:

• When the percentage of failures increases, the effectiveness of the SmartPM
system decreases.

• Given a fixed percentage of failures, to increase the percentage of capabilities
coverage means that the effectiveness of the SmartPM system increases, because
there are more possibilities for a task in the repository to be selected by an
available service.

• In general, to have a large tasks repository helps to increase the effectiveness
of the SmartPM system, since the planner has more possibilities to select tasks
for building a recovery procedure.

Moreover, we also compared the obtained data with the purpose to understand

5.2 Effectiveness of SmartPM in Adapting Processes 103

if the structure of process instances may affect the effectiveness of SmartPM. To this
end, for each possible combination of the percentage of failures with the percentage
of capabilities coverage, we reorganized the collected data by generating 4 further
diagrams that show the effectiveness of SmartPM after executing process instances
whose control flows are composed by sequences of tasks or by parallel branches. The
test results are shown respectively in Figures 5.4, 5.5 and 5.6 and 5.7. For example,
in Fig. 5.5 we are comparing the execution of process instances with a percentage of
failures equal to 30% and a percentage of capabilities coverage fixed to 70%. For
instance, when the size of the tasks repository is equal to 75, the effectiveness of
SmartPM in executing 100 process instances composed by a sequence of tasks is equal
to 85%. The effectiveness decreases if the instances have tasks organized in 3 parallel
branches (84%) and in 5 parallel branches (79%). In general, if the process control
flow contains parallel branches, the effectiveness of the SmartPM system decreases as
the number of parallel branches increases, since possibly more services are involved
at the same time for tasks execution, by letting only few services available for process
adaptation.

To sum, the execution of 3600 process instances with different structures was
a valid test for measuring the effectiveness of SmartPM, that was able to complete
correctly (i.e., without any intervention of domain experts at run-time) 2537 process
instances, corresponding to an effectiveness of about 70,5%. Finally, we want to
underline that the effectiveness of a PMS depends also by the ability of the process
designer in formalizing the domain theory associated to a dynamic process. For
example, by testing our case study (cf. Section 5.1) and by generating randomly
an elevate number of possible failures, the planner was always able to find a proper
recovery procedure and to adapt the process.

104 5. Validation

F
igure

5.1.
Effectiveness

of
Sm

artPM
w
hen

executing
processes

com
posed

by
a
sequence

oftasks.

5.2 Effectiveness of SmartPM in Adapting Processes 105

F
ig
ur
e
5.
2.

Eff
ec
tiv

en
es
s
of

Sm
ar
tP
M

w
he
n
ex
ec
ut
in
g
pr
oc
es
se
s
co
m
po

se
d
by

3
pa

ra
lle

lb
ra
nc
he
s.

106 5. Validation

F
igure

5.3.
Effectiveness

of
Sm

artPM
w
hen

executing
processes

com
posed

by
5
parallelbranches.

5.2 Effectiveness of SmartPM in Adapting Processes 107

Figure 5.4. Measure of the SmartPM effectiveness by comparing process instances having
different structures, with a percentage of capabilities coverage equal to 30% and a
percentage of failures equal to 30%.

Figure 5.5. Measure of the SmartPM effectiveness by comparing process instances having
different structures, with a percentage of capabilities coverage equal to 70% and a
percentage of failures equal to 30%.

108 5. Validation

Figure 5.6. Measure of the SmartPM effectiveness by comparing process instances having
different structures, with a percentage of capabilities coverage equal to 30% and a
percentage of failures equal to 70%.

(d)

Figure 5.7. Measure of the SmartPM effectiveness by comparing process instances having
different structures, with a percentage of capabilities coverage equal to 70% and a
percentage of failures equal to 70%.

109

Chapter 6

Automatic Generation of
Process Templates

Current workflow technology is based on the idea that, in general, there exists an
underlying fixed process that can be used to automate the work. Once identified,
a process is formalized into a process model and automated through a Process
Management System that can execute it repeatedly. Conventional Business Process
Management solutions require us to pre-define a detailed model of the process
(control flow, data and resources) which captures every possible case (i.e., process
instance) to be executed at run-time [142]. This approach works for processes where
procedures are well known, repeatable (the work is done in the same way every
time; i.e., there is enough similarity in executing each process instance) and can
be planned in advance with some level of detail. As it emerges from the discussion
conducted in Chapter 1, the need to deal with knowledge-intensive processes and
dynamic processes and provide support for flexible process management has emerged
as a leading research topic in the BPM domain [105].

In this chapter, we present an approach that allows us to automatically synthesize
a library of process templates starting from a representation of the contextual domain
in which the process is embedded in and from an extensive repertoire of tasks defined
for such a context. A template depicts the best-practice procedure drawn up with
whatever contextual information available at the time; it describes a recommended
control flow for the process that does not only work in a specific state of the world,
but can be enacted in a range of states satisfying the context conditions. In order
to build process templates, we make use of partial-order planning algorithms (aka
POP [140, 90]), which guarantee some interesting properties in the construction of
the template:

• Correctness. Tasks composing the template are contextually selected from a
specific repository and partially ordered in a way consistent with the context
conditions to ensure that the template’s objectives are achieved. Hence, a
template is proven correct relative to the initial state of knowledge about the
context.

• Sound concurrency. A process template has the property of sound concurrency
in the execution of its activities. In fact, concurrent activities of a process
template are proven to be effectively independent one from another (i.e.,

110 6. Automatic Generation of Process Templates

concurrent tasks cannot affect the same data). This means more flexibility
during process execution. At runtime, the most appropriate execution path can
be selected from those allowed by the design time process template definition,
without the risk of interference between concurrent tasks.

• Executability in partially known environments. The use of classical plan-
space algorithms for building the template requires complete knowledge of
the starting state (i.e., it is not admitted that any fact is unknown). Once
synthesized, a template can be executed in several different starting states,
since it (usually) requires a fragment of the knowledge of the starting state to
successfully achieve its objectives. We identify the weakest preconditions of
process templates, and all the states satisfying such preconditions are good
candidates for executing them. In this sense, templates can be enacted in
partially known environments.

We exploit the idea behind POP of representing flexible plans that enables deferring
decisions. Instead of committing prematurely to a complete, totally ordered sequence
of actions, plans are represented as a partially ordered set, and only the required
ordering decisions are recorded. A process template is generated on the basis of
such a partially ordered set of activities, and we are able to identify what knowledge
about the starting state is required for successful template execution. Moreover, we
build step-by-step a library of process template specifications and support efficient
retrieval of appropriate templates in partially known environments.

The rest of the chapter is organized as follows. Section 6.1 introduces a running
example, derived from the main case study presented in Section 1.3. Section 6.2
discusses some preliminary notions around the use of partial-order planning tech-
niques. Section 6.3 introduces the concept of process template. Section 6.4 presents
the general approach used for synthesizing a library of process templates, starting
from a planning domain and a planning problem. Section 6.5 gives some technical
details about the algorithms used for computing process templates. Section 6.6
reports on experimental evaluation results. Section 6.7 discusses related work and
Section 6.8 concludes by discussing benefits, limitations and future developments of
the approach.

6.1 Case Study
Let us consider the emergency management scenario described in Fig. 6.1(a). It
concerns a train derailment and depicts a map of the area (as a 4x4 grid of locations)
where the disaster happened. For the sake of simplicity, we consider the same
contextual information introduced in Section 1.3. Therefore, we have a derailed train
composed of a locomotive (located in loc33) and two coaches (located in loc32 and
loc31 respectively), and a response team sent to the derailment scene. The team
is composed of four actors and two robots, initially located in loc00. If compared
with the scenario introduced in Section 1.3, in this case we do not consider any
information related to the network connection between actors and robots. We also
remember that each process participant provides a set of specific capabilities. For
example, actor act1 is able to extinguish fire and take pictures, while act2 and act3
can evacuate people from train coaches. The two robots, instead, may remove debris

6.1 Case Study 111

Figure 6.1. Area and context of the intervention.

from specific locations. Each robot has a battery and each action consumes a given
amount of battery charge. When the battery of a robot is discharged, actor act4 can
charge it. Fig. 6.1(b) summarizes the above and shows the initial battery charge
level of each robot.

Suppose now that the goal of an incident response plan defined for such a context
is to evacuate people from the coach located in loc32, to extinguish fire in the coach
in loc31 and finally to remove debris from loc33. If compared with the case study
described in Section 1.3, now we do not provide any pre-built incident response plan
for dealing with the disaster scenario. In fact, since the process may be different every
time it is defined because it strictly depends on the actual contextual information
(the positions of actors/robots, the location of every coach, the battery level of robots,
etc.), it is unrealistic to assume that the process designer can pre-define all the
possible process models for dealing with this environment. Moreover, if contextual
data describing the environment are known, the synthesis of a process dealing with
such environment is not straightforward, as the correctness of the process model is
highly constrained by the values (or combination of values) of contextual data.

A simple approach to solving our problem is to build a process as a sequence
of activities, e.g., the sequence of actions shown in Fig. 6.2. However, this solution
is highly “inefficient”, since as many actions are independent, and they could be
executed concurrently to reduce intervention time; e.g., a robot could removing
debris in parallel with the extinguishing of the fire in loc31. But, at the same time,
a process designer that has to design such a process may find difficult to organize
activities for concurrent execution, since each action, for its executability, depends
on the values of contextual data (e.g., a robot needs enough battery charge for
moving into a location and removing debris). Also dependencies between actions
play a key role in the definition of the process model (e.g., in order to evacuate
people at loc32, a robot must have removed the debris beforehand). Finally, a
process designer usually tends to represent more contextual information than that
strictly needed for defining a process. For example, the execution of the process
in Fig. 6.2 does not involve actor act3, meaning that any information concerning
act3 (e.g., its capabilities, its location, etc.) is not required for synthesizing and

112 6. Automatic Generation of Process Templates

Figure 6.2. A process dealing with the scenario of Fig. 6.1(a).

executing the process. In order to overcome the above issues, we propose a solution
that involves exploiting partial-order planning for generating a library of process
templates for different contextual cases. Our templates provide sound concurrency in
the execution of their activities and are executable in partially known environments.

6.2 Partial-Order Planning

Planning systems are problem-solving algorithms that operate on explicit represen-
tations of states and actions. The standard representation language for classical
planners is known as the Planning Domain Definition Language (PDDL(cf. [46])); it
allows one to formulate a problem PR through the description of the initial state of
the world initPR, the description of the desired goal condition goalPR and a set of
possible actions. An action definition defines the conditions under which an action
can be executed, called preconditions, and its effects on the state of the world. The
set of all action definitions Ω is the domain PD of the planning problem. Each action
a ∈ Ω has a precondition list and an effect list, denoted respectively as Prea and
Effa. A planner that works on such inputs generates a sequence of actions (the
plan) that corresponds to a path from the initial state to a state meeting the goal
condition. In this chapter, we represent planning domains and planning problems
making use of PDDL version 2.11(cf. [41]).

In the literature, there exists a wide range of different planning techniques, that
are characterized by the specific assumptions made. In this chapter, we make use
of plan-space planning algorithms. They differ from classical state-space planning
algorithms, that explore only strictly linear sequences of actions directly connected
to the start or goal, by devising totally ordered plans. A plan space is an implicit
directed graph whose nodes are partially specified plans and whose edges correspond
to refinement operations intended to further complete a partial plan, i.e., to achieve
an open goal or to remove a possible inconsistency. In order to demonstrate our
approach, we focus on Partial-Order Planning (POP) algorithms [90, 140], a specific
type of plan-space planning algorithms. POP algorithms take as input a planning
problem defined in PDDL and search the space of partial plans without committing
to a totally ordered sequence of actions. They work back from the goal, by adding
actions to the plan to achieve each subgoal. A tutorial introduction to POP
algorithms can be found in [140].

1PDDL 2.1 is characterized for enabling the representation of realistic planning domains, which
include (in particular) actions with (linear) continuous numeric effects and effects dependent on
the durations of the actions, actions and goals involving numerical expressions, operators with
universally quantified effects or existentially quantified preconditions. However, currently, our
formalism does not allow to handle negative preconditions, disjunctive preconditions and conditional
effects.

6.3 Process Templates 113

Basically, a partial plan is a three-tuple P = (A,O,CL), where A ⊆ Ω is a set
of (ground) actions, O is a set of ordering constraints over A, and CL is a set of
causal links over A. Ordering constraints O are of the form a ≺ b, which is read
as “a before b” and means that action a must be executed sometime before action
b, but not necessarily immediately before. Causal links CL may be represented as
c
p−→ d, which is read as “c achieves p for d” and means that p is an effect of action

c and a precondition for action d. It also asserts that p must remain true from
the time of action c to the time of action d. In other words, the plan may not be
extended by adding a new action that conflicts with the causal link and makes p false
between c and d. Consequently, a precondition without a causal link requires further
refinement to the plan to establish it, and is considered to be an open condition in
the partial plan. Loosely speaking, the open conditions are preconditions of actions
in the partial plan which have not yet been achieved in the current partial plan.
More formally, an open condition is of the form (p, a), where p ∈ Prea and a ∈ A,
and there is no causal link b p−→ a (where b is any action of the partial plan P).

A classical POP algorithm starts with a null partial plan P and keeps refining it
until a solution plan is found. The null partial plan contains two dummy actions a0
≺ a∞ where the preconditions of a∞ correspond to the top level goals goalPR of the
problem, and the effects of a0 correspond to the conditions in the initial state initPR.
Intuitively, a refinement operation avoids adding to the partial plan any constraints
that are not strictly needed for addressing the refinement objective. This is called
the least commitment principle [140]. The main advantage of the least-commitment
philosophy is that decisions about action ordering are postponed until a decision
is forced; constraints are not added to a partial plan unless strictly needed, thus
guaranteing flexibility in the execution of the plan and by possibly permitting actions
to run concurrently. A consistent plan is defined as a plan with no cycles in the
ordering constraints and no conflicts with the causal links. A consistent plan with
no open conditions is a solution [90].

6.3 Process Templates

Our approach for the generation of a process template requires to explicitly model
the contextual knowledge in which the dynamic process is embedded through
some declarative rules (some pre-defined at design time, some known just before
the synthesis of the template) and logical constraints expressed in terms of task
preconditions and effects. Such information are given as input to an external partial-
order planner [90, 140] that will be in charge to build a process template, i.e., a
graph of activities reflecting the dynamic process required for solving the specific
contextual problem. The language we are going to show can be seen as a dialect of
SmartML (cf. Section 4.3.1), that we customized for describing process templates.

The synthesis of a dynamic process requires a tight integration of process activities
and contextual data in which the process is embedded in. The context is represented
in the form of a Domain Theory D, that involves capturing a set of tasks ti ∈ T
(with i ∈ 1..n) and supporting information, such as the people/agents that may be
involved in performing the process (roles or participants), the data and so forth.
Tasks are collected in a specific repository, and each task can be considered as a single

114 6. Automatic Generation of Process Templates

step that consumes input data and produces output data. Data are represented
through some ground atomic terms v1[y1], v2[y2], ..., vm[ym] ∈ V that range over a
set of tuples (i.e., unordered sets of zero or more attributes) y1, y2, . . . ym of data
objects, defined over some data types. In short, a data object depicts an entity of
interest. Under this representation, we consider possible values of a data type as
constant symbols that univocally identify data objects in the scenario of interest.

Example 6.3.1. In our scenario we need to define data objects for representing
participants (e.g., data type Participant = {act1, act2, act3, act4, rb1, rb2}), ca-
pabilities (e.g., data type Capability = {extinguisher,movement, . . . hatchet})
and locations in the area (e.g., data type Location = {loc00, loc10, . . . loc33}).

Each tuple yj may contain one or more data objects belonging to different data
types. The domain dom(vj [yj]) over which a term is interpreted can be of various
types: (i) Boolean: dom(vj [yj]) = {true, false}, (ii) Integer : dom(vj [yj]) = Z, (iii)
Functional: the domain contains a fixed number of data objects of a designated type.
Terms can be used to express properties of data objects (and relations over objects)
and argument types of a term (taken from the set of data types previously defined)
represent the finite domains over which the term is interpreted.

Example 6.3.2. In our example, we may need boolean terms for expressing
the presence of a fire in a location (e.g., fire_free[loc : Location] = (bool :
Boolean)), integer terms for representing the battery charge level of each robot
(e.g., battery_level[prt : Participant] ∈ Z) or functional terms for recording the
position of each actor in the area (e.g., at[prt : Participant] = (loc : Location)).

Moreover, since each task has to be assigned to a participant that provides
all of the skills required for executing that task, there is the need to consider the
participants “capabilities”. This can be done through a boolean term provides[prt :
Participant, cap : Capability] that is true if the capability cap is provided by prt
and false otherwise.

Each task is annotated with preconditions and effects. Preconditions are logical
constraints defined as a conjunction of atomic terms, and they can be used to
constrain the task assignment and must be satisfied before the task is applied, while
effects establish the outcome of a task after its execution. Note that, as shown in
Fig. 6.3(a), our approach treats each task as a “black box” and no assumption is
made about its internal behavior (we consider the task execution as an instantaneous
activity).

Definition 14. A task t[x] ∈ T consists of:

• the name of the action involved in the enactment of the task (it often coincides
with the task itself);

• a tuple of data objects x as input parameters;
• a set of preconditions Pret, represented as the conjunction of k atomic condi-

tions defined over some specific terms, Pret =
∧
l∈1..k pretl . Each pretl can be

represented as {vj [yj] op expr}, where:

– vj [yj] ∈ V is an atomic term, with yj ⊆ x, i.e., admissible data objects
for yj need to be defined as task input parameters;

6.3 Process Templates 115

– An expr can be a boolean value (if vj is a boolean term); an input
parameter identified by a data object (if vj is a functional term); an
integer number or an expression involving integer numbers and/or terms,
combined with the arithmetic operators {+,-} (if vj is a integer term);

– op ∈ {<,>,==,≤,≥} is a relational operator. The condition op can
be expressed as the equality (==) between boolean terms or functional
terms and an admissible expr. On the contrary, if vj is a integer term,
it is possible to define the op condition as an expression that make use of
relational binary comparison operators (<,>,=,≤,≥) and involve integer
numbers and/or integer terms in the expr field.

• a set of deterministic effects Efft, represented as the conjunction of h atomic
conditions defined over some specific terms, Efft =

∧
l∈1..h efftl. Each efftl

(with l ∈ 1..h) can be represented as {vj [yj] op expr}, where:

– vj [yj] ∈ V and expr are defined as for preconditions.
– op ∈ {=,+=,-=} is used for assigning (=) to a term a value consistent

with the expr field or for incrementing (+ =) or decrementing (− =) an
integer term by that value.

Note that if no preconditions are specified, then the task is always executable.
As we will see in Section 6.4, the use of classical partial-order planning techniques for
synthesizing process templates imposes some limitation in the expressiveness of the
language used for defining the Domain Theory D. Specifically, negative preconditions
are not admitted (e.g., the use of the NOT operator is forbidden and all the atomic
conditions that require to evaluate if a boolean term is equal to false will be ignored)
and we assume that all effects are deterministic.
Example 6.3.3. The task Go (cf. Fig. 6.1(c)) involves two input parameters
from and to of type Location, representing the starting and arrival locations,
and an input parameter actor of type Participant representing the first responder
that will execute the task. An instance of this task can be executed only if actor
is currently at the starting location from and provides the required capabilities
for executing the task Go. As a consequence of task execution, the actor moves
from the starting to the arrival location, and this is reflected by assigning to the
functional term at[actor] the value to in the effect.

Modeling a business process involves representing how a business pursues its
objectives/goals. Objectives are represented in terms of a process goal to be satisfied.
The goal may vary depending on the specific Process Case C to be handled. A case
C reflects an instantiation of the domain theory D with a starting condition initC
and a goal condition goalC. Both conditions are conjunctions of ground atomic terms.
We do not assume complete information about the starting condition; this means
we allow a process designer to instantiate only the ground atomic terms necessary
for representing what is known about the starting state, i.e., initC = {v1[y1] ==
val1 ∧ ... ∧ vj [yj] == valj}, where valj (with j ∈ 1..m) represents the j-th value
assigned to the j-th atomic term. Fig. 6.1(b) shows a portion of initC concerning the
scenario depicted in Fig. 6.1(a). The goal is a condition represented as a conjunction
of some specific terms we want to make true through the execution of the process.

116 6. Automatic Generation of Process Templates

Figure 6.3. Task anatomy (a), causality (b) and concurrency (c) in a process model.

Example 6.3.4. For example, in the scenario shown in Section 6.1, the goal has
to be represented as : goalC = {fire_free[loc31] == true ∧ evacuated[loc32] ==
true ∧ debris_free[loc33] == true}.

The syntax of goal conditions is the same as for tasks preconditions. A state is a
complete assignment of values to atomic terms in V. Given a case C, an intermediate
state stateCi

is the result of i tasks performed so far, and atomic terms in V may be
thought of as “properties” of the world whose values may vary across states.

Definition 15. A task t can be performed in a given stateCi
(and in this case we

say that t is executable in stateCi
) iff stateCi

` Pret, i.e. stateCi
satisfies the

preconditions Pret for the task t.

Moreover, if executed, the effects Efft of t modify some atomic terms in V
and change stateCi

into a new state stateCi+1 = update(stateCi
, Efft). The update

function returns the new state obtained by applying effects Efft on the current state
stateCi

. Starting from a domain theory D, a Process Template captures a partially
ordered set of tasks, whose successful execution (i.e., without exceptions) leads from
initC to goalC. Formally, we define a template as a directed graph consisting of
tasks, gateways, events and transitions between them.

Definition 16. Given a domain theory D, a set of tasks T and a case C, a Process
Template PT is a tuple (N,L) where:

• N = T ∪ E ∪W is a finite set of nodes, such that :
– T is a set of tasks instances, i.e., occurrences of a specific task t ∈ T in
the range of the process template;

– E is a finite set of events, that consists of a single start event # and a
single end event �;

– W = WPS ∪WPJ is a finite set of parallel gateways, represented in the
control flow with the � shape with a “plus” marker inside.

• L = LT ∪ LE ∪ LWP S
∪ LWP J

is a finite set of transitions connecting events,
task instances and gateways:
– LT : T → (T ∪WPS ∪WPJ ∪ �) – LE : #→ (T ∪WPS ∪ �)
– LWP S

: WPS → 2T – LWP J
: WPJ → (T ∪WPS ∪ �)

Note that the constructs used for defining a template are basically a subset of
the ones definable through the BPMN notation. Intuitively, an execution of the
process starts at # and ends at �; a task is an atomic activity executed by the
process; parallel splits WPS open parallel parts of the process, whereas parallel
joins WPJ re-unite parallel branches. Transitions are binary relations describing in
which order the flow objects (tasks, events and gateways) have to be performed, and

6.3 Process Templates 117

determine the control flow of the template. A transition l ∈ L is usually represented
as p→ q, where (p, q) ∈ N . This represents the fact that there is a transition from
the flow object p to the flow object q. For n ∈ N , IN(n)/OUT (n) denotes the set
of incoming/outgoing transitions of n, with the following restrictions :

• Only one outgoing/incoming flow may be associated with # and � respectively,
i.e., IN(#) = 0, OUT (#) = 1, IN(�) = 1, OUT (�) = 0

• Each parallel split wPS ∈WPS accepts one incoming flow and more outgoing
flows, i.e., IN(WPS) = 1, OUT (WPS) > 1

• Each parallel join wPJ ∈WPJ accepts more incoming flows and one outgoing
flow, i.e., IN(WPJ) > 1, OUT (WPJ) = 1;

• Every task t ∈ T is connected exactly to one incoming/outgoing flow, i.e.,
IN(t) = 1, OUT (t) = 1.

For example, in Fig. 6.3(b) we have a relation of causality between tasks ta and
tb, stating that ta must take place before tb happens as ta achieves some of tb’s
preconditions. An important feature provided by a process template is concurrency,
i.e., several tasks can occur concurrently. In Fig. 6.3(c) an example of concurrency
between t1 and t2 is shown. In order to represent two or more concurrent tasks in
a template, the process designer makes use of the parallel gateways, that indicate
points of the template in which tasks can be carried out concurrently. A parallel
gateway may act as a divergence element (parallel split WPS) or convergent element
(parallel join WPJ). As a point of divergence, the diamond shape is used when many
tasks have to be carried out at the same time and in any order, which indicates
that all transitions that exit this shape will be enabled together. As a point of
convergence, the diamond shape is used to synchronize paths that exit a divergence
element. This means that a process template is a graph of tasks (i.e., not a sequence)
that imposes a partial order on their execution. A linearization of a process template
is any linear ordering of the tasks that is consistent with the ordering constraints of
the template itself [47]; i.e., a linearization of a partial order is a potential execution
path of the template from the start event # to the end event �. For example, the
template in Fig. 6.3(c) has two possible execution paths r1 = [#; ta; t1; t2; tb;�] and
r2 = [#; ta; t2; t1; tb;�].

Definition 17. Given a process template PT and an initial state stateC0 ` initC, a
state stateCi

is said to be reachable with respect to PT iff there exists an execution
path r = [#; t1; t2; ...tk;�] of PT and a task ti (with i ∈ 1..k) such that stateCi

=
update(update(. . . update(stateC0 , Efft1) . . . , Effti−1), Effti).

Definition 18. A task t1 affects the execution of a task t2 (t1 . t2) iff there exists
a reachable state stateCi

of PT (for some initial state stateC0) such that:

• stateCi
` Pret2

• update(stateCi
, Efft1) 0 Pret2

This means that Efft1 modify some terms in V that are required as preconditions
for making t2 executable in stateCi

.

118 6. Automatic Generation of Process Templates

Definition 19. Given a process template PT, a case C and an initial state stateC0 `
initC, an execution path r = [#; t1; t2; ...tk;�] (where k = |T |) of PT is said to be
executable in C iff:
• stateC0 ` Pret1
• for 1 ≤ i ≤ k − 1, update(stateCi−1 , Effti) ` Preti+1

• update(stateCk−1 , Efftk) = stateCk
` goalC

Definition 20. A process template PT is said to be executable in a case C iff any
execution path of PT is executable in C.

The concept of execution path of a template helps in defining formally the
independence property between concurrent tasks:

Definition 21. Given a process template PT, a task tx is said to be concurrent
with a task tz iff there exist two execution paths r1 and r2 of PT such that r1 =
[#; t1; t2; ...; tx; ...; tz; ...;�] and r2 = [#; t1; t2; ...; tz; ...; tx; ...;�].

Definition 22. Two concurrent tasks t1 and t2 are said to be independent (t1 ‖ t2)
iff t1 7 t2 and t2 7 t1; that is, t1 does not affect t2 and vice versa.

6.4 On Synthesizing a Library of Process Templates
Our approach is focussed on the development and use of a library of process templates.
These are reusable processes that achieve specified goals of interest in a range
of starting states, i.e., any starting state that satisfies the template’s required
preconditions. We claim that in many cases, process template development can be
partially automated through the use of AI planning tools.

Specifically, we focus on the use of a POP-based tool that can synthesize complex
concurrent process models that are hard for humans to develop correctly (it is
difficult for human designers to ensure that concurrent tasks never interfere with
each other). The process designer’s role is to specify the domain and context in
which the template may be executed. Our POP-based tool can then be used to
synthesize some candidate process models for the template. If the tool fails to
generate a process model or the generated processes are of insufficient quality (e.g.,
they are too time consuming, unreliable, or lack concurrency), the designer can refine
the domain theory and case to obtain better solutions. Once a satisfactory template
has been obtained, it is added to the library. The POP-based tool automatically
identifies the required preconditions for the template to achieve its goal, meaning the
template can be reused whenever a case that matches the template’s preconditions
arises.

In a dynamic process domain, there is a wide range of cases/contexts to handle.
New cases often arise and the requirements for the system frequently evolve. The
designer develops and maintains the template library over time, in order to have
templates that handle effectively most the cases that arise. The library also stores the
templates specifications, i.e., their process domains, goals, and initial conditions/cases.
New cases are often variants of existing cases and the designer will be able to adapt
existing domain and case specifications to generate templates for the new cases
using the tool. In the following, we describe an architecture and methodology for
developing such a library-based approach.

6.4 On Synthesizing a Library of Process Templates 119

Figure 6.4. Overview of the general approach.

6.4.1 The General Framework

Our approach to the definition of a process template (cf. Fig. 6.4) requires a
fundamental shift in how one thinks about modeling business processes. Instead
of defining a process model “by hand”, here, the process designer has to address
his/her efforts to specifying the Domain Theory D and the Case C to be handled.
In particular, the process designer has to “guess” the starting condition initC, by
instantiating only some atomic terms, that ones needed for depicting the context the
user has in mind. This means that initC can be partially specified, i.e, not all terms
need to be instantiated with some value. Also the goal condition goalC is required,
since it reflects the target state after having executed the template.

Example 6.4.1. Let us consider the scenario depicted in Section 6.1, represented
with a Domain Theory D1 and a goal condition goalC1 = {fire_free[loc31] ==
true ∧ evacuated[loc32] == true ∧ debris_free[loc33] == true}. Since the
process designer may be interested in an emergency process that involves the
fewest participants, s/he can start by modeling a starting condition initC1 with
information involving only actors act1 and act2 and the robot rb1, while terms
involving act3, act4 and rb2 are not explicitly instantiated in initC1 .

A specific module named PC2PR is in charge of converting the Domain Theory
D and the Case C just defined into the corresponding Planning Domain PD and
Planning Problem PR specified in PDDL version 2.1 (cf. [41]). Basically, PC2PR
implements a function fPC2PR : (D, initC, goalC) → (PD, initPR, goalPR). Since the
use of classical partial-order algorithms for synthesizing the template requires the
initial state of PR to be a complete state, we make the closed world assumption [106]
and assume that every atomic term vj [yj] that is not explicitly specified in initC
is assumed to be false (if vj [yj] is a boolean term) or “not assigned” (if vj [yj] is a
integer or a functional term) in initPR. Technical details of the algorithm employed
in PC2PR are shown in Section 6.5.1.

At the heart of our approach lies a library of process templates built for specific
planning domains and problems/cases. If library templates exist for the current
values of PD and PR, we can retrieve an appropriate template and allow to execute it
through an external PMS. However, if no template exists for the current values of PD

120 6. Automatic Generation of Process Templates

and PR, we can invoke an external POP planner on these same inputs. The planner
will try to synthesize a plan fulfilling the goal condition goalPR. If the planner is
unable to find a plan, this suggests there are some missing elements in the definition
of the Domain Theory D or in the Case C. Hence, to address this particular case,
one can try to refine the case C and add information so that it becomes possible to
generate a plan. There are many ways to strengthen a problem description, such as
adding to the starting condition initC some terms initially ignored (e.g., to specify
the position of every participant), or adding new objects in D or new activities in
T (e.g., if a task for extinguish fire is missing). Our approach assumes that one
specifies the context step-by-step, and requires the process designer to contribute to
the system.

Example 6.4.2. If the planner is invoked with initPR1 (devised by applying fPC2PR
on the triple D1, initC1 , goalC1), it will not be able to find any plan for the specific
problem. This is because rb1 does not have enough battery charge for moving
and removing debris. The designer can try to add new information to the problem
description by instantiating in initC1 all those atomic terms related to actor act4,
the only one able to charge robot batteries, and devises a new starting condition
initC2 (and, consequently, a new initial planning state initPR2). A planner invoked
with initPR2 is finally able to find a consistent plan P1 satisfying goalPR1 .

When the POP planner is able to find a partially ordered plan P consistent
with the actual contextual information, three further steps are required. First of all,
there is the need to translate the plan just found into a template PT that preserves
the ordering constraints imposed by the plan. A solution plan is a three-tuple
P = (A,O,CL) that specifies the causal relationships for the actions ai ∈ A, but
without specifying an exact order for executing them. Since the set of actions A ∈ P
and the set of ordering constraints O over A must be explicitly expressed as nodes
and transitions for the template’s control flow (as well as their intrinsic ordering),
we developed a module POP2PT implementing a function fPOP2PT : P→ PT that takes
as input P and converts it into a template PT. A detailed description of the module
implementing POP2PT is presented in Section 6.5.2.

Example 6.4.3. By applying fPOP2PT to P1, we devise the template PT1
in Fig. 6.5(a). Dashed arrows are causal links that imply an ordering con-
straint between pairs of tasks. For example, the ordering constraint between
Go[act1,loc00,loc31] and ExtinguishFire[act1,loc31] is derived from the fact that
Go has the effect at[act1]=loc31 that is needed by ExtinguishFire as precondition
(i.e., act1 has to be located in loc31 for extinguish the fire in those location).

Secondly, our approach aims to infer the weakest preconditions wPT under which
the process template will achieve its objectives, i.e., to identify the least amount of
information about the starting state that is required for the template to achieve its
goal. The module we use for inferring wPT is called calcWP and works by analyzing
the set of causal links CL computed by the POP planner, to see which logical facts
fk are involved in causal links that originate from the dummy start action a0 and
end in some ak ∈ A. More formally:

∀(clk, fk, ak) s.t. clk = (a0
fk−→ ak) ∈ CL, then fk ∈ wPT. (6.1)

6.4 On Synthesizing a Library of Process Templates 121

Figure 6.5. Templates dealing with the scenario in Fig. 6.1.

This exploits the fact that the effects of a0 ∈ A reflect the “true facts” in the starting
state initPR that are actually used by the plan and ensure that it is executable and
achieves the goal. A first result is that all atomic terms not explicitly instantiated
in initC will correspond to facts assumed to be false in initPR. As the closed world
assumption suggests, false facts do not appear in initPR and are not eligible for being
used as effects of a0. Secondly, by going through causal links as specified by (6.1), it
is possible to identify all logical facts that - although being instantiated in initPR
- are not required by the plan P. Basically, wPT is the conjunction of those facts
strictly required for executing the plan P (and, consequently, the devised template
PT), and is used for devising a new problem PRwp = {wPT, goalPR}.

Example 6.4.4. If we invoke calcWP on the causal links devised from P1, we may
easily infer wPT1 . This means that for executing PT1 (cf. Fig. 6.5(a)) we simply
need to know the positions and capabilities of actors act1, act2, act4 and robot
rb1 ; the other contextual information is not strictly needed for a correct execution
of the template.

Thirdly, after the process template PT has been synthesized starting from P, it
can be stored in our library together with information about the planning domain
PD and abstracted problem PRwp. Specifically, for every different planning domain
PD devised through our approach, there is a pointer to a list of different abstracted
planning problems PRwp used for obtaining consistent plans in previous executions
of our tool, together with the devised process templates. When a process designer
defines a new Domain Theory Dnew and a Case Cnew, the system checks if the
corresponding planning domain PDnew and problem PRnew (obtained by applying
fPC2PR to Dnew and Cnew) are already present in our library. If the library contains
a planning domain PD and an abstracted planning problem PRwp (together with
the associated template PTlib) such that PDnew = PD and goalPR = goalPRnew and
with initPRnew ` wPT, then PTlib is executable respect to PRnew (and therefore

122 6. Automatic Generation of Process Templates

with respect to Cnew). This makes our templates reusable in a variety of different
situations, in which we don’t have complete information about the starting state. At
this point, the process designer may decide to execute through an external PMS the
template PTlib just found, or to refine Dnew and Cnew if PTlib does not fit with the
designer expectations (for example, if the designer wants a template with a higher
degree of concurrency).

Example 6.4.5. Let us suppose that the template shown in Fig. 6.5(a) does
not satisfies at all the process designer, since s/he could add one further robot
rb2 to the scenario in order to increase the degree of parallelism in the tasks
execution. It follows that a new starting condition initC3 including also contextual
information about rb2 can be defined. The associated initial planning state initPR3 ,
together with the original goal condition goalPR1 and the planning domain PD1
are first used for verifying if a previously executed template is already stored
the library. The library returns the template PT1 shown in Fig. 6.5(a), since its
weakest preconditions wPT1 are satisfied by initPR3 (i.e., initPR3 ` wPT1), and goal
condition and planning domain are the same as before. Even if the template in
Fig. 6.5(a) is executable with initPR3 , the designer may try to search for another
plan that (maybe) could exploit the presence of the new robot rb2. The planner
builds a new plan starting from initPR3 , and the associated template PT2 is shown
in Fig. 6.5(b). PT2 requires the presence of one more robot (i.e., robot rb2) and
more contextual information for being executed (so its weakest preconditions wPT2

are “richer” than wPT1), but it provides an higher degree of concurrency in the
execution of its tasks. This means that the process designer can choose which
template is the best for her/his purposes: one with less concurrency in the tasks
enactment but with the fewest participants (cf. Fig. 6.5(a)), or one with more
concurrency but requiring more resources for being executed (cf. Fig. 6.5(b)).

Despite the fact that a template is executable “as is”, it can be seen as an
“intermediate version” of a completely defined process. In fact, the present POP-
based tool cannot be used to synthesize templates involving loops or branching
on conditions, and the designer may develop these manually by customizing the
template to the specifics of the situation. In the future, one could experiment with
more complex AI-planning systems to handle such cases.

6.4.2 Properties

A process template PT guarantees some interesting properties, such as the correctness
of the template with respect to the information available in the starting state, and
the property of sound concurrency, meaning that concurrent activities of a template
are proven to be effectively independent one from another (i.e., they can not affect
the same data).

Definition 23. A process template PT is correct respect to a domain theory D and
a case C iff it is executable in C.

Theorem 5. Given a solution plan P, a process template PT synthesized for P using
our approach is correct for any process case C that satisfies the weakest preconditions
wpPT inferred from P.

6.5 Translation Algorithms 123

The proof of Theorem 1 is straightforward. By definition, a sound planner
generates a consistent plan [140] that leads from an initial state to a goal. Since
we represent the domain theory D and the case C respectively as PDDL planning
domain and problem, the planner synthesizes a plan (i.e., a process template) that
is correct respect to Definition 23. Note that we could also show that the process
template guarantees the achievement of the goal.

A second property we can prove on templates is sound concurrency. Despite the
fact that in a process designed through the rules imposed by data patterns [111]
and workflow patterns [136] the concurrent execution of two or more tasks should
guarantee the consistency of data accessed by the concurrent tasks, in practice this
is often not true. In fact, in complex environments there isn’t a clear correlation
between a change in the context and corresponding process changes, making difficult
to design by hand a process template where concurrent tasks are also independent.
On the contrary, all concurrent tasks of a template synthesized with our approach
are proven to be independent one from another.

Theorem 6. Given a process template PT synthesized with our approach, all con-
current tasks are independent.

Proof. By contradiction, let us suppose that a process template PT has two con-
current tasks t1 and t2 such that t1 ∦ t2. Hence, t1 (or t2) has some effect affecting
the precondition of t2 (or of t1). This means that t1 . t2 or t2 . t1. Since PT has
been synthesized as result of a POP planner, this dependency between t1 and t2
would be represented with a causal link t1

e−→ t2 (or t2
e−→ t1), where e is an effect of

task t1 and a precondition for task t2 (or vice-versa). This causal link requires an
ordering between t1 and t2, meaning they need to be executed (and represented in
the process template) in sequence. But this means that t1 and t2 are not concurrent
tasks, by contradicting the original hypothesis.

6.5 Translation Algorithms
This section is focussed primarily on presenting technical details concerning the
translation algorithms introduced in Section 6.4. Specifically, in the following, we
analyze:

• the module PC2PR used for translating a domain theory D and a process case
C into a planning domain PD and a planning problem PR;

• the module POP2PT used for converting a partially ordered plan P into a process
template PT.

6.5.1 Representing Domain Theories and Process Cases in PDDL

To obtain a process template that handles a Case C, a corresponding PDDL planning
problem definition PR has to be specified. This can be done by mapping initC to
initPR and goalC to goalPR. The planning domain PD is built starting from the
definition of ground atomic terms and data types as shown in Section 6.3, and by
making explicit the actions associated with each annotated task t ∈ T, together
with their pre-conditions, effects and input parameters. Basically, the planning

124 6. Automatic Generation of Process Templates

domain describes how predicates and functions change after an action’s execution,
and specifies the contextual properties constraining the execution of tasks stored in
the tasks repository.

Our framework provides a software module named PC2PR in charge of performing
such a translation, which makes use of PDDL version 2.1 (cf. [41]). In the following,
we discuss how the domain theory D can be translated into a PDDL file representing
the planning domain PD:

• the name and the domain of a data type correspond to an object type in the
planning domain;

• boolean terms have a straightforward representation as relational predicates
(templates for logical facts) in the planning domain;

• integer terms correspond to PDDL numeric fluents, and are used for modeling
non-boolean resources (e.g., the battery charge level of a robot) in the planning
domain;

• functional terms do not have a direct representation in PDDL v2.1, but may
be represented as relational predicates. Since a functional term is a function
f : Objectn → Object that maps tuples of objects with domain types Dn to
objects with co-domain type U , it may be encoded in the planning domain as
a relational predicate P of type (Dn, U);

• a given task, together with the associated pre-conditions, effects and input
parameters, is translated into a PDDL action schema. An action schema
describes how the relational predicates and/or numeric fluents change after
the action’s execution. For example, given the following XML specification of
the task Go ∈ T (with respect to the language provided in Section 6.3):

<task>
<name>Go</name>
<parameters>

<arg>prt - Participant</arg>
<arg>from - Location</arg>
<arg>to - Location</arg>

</parameters>
<precondition>at[prt] == from AND

provides[prt,movement] == true
</precondition>
<effect>at[prt] = to</effect>
</task>

the module PC2PR produces the following PDDL representation:
(:action go
:parameters (?prt - participant ?from - location

?to - location)
:precondition (and ((at ?prt ?from)

(provides ?prt movement)))
:effect (and (forall (?loc - location) (not (at ?prt ?loc)))

(at ?prt ?to))

This task can be executed only if the actor denoted by prt is not currently
located in the target location to (and is located in his/her starting location
from) and is able to move into the area. The desired effect turns the value
of the predicate at(prt, to) to true and at(prt, from) to false, meaning the
actor moved to the new location.

6.5 Translation Algorithms 125

The planning problem PR is built by translating initC into initPR and goalC into
goalPR :

• for each data type defined in the planning domain, all the possible object
instances of that particular data type are explicitly instantiated as constant
symbols in the initial state of the planning problem (e.g., the fact that act1,
act2, act3, act4, rb1 and rb2 are Participants, and that loc00, ..., loc33 are
Locations);

• a representation of the initial state of the planning problem is needed. Basically,
the initial state of the planning problem initPR is composed of a conjunction of
relational predicates (representing functional and boolean terms in initC) and
the initial value of each numeric fluent (e.g., the value of the battery charge
level for each robot), corresponding to the values of integer terms in initC;

• the goal condition of the planning problem is a logical expression over facts,
which partially specifies the state to be reached after the execution of the
process template. Again, it is a condition represented as a conjunction of
relational predicates and numeric fluent atoms representing the specific boolean,
functional and integer terms we want to make true through the correct execution
of the process template (as defined in goalC).

6.5.2 Translating a Partially Ordered Plan P into a
Process Template PT

Once the plan P has been synthesized, it needs to be translated in a process template
PT. As explained in Section 6.2 , a solution plan is a three-tuple P = (A,O,CL),
where A is the set of actions appearing in the plan, O and CL are respectively
the set of ordering constraints and of causal links over A. Since the set of actions
A composing the plan and the set of ordering constraints O over A require to be
explicitly expressed as nodes and transitions of the template’s control flow (as well
as their intrinsic ordering), we have implemented a module named POP2PT2 that
takes as input a solution plan P and converts it into a process template PT.

We provide two algorithms - named respectively “FindPREC/NEXT ” (cf. Al-
gorithm 1) and “BuildPT” (cf. Algorithm 2) - to be executed sequentially for
automatically computing process template PT. For each planning action ai ∈ A,
Algorithm 1 is in charge of detecting which actions “directly” precede and follow
ai in the plan. This information will be crucial for instantiating the transitions
between the flow objects of the process template. However, this knowledge is not
directly available in O. In fact, an ordering constraint a ≺ b between two actions
a ∈ A and b ∈ A indicates that a must be executed sometime before action b, but
not necessarily immediately before. Algorithm 1, for each action ai ∈ A, builds two
sets containing the actions that immediately precede ai (the set PREC(ai)) and
immediately follow ai (the set NEXT (ai)).

Definition 24. Given an ordering constraint (a ≺ b) ∈ O between two actions
a ∈ A and b ∈ A, we say that a directly precedes b and b directly follows a iff
no further action c ∈ A exists such that a ≺ c and c ≺ b.

2The software implementing POP2PT is available at http://www.dis.uniroma1.it/~marrella/
documents/phd_thesis/templates/POP2PT.zip

http://www.dis.uniroma1.it/~marrella/documents/phd_thesis/templates/POP2PT.zip
http://www.dis.uniroma1.it/~marrella/documents/phd_thesis/templates/POP2PT.zip

126 6. Automatic Generation of Process Templates

Figure 6.6. Overview of the working of the Algorithm FindP REC/NEXT .

Basically, for each ordering constraint ok = (ai ≺ aj)3 ∈ O, the algorithm
FindPREC/NEXT works as follows:

• if there does not exist any planning action ah 6= aj that precedes ai - i.e.,
such that (ah ≺ ai) ∈ O - then the only predecessor of ai is the dummy
start action a0. Therefore, a0 is added to the set of predecessors of ai (i.e.,
PREC(ai) = PREC(ai) ∪ {a0}) and ai is added to the set of successors of a0
(i.e., NEXT (a0) = NEXT (a0) ∪ {ai}).

• if there does not exist any planning action ah 6= ai that follows aj - i.e.,
such that (aj ≺ ah) ∈ O - then the only successor of aj is the dummy end
action a∞. Therefore, aj is added to the set of predecessors of a∞ (i.e.,
PREC(a∞) = PREC(a∞) ∪ {aj}) and a∞ is added to the set of successors
of aj (i.e., NEXT (aj) = NEXT (aj) ∪ {a∞}).

• if there does not exist any planning action ah 6= ai that precedes aj - i.e.,
such that (ah ≺ aj) ∈ O - then ai directly precedes aj (and aj directly
follows ai), meaning that PREC(aj) = PREC(aj) ∪ {ai} and NEXT (ai) =
NEXT (ai) ∪ {aj}.

• if there exists a planning action ah 6= ai that precedes aj - i.e., such that (ah ≺
aj) ∈ O - but there does not exist any finite sequence of actions a1, a2, ..., an
such that (ai ≺ ... ≺ a1 ≺ a2 ≺ ... ≺ an ≺ ... ≺ ah), then ai directly precedes
aj (and aj directly follows ai), meaning that PREC(aj) = PREC(aj) ∪ {ai}
and NEXT (ai) = NEXT (ai) ∪ {aj}.

Starting from the two sets just computed, the algorithm BuildPT is in charge of
building the process template PT, by instantiating the tasks, gateways, events and
transitions between them. For every action a ∈ A, a corresponding task instance
ta ∈ T (basically, a task instance is an occurrence of a specific task t ∈ T) is generated
(cf. the function taskify in Algorithm 2). Transitions between tasks depend on the
number of predecessors/successors contained in PREC(a)/NEXT (a). In particular,
if an action b ∈ A is such that b ∈ PREC(a) or b ∈ NEXT (a), it is clear that there
must be some kind of transition between ta and tb in PT:

• if b is the only successor of a, and a is the only predecessor of b (cf. Fig. 6.6(a)),
then (ta → tb) ∈ LT (cf. Fig. 6.6(b));

• if a is the only predecessor of b, but b is not the only successor of a (cf.
Fig. 6.6(c)), then a parallel split wPS ∈ WPS is needed between ta and tb.
Hence (ta → wPS) ∈ LT and (wPS → tb) ∈ LWP S

(cf. Fig. 6.6(d));
3Before the execution of the algorithm, all the ordering constraints involving the dummy start

action a0 and the dummy end action a∞ are removed from O.

6.6 Experiments 127

• if b is the only successor of a, but a is not the only predecessor of b (cf.
Fig. 6.6(e)), then a parallel join wPJ ∈ WPJ is needed between ta and tb.
Hence (ta → wPJ) ∈ LT and (wPJ → tb) ∈ LWP J

(cf. Fig. 6.6(f));
• if ta is not the only predecessor of tb and tb is not the only successor of ta (cf.

Fig. 6.6(g)), then a parallel split wPS ∈WPS and a parallel join wPJ ∈WPJ

are needed between ta and tb. Hence (ta → wPS) ∈ LT , (wPS → wPJ) ∈ LWP S

and (wPJ → tb) ∈ LWP J
(cf. Fig. 6.6(h)).

Finally, if an action a ∈ A has no predecessors/successors (i.e., the set
PREC(a)/NEXT (a) is empty), this means that ta must be connected with the
start event # and end event �.

6.6 Experiments
To show the feasibility of the approach, we ran some experiments and measured
the time required for synthesizing a partially ordered plan for some variants of our
running example described in Section 6.1. We ran our tests using POPF2 [19], which
is a temporal planner that handles PDDL 2.1 [41] and preserves the benefits of
partial-order plan construction in terms of producing makespan-efficient, flexible
plans. Search in POPF2 is based around the idea of expanding a partial-order plan
in a forward direction; steps added to the plan are ordered after a subset of those in
the partial plan, rather than after every step in the plan so far. We conducted the
experiments on a Intel U7300 CPU 1.30GHz Dual Core, 4GB RAM machine.

The experimental setup was run on variants of the test case shown in our running
example. We represented 7 planning actions in PD (corresponding to 7 different
emergency management tasks stored in the tasks repository T), annotated with 7
relational predicates and 6 numeric fluents, in order to make the planner search space
sufficiently challenging. Then, we defined 18 different planning problems of varying
complexity by manipulating the number of facts in the goal. As well, we examined
how irrelevant domain knowledge affects the performance of the planner. Starting
from a planning problem PR with an initial state initPR completely specified and
with a goal condition goalPR expressed as the conjunction of n facts, we manipulated
the specification of the initial state initPR to reduce the number of known facts.
In our experiments, the number of facts in goal condition ranges from 1 single
fact to a conjunction of 6 logical facts (that make the contextual problem harder).
As shown in Table 1, for a given goal condition composed of n facts, our purpose
was to measure the computation time needed for finding a sub-optimal solution
for problems specified with starting states with a decreasing amount of knowledge.
The column labeled as “Knowledge in initPR” makes explicit which information is
removed from the initial state of the planning problem with a given goal condition
goalPR. For example, if we consider our running scenario from Section 6.1, whose
goal condition is composed of 3 facts and characterized by a complete specification
of the starting state, the time needed for finding a solution plan is of 0.13 seconds.
After removing from the initial state all the information concerning the actor act3,
the time required for computing the plan decreases to 0.11 seconds. In general, for a
given goal condition, removing “irrelevant information” from the initial state reduces
the search space and the computation required for synthesizing the plan. It is also

128 6. Automatic Generation of Process Templates

Algorithm 1: FindPREC/NEXT - Find actions predecessors and successors
Data:

• A : the set of actions appearing in the final plan P, including dummy actions
a0 and a∞.

• O : the set containing the ordering constraints returned by the planner, in the
form ok = (ai ≺ aj), with (ai, aj) ∈ A. Ordering constraints that involve a0
and a∞ are removed.

• NEXT (ai) : a set containing the list of successors of the i-th action ai ∈ A.
• PREC(ai) : a set containing the list of predecessors of the i-th action ai ∈ A.
• k : an integer number, used as counter for the ordering constraints.
• lenght(S) : returns the size of a set S.
• add(a, S) : inserts an action a into a set S.

Result: for each ai ∈ A, it returns NEXT (ai) and PREC(ai)
Init :

k = 0
for each ai ∈ A do

NEXT(ai) = ∅
PREC(ai) = ∅

begin
while k < lenght(O) do

take the k-th ordering constraint, ok = (ai ≺ aj) from O
start scanning the O set
if @ (ah ∈ A) : ah 6= aj ∧ (ah ≺ ai ∈ O) then

add(ai, NEXT (a0));
add(a0, PREC(ai));

if @ (ah ∈ A) : ah 6= ai ∧ (aj ≺ ah ∈ O) then
add(a∞, NEXT (aj));
add(aj , PREC(a∞));

if @ (ah ∈ A) : ah 6= ai ∧ (ah ≺ aj ∈ O) OR
∃ (ah ∈ A) : ah 6= ai ∧ (ah ≺ aj ∈ O) AND @ any finite sequence of
actions a1, a2, ..., an such that
(ai ≺ ... ≺ a1 ≺ a2 ≺ ... ≺ an ≺ ... ≺ ah) then
add(aj , NEXT (ai));
add(ai, PREC(aj));

else
do nothing, because it means that ai ≺ ah ≺ aj . The ordering
constraint ai ≺ ah will be considered in a future iteration of the
algorithm.

k++

6.6 Experiments 129

Algorithm 2: BuildPT - Build Process Template
Data:

• A : the set of actions appearing in the final plan, including a0 and a∞.
• L = LT ∪ LE ∪ LWP S

∪ LWP J
is a finite set of transitions connecting events, task instances and

gateways. Initially it is empty.
• NEXT (ai)/PREC(ai) : a set with the list of successors/predecessors of ai.
• lenght(S) : returns the size of a set S.
• insert(x, S) : given an element x and a set S, if x /∈ S inserts x into S.
• taskify(a) : given a planning action a ∈ A, it generates a corresponding task instance ta ∈ T .

begin
for each ai ∈ A do

tai = taskify(ai)
if lenght(PREC(ai)) > 1 then

for each aq ∈ PREC(ai) do
taq = taskify(aq)
if lenght(NEXT (aq)) > 1 then

insert({w_splitq → w_joini}, LWP S
)

else
insert({taq → w_joini}, LT)

insert({w_joini → tai}, LWP J
)

else
if lenght(NEXT (aq)) > 1 (let aq be the only predecessor of ai) then

if lenght(PREC(aq)) > 0 then
insert({w_splitq → tai}, LWP S

)
else

insert({#→ w_splitq}, LE)
insert({w_splitq → tai}, LWP S

)

else
if lenght(PREC(aq)) > 0 then

insert({taq → tai}, LT)
else

insert({#→ tai}, LE)

if lenght(NEXT (ai)) > 1 then
for each aj ∈ NEXT (ai) do

taj = taskify(aj)
if lenght(PREC(aj)) > 1 then

insert({w_splitq → w_joini}, LWP S
)

else
insert({w_spliti → taj }, LWP S

)

insert({tai → w_spliti}, LT)
else

if lenght(PREC(aj)) > 1 (let aj be the only successor of ai) then
if lenght(NEXT (aj)) > 0 then

insert({tai → w_joinj}, LT)
else

insert({tai → w_joinj}, LT)
insert({w_joinj → �}, LWP J

)

else
if lenght(NEXT (aj)) > 0 then

insert({tai → taj }, LT)
else

insert({tai → �}, LT)

130 6. Automatic Generation of Process Templates

Table 6.1. Time performances of POPF2.

Facts in goalPR Knowledge in initPR Time for a sub-opt. sol.

1
complete state 0.17

No information about act1 0.15
No information about act1 and act3 0.12

2
complete state 0.12

No information about act3 0.10
No information about act3 and rb1 0.08

3
complete state 0.13

No information about act3 0.11
No information about act3 and rb2 0.09

4
complete state 0.21

No information about act3 0.20
No information about act3 and rb1 0.10

5
complete state 0.17

No information about act3 0.16
No information about act3 and rb1 0.10

6
complete state 1.56

No information about act3 1.19
No information about act3 and act1 1.13

interesting to note that a sub-optimal solution includes more actions than those
strictly required for fulfilling the goal condition. In particular, when the number of
facts in a goal condition increases, the quality of the sub-optimal solution produced
typically decreases. Based on our experiments, the approach seems quite feasible for
medium-sized dynamic processes as used in practice.

6.7 Related Work
Process modeling is the first and most important step in the BPM lifecycle [142], which
intends to provide a high-level specification of a business process that is independent
from implementation and serves as a basis for process analysis, automation, and
verification. The task of defining a model is often performed with the aid of tools
that provide a graphical representation, but without any automatic generation of the
process model. However in recent years, numerous AI planning-based approaches
have been devised for the latter, and the closest to our approach are [43, 99, 40].
[43] presents the basic idea behind the use of planning techniques for generating a
process schema, but no implementation seems to be provided, and the direct use of
the PDDL language for annotating tasks and specifying the domain theory requires
a deep understanding of AI planning technology.

In [99], the authors exploit the IPSS planner [101] for modeling processes in
SHAMASH [3], a knowledge-based system that uses a rule-based approach. To
automate the process model generation, they first translate the semantic repre-
sentation of SHAMASH into the IPSS language. Then, IPSS produces a parallel
plan of activities that is finally translated back into SHAMASH and is presented
graphically to the user. This work proposes the scheduling of parallel activities (that
implicitly handle time and resource constraints), meta-modeling that deals with
planning explicitly, and suggests that learning could be used for process optimization.
However, the emphasis here is on supporting processes for which one has complete
knowledge. This assumption does not always hold for dynamic processes, where
some contextual information may not be available at the time of process model

6.8 Conclusion 131

synthesis. The work of [40] proposes a new life cycle for workflow management
based on the continuous interplay between learning and planning. The approach
is based on the use of machine learning algorithms for inferring pre-conditions and
effects of activities, and generate a partially-ordered execution plan (i.e., a process
model with concurrent branches) that complies to these rules. An interesting result
concerns the possibility of producing process models even though the activities may
not be accurately described. In such cases, the authors use a best-effort planner
that is always able to create a plan, even though the plan may be incorrect. By
refining the preconditions and effects of planning actions, the planner will be able to
produce several candidate plans, and after a finite number of refinements, the best
candidate plan (i.e., the one with the lowest number of unsatisfied preconditions)
may be chosen and translated into a process model. Unfortunately, this approach
has not been very successful, as the best plan typically moves further and further
away from the correct solution.

6.8 Conclusion
In this chapter, we developed a technique based on partial-order planning algorithms
and declarative specifications of process tasks for synthesizing a library of concurrent
process templates to be enacted in partially specified contextual scenarios. Char-
acteristic of these processes is the role of contextual data acting as a driver for
process modeling. We are currently working on a complete implementation and
thorough validation of the whole approach, including the formalization of metrics for
evaluating process templates’ quality. A future direction for this work is to generate
hierarchical process templates, with high-level templates achieving more general
goals that can invoke simpler templates to achieve some of their subgoals. We also
plan to address expressiveness limitations, such as handling preferences, representing
negative preconditions (negative literals in goals and preconditions are not supported
by most POP planners, including POPF2) and tasks with context-dependent effects.

133

Chapter 7

Recovering Dynamic Processes
in YAWL

The need to automatically adapt processes in response to exceptions, events and
contextual changes has emerged as a leading issue, both in dynamic and pervasive
scenarios and in processes with a varying degree of structuring (cf. Section 1.2). In
order to demonstrate the general validity of the approach for automatic adaptation
proposed in Chapter 3, a further direction of the author’s research activity was to
integrate such an approach into YAWL [124], that is among the most well-known
PMSs coming from academia. To this end, our contribution has been twofold:

• In [80] we contextualize and demonstrate our adaptation approach in the
service-oriented environment provided by the YAWL system. We leverage
the Flexibility as a Service approach [129] to obtain a complete integration
between YAWL and SmartPM by designing and implementing a so-called
YAWL Custom Service [133], named the SmartPM Service. At design time,
the process designer is thus able to associate atomic tasks in the YAWL
specification with the SmartPM Service. Atomic tasks defined in YAWL
may be decomposed into complex sub-processes defined for the SmartPM
environment. At runtime the service is then able to check-out a work-item
and execute the corresponding subprocess. When a subprocess is executed in
SmartPM, the automatic adaptivity features are exploited in order to react
to exogenous events and to progress the subprocess. Upon completion of a
subprocess, control is passed back to the YAWL environment along with any
data that was produced.

• In [81] we rely on the modeling capabilities provided by the YAWL language and
on the process enactment and exception handling capabilities provided by the
YAWL environment, and we propose significant extensions at both the modeling
and architectural level. Specifically, we introduce and define Planlets, as
self-contained YAWL specifications where process tasks are annotated at design-
time with pre-conditions, desired effects and post-conditions. In the presence
of an exception, this approach allows delegating to an external planner the
automatic run-time synthesis of a suitable recovery procedure by contextually
selecting the compensation tasks from a specific repository linked to the
Planlet under execution.

134 7. Recovering Dynamic Processes in YAWL

Figure 7.1. The YAWL process defined for a train derailment scenario (a), in which the
composite task “Manage Emergency in the Area” is a dynamic process (b).

For describing the two approaches, we have considered again a motivating example
drawn from an emergency management setting (cf. Section 7.1). It clearly represents
an application scenario for which it is unrealistic to assume that all exceptional
situations, as well as required exception handlers, can be anticipated at design-time
and thus be incorporated a priori into the pre-specified process model.

The rest of the chapter is organized as follows. In Section 7.2 we briefly focus on
the exception handling approach implemented in the YAWL system, as presented
in [124]. In Section 7.3 we show how the YAWL environment (and its imperative
modeling approach) can be complemented with our SmartPM execution environment
that exploits a declarative modeling approach to deal with environmental changes
and exceptions in process executions. In Section 7.4 we provide an in-depth discussion
and concrete design and implementation proposal of how the YAWL architecture can
be extended to support Planlets and to integrate planning capabilities. Finally,
Section 7.5 discusses limitation and future developments of the approach.

7.1 Running Example

As an application scenario, we consider again an emergency management process
defined for train derailments. The corresponding YAWL process to be executed is
shown in Figure 7.1(a). The process starts when the railway traffic control center
receives an accident notification from the train driver and collects some information
about the derailment, including the train ID code, the GPS location and the number
of coaches and passengers. Then it could be required to cut off the power in the
area and to interrupt the railway traffic near the derailment scene. In parallel, after
having collected additional information about the train (e.g., security equipment)
and about emergency services available in the area, an emergency response team
can be sent to the derailment scene.

Collected information is used for defining and configuring at run-time an incident
response plan, defined by a contextually and dynamically selected set of activities to
be executed on the field by first responders. Such activities are abstracted into the

7.2 The YAWL Architecture 135

Figure 7.2. The YAWL architecture.

composite task1 “Manage Emergency in the Area” (cf. Fig. 7.1(b)). The subnet is
composed by three parallel branches with tasks that instruct first responders to act
for evacuating people from train coaches, to take pictures and to assess the gravity
of the accident.

Note that the YAWL sub-process defined in Figure 7.1(b) corresponds to the
same process used as case study in Section 1.3. For the sake of simplicity, we also
consider the same contextual information and scenario shown in Figure 1.2(b) and
described in Section 1.3.

7.2 The YAWL Architecture

The YAWL system, like the majority of classical PMSs, allows to define stable and
well-understood processes and offer adequate support as long as the processes are
structured and do not require much flexibility. The exception handling capabilities
provided by YAWL were designed and implemented starting from the the conceptual
framework for workflow exception handling presented in [113]. In order to understand
how exceptions are detected and handled in YAWL we refer to the architecture2 in
Figure 7.2.

At design-time, the process designer identifies the possible events that may
result in deviations from the expected process execution at run-time, and defines
both the detection and exception handling strategies. To date, YAWL3 is able
to deal with eight different types of exceptions, i.e., case-level and workitem-level
pre/post-execution constraints violations, case-level and workitem-level externally
triggered exceptions, timeouts and unavailability of resources.

1A composite task is a container for another YAWL sub-net, with its own set of elements.
2The picture refers to the architecture defined in [124].
3We refer to the final release of YAWL 2.1.

136 7. Recovering Dynamic Processes in YAWL

For each exception that can be anticipated, it is possible to define an exception
handling process, named exlet, which includes a number of exception handling
primitives (for removing, suspending, continuing, completing, failing and restarting
a workitem/case) and one or more compensatory processes in the form of worklets
(i.e., self-contained YAWL specifications executed as a replacement for a workitem or
as compensatory processes). Exlets are linked to specifications by defining specific
rules (through the Rules Editor graphical tool), in the shape of Ripple Down Rules
specified as if condition then conclusion, where the condition defines the exception
triggering condition and the conclusion defines the exlet.

At run-time, exceptions are detected and managed by the Exception Service, a
sub-service of the Worklet Service. The Exception Service is notified by the engine
via Interface X of exception triggering events (which include timeouts, resource
unavailabilities and notifications fired when a case/workitem begins/ends in order
to check pre/post-execution constraints) that may result in an exception4. For each
event notification, the service determines whether an exception has occurred and, if
so, it executes the corresponding exlet. Exception handling primitives are directly
executed invoking the corresponding methods (for removing, suspending, etc. a
workitem/case) provided by the engine-side of Interface X. If the exlet includes a
compensation worklet, the Exception Service first retrieves it from the repository,
then loads it into the engine via Interface A and finally starts it via Interface B. The
worklet is then executed by the engine as a new separate case, possibly in parallel
with the parent case if it was not suspended by the exlet.

7.3 Making YAWL and SmartPM interoperate

The service-oriented approach that characterizes the architecture of YAWL makes the
system easily extendable and provides direct support for implementing the Flexibility
as a Service approach [129]. In YAWL the engine manages running cases, but is
not directly responsible for task executions. Resources, entities and systems able to
execute tasks are abstracted as services that interact with the YAWL engine via a
set of interfaces. Specifically, the interaction between the engine and the Custom
Services mainly occurs through Interface B (cf. Figure 7.2).

At design-time each atomic task in a YAWL specification can be associated
with a so-called Custom Service [133] (e.g., the Default Worklist Handler/Resource
Service, the Worklet Service, the Declare Service, etc.) that at run-time is responsible
for task execution according to its internal logic. To this end, we designed and
implemented a Custom Service, named SmartPM Service, that allows the YAWL
execution environment to delegate the execution of sub-processes and activities to
the SmartPM execution environment which is able to automatically adapt a process
to deal with emerging changes and exceptions. As shown in Figure 7.3, the SmartPM
Service allows the interaction between the two environments.

The SmartPM Service enables the decomposition of YAWL tasks into processes
to be executed by SmartPM. At design-time, the process designer is thus able to
associate atomic tasks in the YAWL specification with the SmartPM Service. The

4Externally triggered exceptions are instead notified by the environment, specifically by a client
involved in process execution.

7.3 Making YAWL and SmartPM interoperate 137

SmartPM Service

SmartPM

Figure 7.3. The integration between YAWL and SmartPM.

service requires as input variable a process to be performed by SmartPM, defined
according to the formalism introduced in Chapter 3. If the SmartPM process is
already available at design-time, it can be directly associated with the input variable
required by the service. However, a process to be delegated to SmartPM can also
be built starting from an available template, which is configured and finalized by
exploiting data produced as output by other tasks in the main YAWL process.
In this case, the executable SmartPM process has to be produced as output by
a YAWL task that precedes the task associated with the SmartPM Service. The
domain-dependent configuration of a SmartPM process can be done either manually
by a process designer or automatically by a dedicated service.

In the example shown in Figure 7.1(a), we have an high-level process for managing
railway accidents, which has been modeled in and is currently managed by YAWL.
One of the tasks, specifically the one where a team of operators has to act on the
field for evacuating people from train coaches (cf. the complex activity “Manage
Emergency in the Area” in Figure 7.1(a)), represents a step in the process model
referring to a complex dynamic process (cf. Figure 7.1(b)). As thoroughly described
in Section 1.3, we assume that operators are equipped with mobile devices, and
aspects like context-awareness and managing frequent exogenous events (e.g., bad
connections between devices and operators) is crucial. For this reason, the high
dynamism of the operating environment requires that such activities are executed by
the SmartPM environment, which provides automatic adaptation features. Therefore,
every time the complex activity “Manage Emergency in the Area” gets enabled
during process execution, the enactment of its corresponding sub-process model is
delegated to the SmartPM environment through the SmartPM service.

138 7. Recovering Dynamic Processes in YAWL

As any other Custom Service, the SmartPM service implements the service-side
of Interface B and is thus able to receive notifications from the YAWL engine when
a new work-item is created and delegated to the service for execution. Invoking the
specific methods provided by the engine-side of Interface B, the SmartPM Service
is then able to check-out a work-item (i.e., notify the engine that the work-item is
going to be executed) and execute the corresponding SmartPM input process. Once
the execution of the subprocess has been completed, the service can check-in the
work-item (i.e., notify the engine of execution completion), again via Interface B,
along with the corresponding output. Specifically, the SmartPM Service produces as
output, among other possible values, a boolean one that indicates whether the input
subprocess was successfully completed or not. Control is then passed back to the
YAWL environment, which can continue to carry out the main process.

A screen-cast of a demonstration that shows the interaction between the two
environments is available at http://www.dis.uniroma1.it/~marrella/public/
DemoBPM2011.zip. The application presented in the demo is currently a proof of
concept and aimed at demonstrating the feasibility and validity of the approach.
In the demo application some tasks managed by YAWL and the devices of the
operators are simulated, whereas the integration among the two systems and the
communication between SmartPM and autonomous devices is real. The next step
towards the definition and implementation of a full-fledged solution has been achieved
in [81] and is described in the following section, where we discusses how concretely
the adaptation approach shown in Chapter 3 can be built on top of YAWL.

7.4 The Planlets Approach

In this section we propose a solution that builds on top of YAWL [124], and consists
in annotating at design-time a YAWL specification with additional information which
allows process instances to be automatically recovered. In particular, we assume the
tasks of a YAWL process specification to be annotated with pre-conditions, desired
effects and post-conditions. Failures arise either when associated pre-conditions for a
task are not satisfied at the time the task is to be started, or when post-conditions
do not hold after the execution of the task. Effects represent the changes that a
successful task execution imposes on the state of the world, reflecting the current
value of the contextual properties that constraint the process under execution. Hence,
the process designer just states what conditions have to be satisfied, without having
to anticipate how these can be fulfilled. In order to formalize the concept, we
introduce the definition of Planlet:

Definition 25 (Planlet). Let Y N be a YAWL net, T be the tasks defined in Y N ,
and V be the set of variables defined in Y N . Let Expr(V) be the set of expressions
over the variables in V . A Planlet is a tuple (Y N,Pre, Post, Eff) where

• Pre : T → Expr(V) returns an expression representing the pre-conditions of
tasks in T ;

• Post : T → Expr(V) returns an expression representing the post-conditions of
tasks in T ;

• Eff : T → Expr(V) returns an expression representing the effects of tasks T .

http://www.dis.uniroma1.it/~marrella/public/DemoBPM2011.zip
http://www.dis.uniroma1.it/~marrella/public/DemoBPM2011.zip

7.4 The Planlets Approach 139

The role of pre/post-conditions and effects for a YAWL task is twofold:

1. pre-conditions and post-conditions enable run-time process execution monitor-
ing and exception detection: they are checked respectively before and after
task executions, and the violation of a pre-condition or post-condition results
in an exception to be handled;

2. along with the input/output parameters consumed/produced by the task,
pre-conditions and effects provide a complete specification of the task: this
allows the task to be represented as an action in a planning domain description
and therefore used for solving a planning problem built to handle an exception.

At design-time, the annotated tasks are stored in a repository linked to the Planlet
specification, which may contain also other annotated tasks deriving from previous
executions on the same contextual domain. At run-time, while instances of the
YAWL specification are carried on, tasks become enabled. Every time a task t ∈ T
becomes enabled, expression Pre(t) is evaluated; similarly, upon the completion of
t, expression Post(t) is evaluated. If an evaluation returns false upon enablement
or completion of a task, the system is in an invalid state and, hence, the YAWL
specification instance needs to be adapted to come back into the “right track”. In
order to do that, the case execution is suspended, and a recovery procedure is
automatically synthesized.

To provide more details, let us assume that the current Planlet is δ0 = (δ1; δ2)
in which δ1 is the part of the Planlet already executed and δ2 is the part of
the Planlet which remains to be executed when an exception is identified. The
adapted Planlet is δ′0 = (δ1; δh; δ2). However, whenever a Planlet needs to be
adapted, every running task is interrupted, since the “repair” sequence of tasks
δh = [t1, . . . , tn] is placed before them. Thus, active branches can only resume their
execution after the repair sequence has been executed. This last requirement is
fundamental to avoid the risk of introducing data inconsistencies during a repair.

The automatic synthesis of the recovery procedure δh is enacted on-the-fly by an
external planner. A planner solves the problem to find a sequence of actions that
move a system state from the initial one to a target goal, using a predefined set
of admissible actions. Each action is associated the set of pre-conditions Pre(t) in
order for that step to be chosen, as well as the effects Eff(t) obtained as result of
the action’s execution.

Along with defining the set of admissible actions, it is also crucial to define
how the state is represented, since pre-conditions and effects of actions are given in
term of the chosen state representation. The actions’ set and the state definition
are often referred to as planning domain. The standard representation language of
planners to define actions and state is the Planning Domain Definition Language
(PDDL) [46]. In the context of adaptation of instances of YAWL specifications,
each task specification is associated with a different action in the planning domain;
the task’s pre-conditions and effects are translated in PDDL and associated to the
corresponding action. In addition to the so-created planning domain, when an
exception arises, the invalid state and the pre-condition (or post-condition) violated
is given in input to a planner, which can try to build a plan. If the plan exists,
the planner is eventually going to return it. In this case, the plan is converted into
a sequence of YAWL tasks which are assigned to qualifying participants. When

140 7. Recovering Dynamic Processes in YAWL

Selection Service

Rules Event
Logs

Specification
Store

YAWL
Engine

Worklet
Service

Planning
Service

Planner Sync

User

Rules
Editor

Event
Logs

external triggers

YAWL
Editor

Process
Repository

AXB

B

X

A Interface A

B Interface B

X Interface X

Exception Service

Planlet
Repositories

Worklets
Repository

Figure 7.4. The YAWL architecture extended with the Planning Service.

the converted plan is carried out, the original suspended process is restored for
execution.
Example 7.4.1. Let us consider the example introduced in Section 7.1. The
composite activity “Manage Emergency in the Area” may be modeled as a
self-contained Planlet specification (cf. Fig. 7.1(b)), linked to a repository
containing a set of emergency management (annotated) tasks, that range from
the simple activity of taking pictures to the more complex extinguishment of a
fire. An explicit representation of contextual information (the connection of each
actor to the network, the map of the area, the battery level of each robot etc.)
is needed for preserving the correct Planlet execution. Suppose now that the
task go(loc00,loc33) is assigned to actor act1, which reaches instead the location
loc03 (cf. Fig. 1.3(b)). This means that the actor act1 is not more connected
to the network and s/he is in a position different than the desired one, resulting
in a post-condition failure. The planner builds a planning problem by taking
as initial state the invalid state of the Planlet, and as goal a state where all
actors/robots are inter-connected to the network and act1 is in the desired location
loc33. The recovery plan is automatically synthesized by contextually selecting
tasks from the repository linked to the Planlet. Suppose, for example, that
the two robots rb1 and rb2 have an empty battery. In such a case, the planner
devises on-the-fly a possible solution, composed by a sequence of 5 tasks [chargeBat-
tery(act4,rb1),move(rb1,loc00,loc03),go(act1,loc03,loc33),chargeBattery(act4,rb2),
move(rb2,loc00,loc33)] that change the state of the world as shown in Fig. 1.4(d).
Note that the recovery plan is synthesized by taking care of the skills of process
participants, and their availability for task assignment and execution. Hence, each
task composing the plan is already associated to the participant that will execute
it.

7.4.1 Incorporating Planlets into YAWL

The architectural extension and integration we designed takes advantage of YAWL’s
exception detection capabilities and leverages the flexibility of the exlet-based

7.4 The Planlets Approach 141

Figure 7.5. Planning Service activation hierarchy for exception handling.

handling techniques. From an architectural perspective, as shown in Fig. 7.4,
planning capabilities are provided by a Planning Service that implements the
planning logic and algorithm. In order to define the role of the Planning Service
and clarify how it interacts with existing YAWL architectural components and
services, we follow the process and exception handling life-cycle, from process
design, enactment and monitoring to exception detection, handling and (possibly)
resolution. At design time, the process designer builds one or more Planlet
Repositories (or modifies the existing ones), by inserting/deleting annotated tasks
and by (possibly) modifying the contextual domain linked to each repository. Tasks
involved in a Planlet specification are selected from a specific Planlet repository,
since they are thought to be enacted in a specific contextual domain. Before to
execute a Planlet, the process designer instantiates the initial values for the
properties of the contextual domain. As shown in Section 7.4.2, tasks pre- and
post-conditions are automatically translated in YAWL pre- and post-constraints.
In order to delegate the exception handling to the Planning Service, we introduce
the possibility of mapping a compensation activity to the Planning Service. By
defining this mapping instead of explicitly selecting a compensation worklet, the
process designer configures the Exception Service so that the generation of the
compensation worklet is delegated to the Planning Service. Fig. 7.5 shows an excerpt
of the rule file defined for detecting and handling a workitem-level pre-execution
(or post-execution) constraint violation. Lines 1-4 define the exception triggering
condition (a pre- or a post-condition failure), while lines 5-12 define the exception
handling exlet (which consists in suspending the current case, performing some
compensation activities and then resuming the suspended case). In our extended
version, the mapping of a compensation task to the Planning Service is identified
by a <target> element containing the PlanningService value (line 9), in order to
enact planning capabilities.

Example 7.4.2. If we consider our running example, the compensation plan
devised in Fig. 7.5 corresponds to the one needed for re-establishing the network
connection between actors/robots and for instructing actor act1 to move in the
desired location.

Planning Service Activation. When the Exception Service activates the Planning

142 7. Recovering Dynamic Processes in YAWL

Service, it provides as input all case data associated with the running case, along
with the detected violation over pre- and post-conditions. Based on this information,
and on the specifications of available tasks, stored in the repository linked to the
Planlet under execution, the Synchronization component of the Planning Service
is able to build the planning domain and to define a planning problem, and submit
them to the Planner module in charge of synthesizing a recovery plan. If the
Planner is able to successfully synthesize a compensation plan, it stores it as an
executable specification (i.e., a worklet) in the Worklets Repository and notifies the
Exception Service. The Exception Service is then able to enact the execution of the
compensation worklet as if it was manually selected at design time, by loading the
specification into the engine and launching it as a separate case. When the execution
completes, output data produced by the worklet are mapped back to the parent
case and subsequent actions in the exlet are executed. Following the exlet defined in
Fig. 7.5, as the compensation worklet synthesized by the Planner is supposed to
recover from the constraint violation, the suspended case can then be resumed and
executed. If no valid plan can be found by the Planner, a notification alert is sent to
an administrator, who is charge of handling the unsolved exception, e.g., manually
building a compensation process or just canceling the process case.

7.4.2 Annotating YAWL Specifications in Planlets

A main step of our approach in YAWL consists in enriching the process model
with a specification of process tasks, in terms of pre-conditions, desired effects and
post-conditions, and with an explicit representation of the contextual domain needed
for the correct process enactment.

In YAWL, each atomic task t can be linked to a decomposition. Decompositions
can have a number of input and output parameters, each identified by a name and
characterized by a type dictating valid values it may store, and define the so-called
YAWL Service that will be responsible for task execution. As process data are
represented through net-level variables, inbound and outbound mappings define how
data is transferred from net variables to task variables and vice-versa. We propose to
extend task specifications at the decomposition level, with the possibility of defining
pre-conditions, post-conditions and effects as logical formulae and expressions over
task parameters.

Defining and representing finite domain types. The definition of a Planlet
requires the specification of the data types that characterize the information ma-
nipulated by process instances and define the domains over which predicates and
functions are interpreted. In order to have a compact and finite representation of a
process state, given by the values assumed by process variables at a given point in
the execution, all data types must correspond to finite domains over which variables
of that type can range; this requirement is imposed by the planning-based approach
we propose. Examples of such domains are finite integer intervals or sets of strings,
and other enumerated domains. As YAWL applies strong data typing and all data
types are defined using XML Schemas, this can be easily achieved by defining data
types as XML Schemas and using restrictions (e.g., via the enumeration constraint)
to limit the content of an XML element to a set of acceptable values.

7.4 The Planlets Approach 143

In our example, we need to define data types for representing actors, robots5
and locations in the area. The following listing provides the (simplified) definition
of the data type Loc = {loc00, loc10, . . . , loc33}.

<xs:simpleType name="Loc">
<xs:restriction base="xs:string">

<xs:enumeration value="loc00"/>
...

<xs:enumeration value="loc33"/>
</xs:restriction>

</xs:simpleType>

Under this representation, we consider possible values as constant symbols that
univocally identify objects in the domain of interest; different variables of the same
type having the same value denote the same object.

Defining and representing predicates and functions. The annotation of tasks
with preconditions, postconditions and effects requires the definition of the set of
predicates, numeric functions and object functions to be used when extending task
definitions. Predicates and functions have to be completely specified at design time.
Predicates can be used to express properties of domain objects and relations over
objects. A predicate consists of a predicate symbol P and a set of typed parameters
or arguments6. Argument types (taken from the set of data types previously defined)
represent the finite domains over which predicates are interpreted. A generic predicate
declaration is of the form:

P (arg1 : type1, arg2 : type2, . . . , argn : typen)

In our example, we may need predicates for expressing the presence of a fire in a
location or whether a location is covered by the network signal provided by the main
antenna, or relations, such as the adjacency between locations, i.e.,

Fire(loc : Loc) Covered(loc : Loc) Adjacent(loc1 : Loc, loc2 : Loc)

In addition to basic predicates, we allow the designer to define derived predicates.
They are declared as basic predicates, with the additional specification of a well-
formed formula ϕ that determines the truth value for the predicate :

P (arg1 : type1, . . . , argn : typen) {ϕ }

In our domain, we may need to express that an actor is connected to the network if
s/he is in a covered location or if s/he is in a location adjacent to a location where
a robot is located (and is thus connected through the robot); assuming we have

5Although emergency operators and robots can be considered as resources or services able to
execute tasks and can be represented in the organizational model provided by YAWL, we also need
to explicitly represent them in the process because we need to define predicates and functions over
these domains.

6Predicates with no arguments, i.e., with arity 0, are allowed and can be considered as propositions;
they are directly represented as boolean variables.

144 7. Recovering Dynamic Processes in YAWL

defined the data types Robot = {rb1, rb2} and Actor = {act1, act2, act3, act4}, we
have:

Connected(act : Actor) {EXISTS(l1 : Loc, l2 : Loc, rbt : Robot) (
(at(act) = l1)AND (Covered(l1)OR (atRobot(rbt) = l2ANDAdjacent(l1, l2)))))}

Numeric and Object Functions. Numeric and object functions allow to represent
and handle numeric values and domain objects as functions of other objects. Function
declarations are of the form:

f(arg1 : type1, arg2 : type2, . . . , argn : typen) : DataType

and consist of a function symbol f , a set of typed parameters7, and a return type.
Numeric functions have as return type an integer or a real number, whereas object
functions have a return type taken from the set of data types defined in the net
specification. The arguments of functions range over finite domains, and for object
functions the same requirement holds for result types (i.e., object functions must
have finite co-domains). In our example, we need to keep track of the battery level
of the robots. This can be represented through the numeric function

batteryLevel(robot : Robot) : Integer and batteryStep : Integer

Similarly, we can represent the position of actors and robots by defining the following
functional predicates that map actors and robots to their location:

at(actor : Actor) : Loc and atRobot(robot : Robot) : Loc

State variables representation. The use of predicates and functions requires that
at run-time we represent the corresponding logical interpretations, as state variables
that hold (a) the truth value of the defined predicates over domain objects, and
(b) the values of the defined functions with respect to different argument assignments.
The interpretations are used to evaluate pre- and post-conditions, and are modified
as a result of task executions. As a consequence of the declaration of a predicate or
function, two new data types are automatically generated and added to the XML
data types definitions for the net:

T1. a complex data type that is able to represent the name of the predicate or
function and

• for predicates, all argument assignments for which the predicate holds8
(i.e., the current interpretation P I for the predicate);

• for functions, all argument assignments for which the function is defined,
along with the corresponding value9 (i.e., the current interpretation fI
for the function);

7Numeric functions with no arguments are allowed, and can be considered as state variables
rather than constants, as their value may change during process executions; they are represented as
integer or float/double variables.

8Basically, a set containing all object tuples for which the predicate is true.
9Basically, a map where object tuples are mapped to objects.

7.4 The Planlets Approach 145

T2. a complex data type that is able to represent a predicate or function instance,
in terms of the name of the predicate or function, the set of arguments and
their assignment, and the truth value or numeric/object value of the predicate
or function with respect to the specific assignment; different parameters of this
type can be defined for process tasks, to be used for representing the effects
that they can have on the predicate or function interpretation.

For each predicate and function, a single net-level state variable of type T1 is defined
and it can be initialized so as to contain all values for the objects for which the
predicate is true or the function is defined in the initial state. Derived predicates are
not explicitly represented through net-level state variables, as their interpretation
can be always derived from the corresponding formula, and they can not appear
in task effects (but task effects can act on the basic predicates and functions that
appear in the formula, thus indirectly modifying the truth value for the derived
predicate).

Initial interpretation. The initial interpretation over which a process instance is
executed is given by an assignment of values to the state variables that represent
truth values for predicates and values functions. The initial interpretation is thus
defined by a set of grounded predicates (initial facts) and initialization values for
functions.

The following listings provide an example of a possible initialization for
the variables of type T1 for the Adjacent predicate and the batteryLevel
function, representing the grounded predicates (facts) Adjacent(loc00, loc01),
Adjacent(loc00, loc10) and so on, and the assignments batteryLevel(rb1) = 2 and
batteryLevel(rb2) = 4.

<PredicateAdjacent>
<name>Adjacent</name>
<interpretation>

<loc1>loc00</loc1>
<loc2>loc01</loc2>

</interpretation>
<interpretation>

<loc1>loc00</loc1>
<loc2>loc10</loc2>

</interpretation>
...

</PredicateAdjacent>

<FunctionBatteryLevel>
<name>BatteryLevel</name>
<interpretation>

<robot>rb1</robot>
<value>2</value>

</interpretation>
<interpretation>

<robot>rb2</robot>
<value>4</value>

</interpretation>
</FunctionBatteryLevel>

Pre-conditions, post-conditions and effects. Pre-conditions, post-conditions
and effects are defined at design time as logical annotations associated with tasks
in a Planlet. Basically, we assume a first-order predicate logic with numeric and
object functions, with the restriction that free variables are not allowed and thus all
variable symbols must be task parameter names or occur in the scope of a quantifier.
The language is clearly inspired from PDDL, although we prefer an infix notation
for the operators.

Pre and postconditions can be defined as an atomic formula as well as the
conjunction (AND) or disjunction (OR) of formulae, and formulae can be negated

146 7. Recovering Dynamic Processes in YAWL

(NOT) and existentially or universally quantified (EXISTS and FORALL).
Atomic formulae are (basic or derived) predicates defined over argument terms,

where a term can be a task parameter or a constant; the equality (==) or negated
equality (!=) predicates between terms are supported. In addition, it is possible
to define conditions as expressions that make use of relational binary comparison
operators (<,>,=,≤,≥) and involve numeric expression. Numeric expressions
are constructed, using arithmetic operators (+,−, ∗, /), from primitive numeric
expressions, which include integers and real numbers, and numeric functions defined
over argument terms. Numeric expressions are not allowed to appear as terms, i.e.,
as arguments to predicates or values of task parameters (otherwise, predicates would
be defined over arguments with infinite ranges). Object functions are defined over
argument terms, and can be used as terms only in equality and inequality atomic
formulae.

Task effects basically define the changes that a successful task execution imposes
on the current state of the world, as represented in the process execution context. A
task effect can be defined as an atomic formula as well as the conjunction of formulae
, and atomic formulae can be negated. As for preconditions, atomic formulae
are predicates defined over argument terms (task parameters or constants), but
derived predicates and equality are not allowed. In addition to boolean predicates,
task effects may include assignment expressions to update the values of numeric
functions. A numeric effect consists of an assignment operator, the numeric function
to be updated and a numeric expression. Assignment operators include (i) direct
assignment (=), to assign to a numeric function a numerical value defined by a
number or by a numeric expression; (ii) relative assignments, which can be used to
increase (+=) or decrease (−=) the value of a numeric function (additive assignment
effects), as well as to scale-up (∗=) or scale-down (/=) the value of a numeric
function (scaling assignment effects). Similarly, it is possible to update the value of
object functions with an assignment operator, restricted to direct assignment (=),
to assign to an object function a typed object identified by a term.

Marking up task specifications. Task pre-conditions, post-conditions and ef-
fects are represented in task specifications via the <precondition>, <effect> and
<postcondition> markup elements. In our example, consider the task labeled as
go, which require that an actor moves from a location to another in the area. It
defines two input parameters from and to of type Loc, representing the starting
and arrival locations, and an input parameter actor of type Actor representing the
emergency operator that executes the task. An instance of this task can be executed
only if s/he is currently at the starting location and is connected to the network.
As a consequence (effect) of task execution, the actor moves from the starting to
the arrival location, but we need, as post-condition, to verify whether the arrival
location has been reached and the actor is still connected to the network. We can
thus define the following annotations:

<precondition>at(actor) == from AND Connected(actor)</precondition>
<effect>at(actor) = to</effect>
<postcondition>at(actor) == to AND Connected(actor)</postcondition>

The designer can distinguish between: (i) direct effects, i.e., effects that always
take place after an execution, and therefore the corresponding changes on the state

7.4 The Planlets Approach 147

variables are automatically performed when the task completes (e.g., if an effect of
the form BatteryLevel(robot) += 5 is marked as automatic, after task execution the
value for BatteryLevel(robot) is directly increased by 5); and (ii) supposed effects,
i.e., effects that define changes that are assumed to be performed only when the task
is considered as an action in a planning domain. Supposed effects can be interpreted
as the effects that a task is supposed to have, but the actual produced changes are
defined at run-time as a result of the concrete execution, such as the actual truth
value of a predicate or the actual value for a direct assignment.

Example 7.4.3. In our example, at(actor) = to is a supposed effect, as the actual
value for at(actor) is produced as a task output and may be different from the
desired one (i.e., the value of the to variable prescribed in the effect). If the designer
needs to verify whether a task execution has produced the intended effect, s/he
has to define a corresponding post-condition (i.e., the at(actor) == to).

Direct effects can be directly represented by generating an outbound mapping
with an XQuery expression that adds/removes a tuple to/from the state variable
representing predicate’s interpretation (for positive/negative predicates), or updates
the value for a tuple in the state variable representing function’s interpretation (for
assignment effects). In supposed effects, the actual values are produced by workitem
executions, and all predicates and functions that appear in the effect expression have
to be represented as task variables, so as to allow to specify (according to task’s
execution logic) the truth value for predicates or the value for functions. To this
end, we represent each predicate and function that appears in the supposed effects
as task parameters of type T2, where the predicate/function name is given and
fixed, the values for the argument variables (i.e., the grounding) are defined by the
inbound mappings for task parameters and the predicate/function actual value will
be defined as a result of task execution. For these variables, outbound mappings are
then generated, including XQuery expressions to update net-level state variables as
for direct effects.
Example 7.4.4. Fig. 7.6 shows an example of how a variable can be used to
represent an effect and how the actual value for at(act1) can be produced as output;
we show that the output value for at(act1) is produced by a sensor (i.e., a GPS
device) supporting the worklist handler. The produced value, in the example
’loc33’, is then used to update the net variable representing the at interpretation
to reflect that at(act1) 7→ loc33.

State model and exceptions In a Planlet, a process state S is given by the
token marking mS (as defined in [124] for YAWL nets) and the logical interpretation
IS that assigns truth values to predicates and values to functions. The initial state
over which a process instance is executed is given by the initial marking and an
assignment of values to the state variables that represent the initial interpretation for
predicates and functions. When a task t becomes enabled in a state S (as determined
by mS), its execution can start only if the task precondition formula ϕpre is true in
IS , i.e., IS |= ϕpre. A task execution changes the interpretation according to actual
task effects (which for a successful execution are given by the corresponding effects
expression expreff) and leads to a new state S′ where mS′ is the produced marking
and IS′ is the new interpretation. A completed task is considered as successfully

148 7. Recovering Dynamic Processes in YAWL

<actor>act1</actor>

act1

act1

Figure 7.6. A task effect represented as a variable assignment.

executed if its postcondition formula ϕpost is true in IS′ , i.e., IS′ |= ϕpost. At run
time all task executions are thus preceded and followed by the verification of whether
I |= ϕpre and I |= ϕpost

10. In this model, an exception occurs in a given state with
an interpretation I if a task is enabled but I 6|= ϕpre or if a task has completed but
I 6|= ϕpost.

From pre-/post-conditions to pre-/post-execution constraints As part of
its exception handling mechanism, YAWL supports the definition of workitem-level
pre- and post-execution constraints, as rules with conditions that (i) are checked
when the workitem becomes enabled and when it is completed, and (ii) if violated,
they trigger an exception and the execution of an exception handling process (i.e.,
a YAWL exlet). Conditions are defined over case variables as strings of operands
and arithmetic, comparison and logical operators; conditional expressions may also
take the form of boolean XQuery expressions [124]. In our approach, we leverage
on this built-in feature and map the evaluation of pre- and post-conditions to
the evaluation of pre and post-execution constraints, by automatically translating
ϕpre and ϕpost formulae for each task into YAWL conditional expressions. While
arithmetic, comparison and logical operators in our annotation language directly
map to the operators supported by YAWL, predicates and functions can be resolved
by appropriate XQuery expressions, according to a standard evaluation algorithm
for boolean queries11; basically:

• all variables in the formula that correspond to task parameters (for which
an inbound or outbound mapping from or to a net variable is defined as an
XQuery expression) assume the values as defined by the mappings

• each function, which becomes defined over a tuple of ground terms, is replaced
by an XQuery expression that extract from function’s interpretation state
variable the value corresponding to the tuple (i.e., f(c1, . . . , ck) is replaced
by the value fI(c1, . . . , ck));

• each predicate, which becomes defined over a tuple of ground terms, is replaced
by a boolean XQuery expressions that verify whether the tuple is contained in

10As ϕpre and ϕpost are closed formulae, their truth values can be considered as the answers to
the corresponding boolean queries, given the interpretation I.

11we recall that no free variables are allowed and all formulae are closed

7.4 The Planlets Approach 149

the predicate interpretation state variable (I |= P (c1, . . . , ck) if (c1, . . . , cn) ∈
P I)

• existentially and universally quantified formulae are replaced by boolean
XQuery expressions that verify whether there exist an assignment for the
quantified typed variable that makes the formula true, or whether the formula
is true for all possible assignments (among the finite possible values defined in
the data type specification)

• derived predicates in preconditions are replaced by the corresponding formulae,
which are evaluated as per the previous items

Representing Planlet Annotations in PDDL. In order to exploit our planning-
based recovery mechanism, every task/annotation/property associated to a Planlet
needs to be translated in PDDL. A PDDL definition consists of two parts: the
domain and the problem definition. The planning domain is built starting by the
definition of basic/derived predicates, object/numeric functions and data types as
shown in the previous sections, and by making explicit the actions associated to
each annotated task stored in the repository linked to the Planlet under execution,
together with the associated pre-conditions, effects and input parameters. Basically,
the planning domain describes how predicates and functions may vary after an
action execution, and reflects the contextual properties constraining the execution
of tasks stored in a specific Planlet repository. Our annotation syntax allows to
represent planning domains and problems with the complexity of those describable
in PDDL version 2.2 [37], that is characterized for enabling the representation of
realistic planning domains.

In the following, we discuss how our annotations are translated into a PDDL file
representing the planning domain:

• the name and the domain of a data type corresponds to an object type in the
planning domain;

• basic and derived predicates have a straightforward representation as relational
predicates (templates for logical facts) and derived predicates (to model the
dependency of given facts from other facts) in the planning domain;

• numeric functions correspond to PDDL numeric fluents, and are used for
modeling non-boolean resources (e.g., the battery level of a robot) in the
planning domain;

• object functions do not have a direct representation in PDDLv2.2, but may
be replaced as relational predicates. Since an object function f : Objectn →
Object map tuples of objects with domain types Dn to objects with co-domain
type U , it may be coded in the planning domain as a relational predicate P of
type (Dn, U);

• a given YAWL task, together with the associated pre-conditions and effects and
input parameters, is translated in a PDDL action schema. An action schema
describes how the relational predicates and/or numeric fluents may vary after
the action execution. In the following, it is shown the PDDL representation of
the task go:

(:action go
:parameters (?x - actor ?from - loc ?to - loc)

150 7. Recovering Dynamic Processes in YAWL

:precondition (and (not (at ?x ?to)) (at ?x ?from) (connected ?x))
:effect (and (not (at ?x ?from)) (at ?x ?to)))

This task can be executed only if the actor denoted with x is not currently
located in the target location to (and, consequently, is located in his/her
starting location from) and is connected to the network. The desired effect
turns the value of the predicate at(x, to) to TRUE and at(x, from) to FALSE,
meaning the actor moved in a new location.

When an exception arises, on a same planning domain a new planning problem is
built at run-time, through the description of an initial state (that corresponds to the
invalid state s of the process) and the description of the desired goal (a safe state s′,
derived from the violated pre- or post-condition).

• for each data type defined in the planning domain, all the possible object
instances of that particular data type are explicitly instantiated as constant
symbols in the planning problem (e.g., the fact that act1, act2, act3, act4 are
Actors, rb1 and rb2 are Robots, loc00, ..., loc33 are Locations);

• a representation of the initial state of the planning environment is needed.
Basically, the initial state of the planning problem corresponds to an invalid
state (i.e., a state that needs to be fixed after a pre- or post-condition violation
during the process execution). It is composed by a conjunction of relational
predicates, derived predicates (e.g., the information about which actors/robots
are currently connected to the network) and by the current value of each
numeric fluent (e.g., the value of the battery level for each robot);

• the goal state of the planning problem is a logical expression over facts. In our
approach, the goal state is built in order to reflect a safe state to be reached
after the execution of a recovery procedure. Suppose that t is the task whose
pre-conditions Pre(t) (or post-conditions Post(t)) are not verified. The safe
state s′ corresponding to the goal state of the planning problem is generated
starting from the invalid state s, by substituting the wrong facts that led to the
exception with the content of the pre-conditions (or post-conditions) violated.

Example 7.4.5. In the case of our running example, actor act1 reaches
a wrong location loc03 after the execution of the task go, and s/he is
no longer connected to the network, resulting in a post-condition failure
(cf. Figure 1.3(b)). Therefore, whereas the initial state of the planning
problem generated for dealing with such an exception corresponds exactly
to the invalid state of the process (hence, with the value of the predicate
Connected(act1)=FALSE and at(act1)=loc03), the goal state is composed
by all those predicates/functions not affected by the task go (that must
remain unchanged after the recovery procedure), and by the post-conditions
just violated, i.e., Connected(act1)=TRUE and at(act1)=loc33, which is the
desired location.

7.5 Conclusion
In this chapter, we have customized our general approach for automatic adaptation
of dynamic processes presented in Chapter 3 by discussing its deployment on top of

7.5 Conclusion 151

existing PMSs.
Specifically, we have first shown how the YAWL environment can be comple-

mented with the SmartPM execution environment by leveraging the “Flexibility as a
Service” approach [129]. A screen-cast of a demonstration that shows the interac-
tion between the two environments is available at http://www.dis.uniroma1.it/
~marrella/public/DemoBPM2011.zip.

Then, we have presented a concrete design and implementation proposal of
how the YAWL architecture can be extended to integrate planning capabilities.
For this aim, we have proposed the approach of Planlets, self-contained YAWL
specifications with recovery features, based on modeling of pre- and post-conditions
of tasks and the use of planning techniques. The feasibility of the Planlet approach
has been investigated by performing some testing to learn the time amount needed
for synthesizing a recovery plan for different adaptation problems. We made our
tests by using the LPG-td planner [45, 44], and the obtained results can be compared
with the ones shown in Section 5.1.

Currently, the implementation of the Planlets approach is ongoing, in col-
laboration with researchers from the Queensland University of Technology (QUT,
Australia).

http://www.dis.uniroma1.it/~marrella/public/DemoBPM2011.zip
http://www.dis.uniroma1.it/~marrella/public/DemoBPM2011.zip

153

Chapter 8

Conclusion

The research activity outlined in this thesis has been devoted to define a general
approach, a concrete architecture and a prototype PMS for automatic adaptation of
dynamic processes, on the basis of a declarative specification of process tasks and
relying on well-established planning techniques. Our purpose was to demonstrate
that the combination of procedural and imperative models with declarative elements,
along with the exploitation of techniques from the field of artificial intelligence (AI)
such as planning algorithms and tools, can increase the ability of existing PMSs of
supporting dynamic processes.

To this end, we developed a prototype PMS named SmartPM, which is specifically
tailored for supporting collaborative work of process participants during pervasive
scenarios. The adaptation mechanism deployed on SmartPM is based on execution
monitoring for detecting failures at run-time, which does not require the definition of
the adaptation strategy in the process itself (as most of the current approaches do),
and on automatic planning techniques for the synthesis of the recovery procedure.

In order to exploit the automatic adaptation features provided by SmartPM, some
extra modeling effort is required at design time. In fact, our approach requires that
processes are defined at best partly textually (for the formalization of the domain
theory associated to the dynamic process) and partly graphically (for the definition
of the process control flow). However, we think the overhead is compensated at
run-time by the automation of adaptation procedures. While, in general, such
modelling effort may seem significant, in practice it is comparable to the effort
needed to encode the adaptation logic using alternative methodologies like happens,
for example, in rule-based approaches.

The assumptions of classical planning (determinism in the action effects, the
closed-world assumption for the instantiation of the initial situation, etc.) we
used for modeling dynamic processes has a twofold consequence. On the one
hand, we can exploit the good performance of classical planners (e.g., LPG-td [45],
POPF2 [19]) to solve real-world problems with a realistic complexity. In fact,
test results reported in Section 5.1 show that the time overhead introduced by a
planner for synthesizing recovery procedures with variable length for adaptation
problems of growing complexity (in terms of size and parameters of the corresponding
planning problems) is in the order of tens of seconds, which makes the approach
feasible for medium-sized dynamic processes used in practice. On the other hand,

154 8. Conclusion

classical planning imposes some restrictions for addressing more expressive problems,
including incomplete information, preferences and multiple task effects. Future
works will include an extension of our approach dealing with the above aspects and
by considering also classical business scenarios, with the purpose to maintain the
planning process very responsive.

A second future work concerns to integrate the approach for building process
templates (cf. Chapter 6) in the SmartPM system. In fact, when considering specific
classes of emergency management processes (e.g., earthquakes, floods, building
collapses, etc.), it is possible to identify recurring and predefined activities that have
to be performed according to general guidelines and emergency action plans. In
order to balance between the need to create ad-hoc process specifications and to
exploit guidelines and recurrent activity patterns, it is possible to take advantage
of our approach for generating process templates. Processes can be designed on-
demand from provided templates, which are tailored and configured to create an
appropriate process specification. This kind of approach would allow to speed up
process definition activities, as well as to facilitate the reuse of process fragments.

Finally, even if our approach is able to adapt a process instance at run-time,
it does not allow to evolve the original process model on the basis of exceptions
captured. Therefore, a third future work concerns to avoid to consider all deviations
from the process as errors, but as a natural and valuable part of the work activity,
which provides the opportunity for learning and thus evolving the process model for
future instantiations.

155

Appendix A

The Full Code of the Example

This appendix is focussed primarily for describing the full code of the example
related to our case study. We show, in sequence, the SmartML specification linked to
the dynamic process depicted in Section 1.3, the IndiGolog program to be executed
by the PMS and the PDDL Planning Domain and Problem built for dealing with the
exception detected in Fig. 1.3. We underline that the IndiGolog program reflecting
the approach shown in Chapter 3 is written with the Prolog language.

The SmartML specification of the domain theory
TYPES = {Participant, Capability, Location_type, Status_type, Boolean_type, Integer_type}

Participant = {act1,act2,act3,act4,rb1,rb2}
Capability = {movement,hatchet,camera,gprs,extinguisher,battery,digger,powerpack}
Location_type = {loc00,loc10,loc20,loc30,loc01,loc11,loc02,loc03,loc13,loc23,loc31,

loc32,loc33}
Status_type = {ok,fire,debris}
Boolean_type = {true,false}
Integer_type = {0..30}

PRE-DEFINED TERMS = {provides, requires}

provides[prt:Participant] = (bool:Boolean_type)
requires[prt:Participant] = (bool:Boolean_type)

NON RELEVANT TERMS = {atRobot, batteryLevel, photoTaken, neigh, covered, generalBattery,
batteryRecharging, moveStep, debrisStep}

atRobot[prt:Participant] = (loc:Location_type)
batteryLevel[prt:Participant] = (int:Integer_type)
photoTaken[loc:Location_type] = (int:Integer_type)
neigh[loc1:Location_type,loc2:Location_type] = (bool:Boolean_type)
covered[loc:Location_type] = (bool:Boolean_type)
generalBattery[] = (int:Integer_type)
batteryRecharging[] = (int:Integer_type)
moveStep[] = (int:Integer_type)
debrisStep[] = (int:Integer_type)

RELEVANT TERMS = {evacuated, at, status}

156 A. The Full Code of the Example

at[prt:Participant] = (loc:Location_type)
evacuated[loc:Location_type] = (bool:Boolean_type)
status[loc:Location_type] = (st:Status_type)

COMPLEX TERMS = {isConnected, isRobotConnected}

isConnected(prt:Participant) {
EXISTS(l1:Location_type, l2:Location_type, rbt:Participant).((at(act)=l1) AND
(covered(l1) OR (atRobot(rbt)=l2 AND neigh(l1,l2)=true AND isRobotConnected(rbt))))}.

isRobotConnected(rbt:Participant) {
EXISTS(l1:Location_type, l2:Location_type).((atRobot(rbt)=l1) AND
(covered(l1) OR
(neigh(l1,l2) AND Covered(l2)) OR
(EXISTS(l3:Location_type, l4:Location_type,

l5:Location_type, rbt2:Participant).atRobot(rbt2)=l3 AND
((neigh(l1,l3) AND covered(l3)) OR
(neigh(l1,l5) AND neigh(l3,l5) AND covered(l3)) OR
(neigh(l3,l4) AND covered(l4) AND neigh(l1,l3)) OR
(neigh(l3,l4) AND covered(l4) AND neigh(l1,l5) AND neigh(l3,l5))))))}.

EXOGENOUS EVENTS = {photoLost, fireRisk, rockSlide}

<ex-events>
<ex-event>

<name>rockSlide</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<effects>

<automatic>status[loc] = debris</automatic>
</effects>

</ex-event>
<ex-event>

<name>fireRisk</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<effects>

<automatic>status[loc] = fire</automatic>
</effects>

</ex-event>
<ex-event>

<name>photoLost</name>
<parameters>
<arg>loc - Location_type</arg>
</parameters>
<effects>
<automatic>photoTaken[loc] = false</automatic>
</effects>

</ex-event>
</ex-events>

TASKS REPOSITORY = {go, move, takephoto, evacuate, updatestatus,
extinguishfire, chargebattery}

157

<tasks>
<task>

<name>go</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>at[PRT] == from AND isConnected[PRT] == true</precondition>
<effects>

<supposed>at[PRT] = to</supposed>
</effects>

</task>
<task>

<name>move</name>
<parameters>

<arg>from - Location_type</arg>
<arg>to - Location_type</arg>

</parameters>
<precondition>atRobot[PRT] == from AND batteryLevel[PRT] >= moveStep[] AND

isRobotConnected[PRT] == true
</precondition>
<effects>

<supposed>atRobot[PRT] = to</supposed>
<automatic>batteryLevel[PRT] -= moveStep[]</automatic>

</effects>
</task>
<task>

<name>takephoto</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>at[PRT] == loc AND isConnected[PRT] == true</precondition>
<effects>

<supposed>photoTaken[loc] = true</supposed>
</effects>

</task>
<task>

<name>evacuate</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>at[PRT] == loc AND isConnected[PRT] == true AND

status[loc] == ok AND evacuated[loc] == false
</precondition>
<effects>

<supposed>evacuated[loc] = true</supposed>
</effects>

</task>
<task>

<name>updatestatus</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>at[PRT] == loc AND isConnected[PRT] == true AND

status[loc] == ok
</precondition>
<effects>

158 A. The Full Code of the Example

<supposed>status[loc] = ok</supposed>
</effects>

</task>
<task>

<name>removedebris</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>atRobot[PRT] == loc AND isRobotConnected[PRT] == true AND

status[loc] == debris AND batteryLevel[PRT] >= debrisStep[]
</precondition>
<effects>

<supposed>status[loc] = ok</supposed>
<automatic>batteryLevel[PRT] -= debrisStep[]</automatic>

</effects>
</task>
<task>

<name>extinguishfire</name>
<parameters>

<arg>loc - Location_type</arg>
</parameters>
<precondition>at[PRT] == loc AND isConnected[PRT] == true AND

status[loc] == fire
</precondition>
<effects>

<supposed>status[loc] = ok</supposed>
</effects>

</task>
<task>

<name>chargebattery</name>
<parameters>

<arg>rb - Participant</arg>
</parameters>
<precondition>provides[rb,battery] == true AND at[PRT] == atRobot[rb] AND

isConnected[PRT] == true AND generalBattery[] >= batteryRecharging[]
</precondition>
<effects>

<automatic>batteryLevel[rb] += batteryRecharging[]</automatic>
<automatic>generalBattery[] -= batteryRecharging[]</automatic>

</effects>
</task>

</tasks>

The IndiGolog Program
%%%%%%%%%%%%%%%%%%%%
% FILE: aPMS.pl
% DESCRIPTION : The most recent version of the IndiGolog adaptive Process Management System.
% VERSION : 1.0
%%%%%%%%%%%%%%%%%%%%

/* SOME PRE-BUILT COMMANDS AND MACROS*/
:- dynamic controller/1.

cache(_):-fail.

159

causes_true(_,_,_) :- false.
causes_false(_,_,_) :- false.

actionNum(X,X).

square(X,Y) :- Y is X * X.
member(ELEM,[HEAD|_]) :- ELEM=HEAD.
member(ELEM,[_|TAIL]) :- member(ELEM,TAIL).
listEqual(L1,L2) :- subset(L1,L2),subset(L2,L1).

/* THE LIST OF AVAILABLE SERVICES */
service(S) :- domain(S,[act1,act2,act3,act4,rb1,rb2]).

/* THE LIST OF CAPABILITIES RELEVANT FOR THE PROCESS OF INTEREST */
capability(B) :- domain(B,[movement,hatchet,camera,gprs,extinguisher,battery,digger,powerpack]).

/* THE CAPABILITIES PROVIDED BY EACH SERVICE*/
provides(act1,movement).
provides(act1,gprs).
provides(act1,extinguisher).
provides(act1,camera).
provides(act2,movement).
provides(act2,gprs).
provides(act2,hatchet).
provides(act3,movement).
provides(act3,gprs).
provides(act3,hatchet).
provides(act4,movement).
provides(act4,powerpack).
provides(act4,gprs).
provides(rb1,battery).
provides(rb1,digger).
provides(rb2,battery).
provides(rb2,digger).

/* PRE-DEFINED DATA TYPES */

boolean_type(Q) :- domain(Q,[true,false]).

integer_type(N) :- domain(N,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30]).

/* USER-DEFINED DATA TYPES */

status_type(S) :- domain(S,[ok,fire,debris]).

location_type(L) :- domain(L,[loc00,loc01,loc02,loc03,loc10,loc11,loc13,loc20,loc23,loc30,
loc31,loc32,loc33]).

/* TASKS DEFINED IN THE PROCESS SPECIFICATION */
task(T) :- domain(T,[chargebattery,go,move,evacuate,removedebris,takephoto,
updatestatus,extinguishfire]).

/* THE LIST OF ADMISSIBLE IDENTIFIERS */
task_identifiers([id_1,id_2,id_3,id_4,id_5,id_6,id_7,id_8,id_9,id_10,
id_11,id_12,id_13,id_14,id_15,id_16,id_17,id_18,id_19,id_20,id_21,
id_22,id_23,id_24,id_25,id_26,id_27,id_28,id_29,id_30,id_adapt]).

160 A. The Full Code of the Example

id(D) :- domain(D,task_identifiers).

/* THE CAPABILITIES REQUIRED BY EACH TASK*/
requires(go,movement).
requires(evacuate,hatchet).
requires(takephoto,camera).
requires(updatestatus,gprs).
requires(extinguishfire,extinguisher).
requires(move,battery).
requires(removedebris,digger).
requires(chargebattery,powerpack).

/* THE LIST OF ADMISSIBLE WORKITEMS */
workitem(go,ID,[FROM,TO],[TO]) :- id(ID),location_type(FROM),location_type(TO).
workitem(takephoto,ID,[LOC],[true]) :- id(ID),location_type(LOC),boolean_type(true).
workitem(evacuate,ID,[LOC],[true]) :- id(ID),location_type(LOC),boolean_type(true).
workitem(move,ID,[FROM,TO],[TO]) :- id(ID),location_type(FROM),location_type(TO).
workitem(chargebattery,ID,[RB],[]) :- id(ID),service(RB).
workitem(removedebris,ID,[LOC],[ST]) :- id(ID),location_type(LOC),status_type(ST).
workitem(extinguishfire,ID,[LOC],[ST]) :- id(ID),location_type(LOC),status_type(ST).
workitem(updatestatus,ID,[LOC],[ST]) :- id(ID),location_type(LOC),status_type(ST).

/* TASKS PRECONDITIONS */

prim_action(assign(SRVC,ID,TASK,_INPUTS,_EXOUTPUTS)) :- service(SRVC),id(ID),task(TASK).

poss(assign(SRVC,[workitem(go,ID,[FROM,TO],[TO])]),
and(isConnected(SRVC),at(SRVC)=FROM)) :-

service(SRVC),id(ID),location_type(FROM),location_type(TO).

poss(assign(SRVC,[workitem(takephoto,ID,[LOC],[true])]),
and(isConnected(SRVC),at(SRVC)=LOC)) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true).

poss(assign(SRVC,[workitem(evacuate,ID,[LOC],[true])]),
and(isConnected(SRVC),and(at(SRVC)=LOC,
and(evacuated(LOC)=false,status(LOC)=ok)))) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true).

poss(assign(SRVC,[workitem(move,ID,[FROM,TO],[TO])]),
and(isRobotConnected(SRVC),
and(atRobot(SRVC)=FROM,batteryLevel(SRVC)>=moveStep))) :-

service(SRVC),id(ID),location_type(FROM),location_type(TO).

poss(assign(SRVC,[workitem(chargebattery,ID,[RB],[])]),
and(isConnected(SRVC),(and(at(SRVC)=atRobot(RB),
and(provides(RB,battery),generalBattery>=batteryRecharging))))) :-

service(SRVC),id(ID),service(RB).

poss(assign(SRVC,[workitem(removedebris,ID,[LOC],[ST])]),
and(isRobotConnected(SRVC),and(atRobot(SRVC)=LOC,
and(status(LOC)=debris,batteryLevel(SRVC)>=debrisStep)))) :-

service(SRVC),id(ID),location_type(LOC),status_type(ST).

poss(assign(SRVC,[workitem(extinguishfire,ID,[LOC],[ST])]),
and(isConnected(SRVC),and(at(SRVC)=LOC,status(LOC)=fire))) :-

service(SRVC),id(ID),location_type(LOC),status_type(ST).

161

poss(assign(SRVC,[workitem(updatestatus,ID,[LOC],[ST])]),
and(isConnected(SRVC),and(at(SRVC)=LOC,status(LOC)=ok))) :-

service(SRVC),id(ID),location_type(LOC),status_type(ST).

/* BASIC ACTIONS AND ENGINE FLUENTS FOR MANAGING THE TASK LIFE-CYCLE */

rel_fluent(assigned(SRVC,ID,TASK)) :- service(SRVC),id(ID),task(TASK).
causes_val(assign(SRVC,ID,TASK,_INPUTS,_EXOUTPUTS),assigned(SRVC,ID,TASK),true,true).
causes_val(release(SRVC,ID,TASK,_INPUTS,_EXOUTPUTS,_PHOUTPUTS),assigned(SRVC,ID,TASK),false,true).

rel_fluent(reserved(SRVC,ID,TASK)) :- task(TASK), service(SRVC), id(ID).
causes_val(readyToStart(SRVC,ID,TASK),reserved(SRVC,ID,TASK),true,true).
causes_val(finishedTask(SRVC,ID,TASK,_),reserved(SRVC,ID,TASK),false,true).

prim_action(start(SRVC,ID,TASK)) :- service(SRVC), id(ID), task(TASK).
poss(start(SRVC,ID,TASK),reserved(SRVC,ID,TASK)) :- service(SRVC),id(ID),task(TASK).

prim_action(ackCompl(SRVC,ID,TASK)) :- task(TASK),service(SRVC),id(ID).
poss(ackCompl(SRVC,ID,TASK),neg(reserved(SRVC,ID,TASK))).

prim_action(release(SRVC,ID,TASK,_INPUTS,_EXOUTPUTS,_PHOUTPUTS)) :- service(SRVC),id(ID),task(TASK).
poss(release(_SRVC,_ID,_TASK,_INPUTS,_EXOUTPUTS,_PHOUTPUTS), true).

rel_fluent(free(SRVC)) :- service(SRVC).
causes_val(release(SRVC,_ID,_TASK,_INPUTS,_EXOUTPUTS,_PHOUTPUTS),free(SRVC),true,true).
causes_val(assign(SRVC,_ID,_TASK,_INPUTS,_EXOUTPUTS),free(SRVC),false,true).

/* IF THIS FLUENT HOLDS, THE SYSTEM SWITCHES FROM USING THE PLAN-BASED ADAPTATION MECHANISM
TO USE THE BUILT-IN ADAPTATION APPROACH */
rel_fluent(built_in_adaptation).

/*USER-DEFINED STATIC FLUENTS*/
fun_fluent(neigh(LOC1,LOC2)) :- location_type(LOC1),location_type(LOC2).
fun_fluent(covered(LOC)) :- location_type(LOC).

/*FLUENT AT*/
fun_fluent(at(SRVC)) :- service(SRVC).

causes_val(release(SRVC,ID,go,_I,_E,[OUTPUT]),at(SRVC),OUTPUT,
assigned(SRVC,[workitem(go,ID,[FROM,TO],[TO])])) :-

service(SRVC),id(ID),location_type(OUTPUT),location_type(FROM),location_type(TO).

fun_fluent(at_exp(SRVC)) :- service(SRVC).

causes_val(release(SRVC,ID,go,_I,_E,[OUTPUT]),at_exp(SRVC),TO,
and(neg(adapting),assigned(SRVC,[workitem(go,ID,[FROM,TO],[TO])]))) :-

service(SRVC),id(ID),location_type(OUTPUT),location_type(FROM),location_type(TO).

/*FLUENT AT_ROBOT*/
fun_fluent(atRobot(SRVC)) :- service(SRVC).

causes_val(release(SRVC,ID,move,_I,_E,[OUTPUT]),atRobot(SRVC),OUTPUT,
assigned(SRVC,[workitem(move,ID,[FROM,TO],[TO])])) :-

service(SRVC),id(ID),location_type(OUTPUT),location_type(FROM),location_type(TO).

162 A. The Full Code of the Example

/*FLUENT EVACUATED*/
fun_fluent(evacuated(P)) :- location_type(P).

causes_val(release(SRVC,ID,evacuate,_I,_E,[OUTPUT]),evacuated(LOC),OUTPUT,
assigned(SRVC,[workitem(evacuate,ID,[LOC],[true])])) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true),boolean_type(OUTPUT).

fun_fluent(evacuated_exp(P)) :- location_type(P).

causes_val(release(SRVC,ID,evacuate,_I,_E,[OUTPUT]),evacuated_exp(LOC),true,
and(neg(adapting),assigned(SRVC,[workitem(evacuate,ID,[LOC],[true])]))) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true),boolean_type(OUTPUT).

/*FLUENT STATUS*/
fun_fluent(status(P)) :- location_type(P).

causes_val(release(SRVC,ID,extinguishfire,_I,_E,[OUTPUT]),status(LOC),OUTPUT,
assigned(SRVC,[workitem(extinguishfire,ID,[LOC],[ok])])) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

causes_val(release(SRVC,ID,removedebris,_I,_E,[OUTPUT]),status(LOC),OUTPUT,
assigned(SRVC,[workitem(removedebris,ID,[LOC],[ok])])) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

causes_val(release(SRVC,ID,updatestatus,_I,_E,[OUTPUT]),status(LOC),OUTPUT,
assigned(SRVC,[workitem(updatestatus,ID,[LOC],[ok])])) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

fun_fluent(status_exp(P)) :- location_type(P).

causes_val(release(SRVC,ID,extinguishfire,_I,_E,[OUTPUT]),status_exp(LOC),ok,
and(assigned(SRVC,[workitem(extinguishfire,ID,[LOC],[ok])]),neg(adapting))) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

causes_val(release(SRVC,ID,removedebris,_I,_E,[OUTPUT]),status_exp(LOC),ok,
and(assigned(SRVC,[workitem(removedebris,ID,[LOC],[ok])]),neg(adapting))) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

causes_val(release(SRVC,ID,updatestatus,_I,_E,[OUTPUT]),status_exp(LOC),ok,
and(assigned(SRVC,[workitem(updatestatus,ID,[LOC],[ok])]),neg(adapting))) :-

location_type(LOC),status_type(ok),status_type(OUTPUT).

/*FLUENT BATTERYLEVEL*/
fun_fluent(batteryLevel(SRVC)) :- service(SRVC).

causes_val(release(SRVC,ID,move,_I,_E,[OUTPUT]),batteryLevel(SRVC),L,
and(assigned(SRVC,[workitem(move,ID,[FROM,TO],[TO])]),

L is batteryLevel(SRVC)-moveStep)) :-
service(SRVC),location_type(OUTPUT),location_type(FROM),location_type(TO).

causes_val(release(SRVC,ID,removedebris,_I,_E,[OUTPUT]),batteryLevel(SRVC),L,
and(assigned(SRVC,[workitem(removedebris,ID,[LOC],[ok])]),

L is batteryLevel(SRVC)-debrisStep)) :-
service(SRVC),location_type(LOC),status_type(ok),status_type(OUTPUT).

causes_val(release(SRVC,ID,chargebattery,_I,_E,[]),batteryLevel(RB),L,
and(assigned(SRVC,[workitem(chargebattery,ID,[RB],[])]),

163

L is batteryLevel(RB)+batteryRecharging)) :-
service(SRVC),service(RB).

/*FLUENT PHOTO TAKEN*/
fun_fluent(photoTaken(P)) :- location_type(P).

causes_val(release(SRVC,ID,takephoto,_I,_E,[OUTPUT]),photoTaken(LOC),OUTPUT,
assigned(SRVC,[workitem(takephoto,ID,[LOC],[true])])) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true),boolean_type(OUTPUT).

fun_fluent(photoTaken_exp(P)) :- location_type(P).

causes_val(release(SRVC,ID,takephoto,_I,_E,[OUTPUT]),photoTaken_exp(LOC),true,
and(neg(adapting),assigned(SRVC,[workitem(takephoto,ID,[LOC],[true])]))) :-

service(SRVC),id(ID),location_type(LOC),boolean_type(true),boolean_type(OUTPUT).

/*FLUENT GENERAL BATTERY*/
fun_fluent(generalBattery).

causes_val(release(SRVC,ID,chargebattery,_I,_E,[]),generalBattery,L,
and(assigned(SRVC,[workitem(chargebattery,ID,[RB],[])]),L is generalBattery-batteryRecharging)) :-

service(SRVC),id(ID),service(RB).

/*FLUENT BATTERY RECHARGING*/
fun_fluent(batteryRecharging).

/*FLUENT MOVE STEP*/
fun_fluent(moveStep).

/*FLUENT DEBRIS STEP*/
fun_fluent(debrisStep).

/*ABBREVIATIONS*/

proc(isConnected(SRVC),
and(provides(SRVC,movement),
or(covered(at(SRVC)),

some(rb,and(service(rb),and(provides(rb,battery),
and(or(neigh(at(SRVC),atRobot(rb)),
at(SRVC)=atRobot(rb)),isRobotConnected(rb))))))

)).

proc(isRobotConnected(RBT),
and(service(RBT),and(provides(RBT,battery),

or(covered(atRobot(RBT)),
or(some(loc,and(location_type(loc),and(covered(loc),neigh(atRobot(RBT),loc)))),
or(some(rb,and(service(rb),

and(provides(rb,battery),and(neg(rb=RBT),and(neigh(atRobot(RBT),atRobot(rb)),
or(covered(atRobot(rb)),

some(lc2,and(location_type(lc2),and(covered(lc2),neigh(atRobot(rb),lc2)))))))))),
some(rb,and(service(rb),and(provides(rb,battery),and(neg(rb=RBT),

some(lc,and(location_type(lc),and(neigh(atRobot(RBT),lc),and(neigh(atRobot(rb),lc),
or(covered(atRobot(rb)),

some(lc2,and(location_type(lc2),and(covered(lc2),neigh(atRobot(rb),lc2)))))
)))))))))

164 A. The Full Code of the Example

)
)

)
)

).

/* INITIAL STATE */

initially(reserved(SRVC,ID,TASK),false) :- task(TASK), service(SRVC), id(ID).
initially(assigned(SRVC,ID,TASK),false) :- task(TASK), service(SRVC), id(ID).
initially(finished,false).
initially(adapting,false).
initially(built_in_adaptation,false).

initially(free(act1),true).
initially(free(act2),true).
initially(free(act3),false).
initially(free(act4),false).
initially(free(rb1),true).
initially(free(rb2),true).

initially(batteryRecharging,10).
initially(moveStep,2).
initially(debrisStep,3).
initially(generalBattery,30).

initially(at(act1),loc00).
initially(at_exp(act1),loc00).
initially(at(act2),loc00).
initially(at_exp(act2),loc00).
initially(at(act3),loc00).
initially(at_exp(act3),loc00).
initially(at(act4),loc00).
initially(at_exp(act4),loc00).

initially(atRobot(rb1),loc00).
initially(atRobot(rb2),loc00).

initially(evacuated(loc00),false).
initially(evacuated_exp(loc00),false).
initially(evacuated(loc01),false).
initially(evacuated_exp(loc01),false).
initially(evacuated(loc02),false).
initially(evacuated_exp(loc02),false).
initially(evacuated(loc03),false).
initially(evacuated_exp(loc03),false).
initially(evacuated(loc10),false).
initially(evacuated_exp(loc10),false).
initially(evacuated(loc11),false).
initially(evacuated_exp(loc11),false).
initially(evacuated(loc13),false).
initially(evacuated_exp(loc13),false).
initially(evacuated(loc20),false).
initially(evacuated_exp(loc20),false).
initially(evacuated(loc23),false).
initially(evacuated_exp(loc23),false).
initially(evacuated(loc30),false).

165

initially(evacuated_exp(loc30),false).
initially(evacuated(loc31),false).
initially(evacuated_exp(loc31),false).
initially(evacuated(loc32),false).
initially(evacuated_exp(loc32),false).
initially(evacuated(loc33),false).
initially(evacuated_exp(loc33),false).

initially(photoTaken(loc00),false).
initially(photoTaken_exp(loc00),false).
initially(photoTaken(loc01),false).
initially(photoTaken_exp(loc01),false).
initially(photoTaken(loc02),false).
initially(photoTaken_exp(loc02),false).
initially(photoTaken(loc03),false).
initially(photoTaken_exp(loc03),false).
initially(photoTaken(loc10),false).
initially(photoTaken_exp(loc10),false).
initially(photoTaken(loc11),false).
initially(photoTaken_exp(loc11),false).
initially(photoTaken(loc13),false).
initially(photoTaken_exp(loc13),false).
initially(photoTaken(loc20),false).
initially(photoTaken_exp(loc20),false).
initially(photoTaken(loc23),false).
initially(photoTaken_exp(loc23),false).
initially(photoTaken(loc30),false).
initially(photoTaken_exp(loc30),false).
initially(photoTaken(loc31),false).
initially(photoTaken_exp(loc31),false).
initially(photoTaken(loc32),false).
initially(photoTaken_exp(loc32),false).
initially(photoTaken(loc33),false).
initially(photoTaken_exp(loc33),false).

initially(status(loc00),ok).
initially(status_exp(loc00),ok).
initially(status(loc01),ok).
initially(status_exp(loc01),ok).
initially(status(loc02),ok).
initially(status_exp(loc02),ok).
initially(status(loc03),ok).
initially(status_exp(loc03),ok).
initially(status(loc10),ok).
initially(status_exp(loc10),ok).
initially(status(loc11),ok).
initially(status_exp(loc11),ok).
initially(status(loc13),ok).
initially(status_exp(loc13),ok).
initially(status(loc20),ok).
initially(status_exp(loc20),ok).
initially(status(loc23),ok).
initially(status_exp(loc23),ok).
initially(status(loc30),ok).
initially(status_exp(loc30),ok).
initially(status(loc31),ok).
initially(status_exp(loc31),ok).

166 A. The Full Code of the Example

initially(status(loc32),ok).
initially(status_exp(loc32),ok).
initially(status(loc33),ok).
initially(status_exp(loc33),ok).

initially(batteryLevel(act1),0).
initially(batteryLevel(act2),0).
initially(batteryLevel(act3),0).
initially(batteryLevel(act4),0).
initially(batteryLevel(rb1),15).
initially(batteryLevel(rb2),15).

initially(covered(loc00),true).
initially(covered(loc10),true).
initially(covered(loc20),true).
initially(covered(loc11),true).
initially(covered(loc01),true).
initially(covered(loc02),true).

initially(neigh(loc00,loc10),true).
initially(neigh(loc00,loc11),true).
initially(neigh(loc00,loc01),true).
initially(neigh(loc11,loc10),true).
initially(neigh(loc11,loc01),true).
initially(neigh(loc11,loc00),true).
initially(neigh(loc11,loc20),true).
initially(neigh(loc11,loc02),true).
initially(neigh(loc10,loc20),true).
initially(neigh(loc10,loc00),true).
initially(neigh(loc10,loc11),true).
initially(neigh(loc10,loc01),true).
initially(neigh(loc01,loc02),true).
initially(neigh(loc01,loc11),true).
initially(neigh(loc01,loc10),true).
initially(neigh(loc01,loc00),true).
initially(neigh(loc02,loc03),true).
initially(neigh(loc02,loc13),true).
initially(neigh(loc02,loc01),true).
initially(neigh(loc02,loc11),true).
initially(neigh(loc03,loc02),true).
initially(neigh(loc03,loc13),true).
initially(neigh(loc13,loc03),true).
initially(neigh(loc13,loc23),true).
initially(neigh(loc13,loc02),true).
initially(neigh(loc23,loc13),true).
initially(neigh(loc23,loc33),true).
initially(neigh(loc23,loc32),true).
initially(neigh(loc33,loc23),true).
initially(neigh(loc33,loc32),true).
initially(neigh(loc32,loc33),true).
initially(neigh(loc32,loc23),true).
initially(neigh(loc32,loc31),true).
initially(neigh(loc31,loc32),true).
initially(neigh(loc31,loc20),true).
initially(neigh(loc31,loc30),true).
initially(neigh(loc30,loc31),true).
initially(neigh(loc30,loc20),true).

167

initially(neigh(loc20,loc30),true).
initially(neigh(loc20,loc31),true).
initially(neigh(loc20,loc10),true).
initially(neigh(loc20,loc11),true).

/* EXOGENOUS EVENTS USED FOR SWITCHING A TASK FROM A STATE TO ANOTHER */
prim_action(A) :- exog_action(A).
poss(A,true) :- exog_action(A).

exog_action(readyToStart(SRVC,ID,TASK)) :- task(TASK), service(SRVC), id(ID).
exog_action(finishedTask(SRVC,ID,TASK,_V)) :- task(TASK), service(SRVC), id(ID).

/* INTERNAL EXOGENOUS ACTION FOR LOADING THE RECOVERY PROCEDURE */
exog_action(planReady(_PLAN)).

/* DOMAIN-DEPENDENT EXOGENOUS EVENTS */

exog_action(photoLost(LOC)) :- location_type(LOC).
causes_val(photoLost(LOC),photoTaken(LOC),false,true).

exog_action(fireRisk(LOC)) :- location_type(LOC).
causes_val(fireRisk(LOC),status(LOC),fire,true).

exog_action(rockSlide(LOC)) :- location_type(LOC).
causes_val(rockSlide(LOC),status(LOC),debris,true).

/* INDIGOLOG INTERNAL ACTIONS */

prim_action(initPMS).
poss(initPMS, true).

prim_action(endPMS).
poss(endPMS, true).

prim_action(finish).
poss(finish,true).
rel_fluent(finished).
causes_val(finish,finished,true,true).

rel_fluent(realityChanged).
initially(realityChanged,false).
causes_val(release(_,_),realityChanged,true,neg(adapting)).

prim_action(resetReality).
poss(resetReality,true).
causes_val(resetReality,realityChanged,false,true).

prim_action(adaptFinish).
poss(adaptFinish,true).

prim_action(adaptStart).
poss(adaptStart,true).

prim_action(adaptFound).
poss(adaptFound,true).

prim_action(adaptNotFound).

168 A. The Full Code of the Example

poss(adaptNotFound,true).

/*COMMANDS FOR INVOKING THE PLANNER*/
prim_action(invokePlanner).
poss(invokePlanner,true).

rel_fluent(adaptationPlanReady).
initially(adaptationPlanReady,true).
causes_val(invokePlanner,adaptationPlanReady,false,true).
causes_val(planReady(_P),adaptationPlanReady,true,true).

fun_fluent(recoveryPlan).
initially(recoveryPlan,[]).
causes_val(planReady(P),recoveryPlan,P,true).

prim_action(stop).
poss(stop,false).

rel_fluent(adapting).
causes_val(adaptStart,adapting,true,true).
causes_val(adaptFound,adapting,false,true).

/* DEFINITION OF THE RELEVANT FLUENT */
proc(relevant,or(some(srvc,and(service(srvc),and(provides(srvc,movement),

or(neg(at(srvc)=at_exp(srvc)),neg(isConnected(srvc)))))),
some(poi,and(location_type(poi),or(neg(evacuated_exp(poi)=evacuated(poi)),
or(neg(photoTaken_exp(poi)=photoTaken(poi)),neg(status_exp(poi)=status(poi)))))))).

/* THE MONITOR PROCEDURE */
proc(monitor,[?(writeln(’Monitor’)),ndet([?(neg(relevant)),?(writeln(’NonRelevant’))],
[?(relevant),?(writeln(’Relevant’)),
[adaptStart,createPlanningProblem,?(report_message(user, ’About to adapt...’)),

if(built_in_adaptation,pconc([adaptingProgram,adaptFinish],
while(adapting,[?(writeln(’waiting’)),wait])),

[invokePlanner,manageRecoveryProcess(recoveryPlan),adaptFound,adaptFinish])
]]),
resetReality]).

/* THE BUILT-IN ADAPTATION PROCEDURE */
proc(adaptingProgram,searchn([?(true),adapt,[adaptFound,

?(report_message(user, ’Adaptation program found!’))]],
[assumptions([[assign(N,D,T,I,E)]),readyToStart(N,D,T)],

[start(N,D,T),finishedTask(N,D,T,E)]])])).

proc(adapt,plans(0,10)).

proc(plans(M,N),[if(M=N,[adaptNotFound],[?(M<(N+1)),
ndet([actionSequence(M),?(neg(relevant))],
[?(SUCCM is M+1),plans(SUCCM,N)])])]).

proc(actionSequence(N),ndet([?(N=0)],[?(N>0),
pi([n,t,i,e],[?(and(service(n),and(free(n),capable(n,[workitem(t,id_adapt,i,e)])))),
assign(n,id_adapt,t,i,e),
start(n,id_adapt,t),
ackCompl(n,id_adapt,t),
release(n,id_adapt,t,i,e),
?(PRECN is N-1), actionSequence(PRECN)])

169

])).

proc(capable(SRVC,TASK),and(findall(CAP,requires(TASK,CAP),D),
and(findall(CAP,provides(SRVC,CAP),C),subset(D,C)))).

/* THE MANAGE EXECUTION PROCEDURE */

proc(manageExecution(X),
[atomic([pi(n,[?and(free(n),capable(n,X))),
assign(n,X)])]),pi(n,[?(assigned(n,_d,X)=true),executionHelp(n,X)]),
atomic([pi(n,[?(assigned(n,_d,X)=true),[release(n,X),printALL]])])]).

proc(executionHelp(_N,[]),[]).
proc(executionHelp(N,[workitem(T,D,I,E)|TAIL]),
[start(N,D,T), ackCompl(N,D,T), executionHelp(N,TAIL)]).

proc(manageRecoveryProcess([]),[]).
proc(manageRecoveryProcess(N),[?(N=[recoveryTask(TASKNAME,SERVICE,INPUTS)|TAIL]),
manageRecoveryTask(TASKNAME,SERVICE,INPUTS),manageRecoveryProcess(TAIL)]).

proc(manageRecoveryTask(TASKNAME,SERVICE,INPUTS),
[pi(o,[?(and(A=workitem(TASKNAME,_D,INPUTS,o),listelem(A))),
manageExecution(SERVICE,[workitem(TASKNAME,id_adapt,INPUTS,o)])])]).

proc(manageExecution(S,X),[assign(S,X),pi(n,[?(assigned(n,X)=true),
executionHelp(n,X)]),atomic([pi(n,[?(assigned(n,X)=true),[release(n,X),printALL]])])]).

proc(main, mainControl(N)) :- controller(N), !.
proc(main, mainControl(5)).

proc(mainControl(5), prioritized_interrupts([
interrupt(and(neg(finished),neg(adaptationPlanReady)),

[?(writeln(’>>>>>>>>>>>> Waiting for a recovery plan...’)), wait]),
interrupt(and(neg(finished),realityChanged), monitor),
interrupt(true, [process,finish]),
interrupt(neg(finished), wait)])).

/* THE INDIGOLOG MAIN PROCESS */

proc(process,[initPMS,
rrobin([
[manageExecution([workitem(go,id_1,[loc00,loc33],[loc33])]),
manageExecution([workitem(takephoto,id_2,[loc33],[true])]),
manageExecution([workitem(updatestatus,id_3,[loc33],[ok])])],

rrobin([
[manageExecution([workitem(go,id_4,[loc00,loc32],[loc32])]),
manageExecution([workitem(evacuate,id_5,[loc32],[true])]),
manageExecution([workitem(updatestatus,id_6,[loc32],[ok])])],

[manageExecution([workitem(go,id_7,[loc00,loc31],[loc31])]),
manageExecution([workitem(evacuate,id_8,[loc31],[true])]),
manageExecution([workitem(updatestatus,id_9,[loc31],[ok])])]

])]),
endPMS]).

/* CREATION OF THE PLANNING PROBLEM WHEN A DEVIATION IS SENSED */

170 A. The Full Code of the Example

proc(createPlanningProblem,[writeFile(’Planners/LPG-TD/problem.pddl’)]).

proc(writeFile(File),[?(open(File, write, Stream)),
?(writeln(Stream,(’(define (problem EM1) (:domain Derailment)’))),
?(writeln(Stream,(’(:objects’))),
?(writeln(Stream,(’act1 - service’))),
?(writeln(Stream,(’act2 - service’))),
?(writeln(Stream,(’act3 - service’))),
?(writeln(Stream,(’act4 - service’))),
?(writeln(Stream,(’rb1 - service’))),
?(writeln(Stream,(’rb2 - service’))),
?(writeln(Stream,(’ok - status_type’))),
?(writeln(Stream,(’fire - status_type’))),
?(writeln(Stream,(’debris - status_type’))),
?(writeln(Stream,(’movement - capability’))),
?(writeln(Stream,(’hatchet - capability’))),
?(writeln(Stream,(’camera - capability’))),
?(writeln(Stream,(’gprs - capability’))),
?(writeln(Stream,(’extinguisher - capability’))),
?(writeln(Stream,(’battery - capability’))),
?(writeln(Stream,(’digger - capability’))),
?(writeln(Stream,(’powerpack - capability’))),
?(writeln(Stream,(’loc00 - location_type’))),
?(writeln(Stream,(’loc01 - location_type’))),
?(writeln(Stream,(’loc02 - location_type’))),
?(writeln(Stream,(’loc03 - location_type’))),
?(writeln(Stream,(’loc10 - location_type’))),
?(writeln(Stream,(’loc11 - location_type’))),
?(writeln(Stream,(’loc13 - location_type’))),
?(writeln(Stream,(’loc20 - location_type’))),
?(writeln(Stream,(’loc23 - location_type’))),
?(writeln(Stream,(’loc30 - location_type’))),
?(writeln(Stream,(’loc31 - location_type’))),
?(writeln(Stream,(’loc32 - location_type’))),
?(writeln(Stream,(’loc33 - location_type’))),
?(writeln(Stream,(’)’))),
?(writeln(Stream,(’(:init’))),
if(free(act1)=true,?(writeln(Stream,(’(free act1)’))),[]),
if(free(act2)=true,?(writeln(Stream,(’(free act2)’))),[]),
if(free(act1)=true,?(writeln(Stream,(’(free act3)’))),[]),
if(free(act2)=true,?(writeln(Stream,(’(free act4)’))),[]),
if(free(rb1)=true,?(writeln(Stream,(’(free rb1)’))),[]),
if(free(rb2)=true,?(writeln(Stream,(’(free rb2)’))),[]),
?(writeln(Stream,(’(provides act1 movement)’))),
?(writeln(Stream,(’(provides act1 gprs)’))),
?(writeln(Stream,(’(provides act1 camera)’))),
?(writeln(Stream,(’(provides act1 extinguisher)’))),
?(writeln(Stream,(’(provides act2 movement)’))),
?(writeln(Stream,(’(provides act2 gprs)’))),
?(writeln(Stream,(’(provides act2 camera)’))),
?(writeln(Stream,(’(provides act2 hatchet)’))),
?(writeln(Stream,(’(provides act3 movement)’))),
?(writeln(Stream,(’(provides act3 gprs)’))),
?(writeln(Stream,(’(provides act3 camera)’))),
?(writeln(Stream,(’(provides act3 hatchet)’))),
?(writeln(Stream,(’(provides act4 movement)’))),
?(writeln(Stream,(’(provides act4 powerpack)’))),

171

?(writeln(Stream,(’(provides act4 gprs)’))),
?(writeln(Stream,(’(provides rb1 battery)’))),
?(writeln(Stream,(’(provides rb1 digger)’))),
?(writeln(Stream,(’(provides rb2 battery)’))),
?(writeln(Stream,(’(provides rb2 digger)’))),
?(writeln(Stream,(’(covered loc00)’))),
?(writeln(Stream,(’(covered loc10)’))),
?(writeln(Stream,(’(covered loc20)’))),
?(writeln(Stream,(’(covered loc01)’))),
?(writeln(Stream,(’(covered loc11)’))),
?(writeln(Stream,(’(covered loc02)’))),
?(writeln(Stream,(’(neigh loc00 loc10)’))),
?(writeln(Stream,(’(neigh loc00 loc11)’))),
?(writeln(Stream,(’(neigh loc00 loc01)’))),
?(writeln(Stream,(’(neigh loc11 loc10)’))),
?(writeln(Stream,(’(neigh loc11 loc01)’))),
?(writeln(Stream,(’(neigh loc11 loc00)’))),
?(writeln(Stream,(’(neigh loc11 loc20)’))),
?(writeln(Stream,(’(neigh loc11 loc02)’))),
?(writeln(Stream,(’(neigh loc10 loc20)’))),
?(writeln(Stream,(’(neigh loc10 loc00)’))),
?(writeln(Stream,(’(neigh loc10 loc11)’))),
?(writeln(Stream,(’(neigh loc10 loc01)’))),
?(writeln(Stream,(’(neigh loc01 loc02)’))),
?(writeln(Stream,(’(neigh loc01 loc11)’))),
?(writeln(Stream,(’(neigh loc01 loc10)’))),
?(writeln(Stream,(’(neigh loc01 loc00)’))),
?(writeln(Stream,(’(neigh loc02 loc03)’))),
?(writeln(Stream,(’(neigh loc02 loc13)’))),
?(writeln(Stream,(’(neigh loc02 loc01)’))),
?(writeln(Stream,(’(neigh loc02 loc11)’))),
?(writeln(Stream,(’(neigh loc03 loc02)’))),
?(writeln(Stream,(’(neigh loc03 loc13)’))),
?(writeln(Stream,(’(neigh loc13 loc03)’))),
?(writeln(Stream,(’(neigh loc13 loc23)’))),
?(writeln(Stream,(’(neigh loc13 loc02)’))),
?(writeln(Stream,(’(neigh loc23 loc13)’))),
?(writeln(Stream,(’(neigh loc23 loc33)’))),
?(writeln(Stream,(’(neigh loc23 loc32)’))),
?(writeln(Stream,(’(neigh loc33 loc23)’))),
?(writeln(Stream,(’(neigh loc33 loc32)’))),
?(writeln(Stream,(’(neigh loc32 loc33)’))),
?(writeln(Stream,(’(neigh loc32 loc23)’))),
?(writeln(Stream,(’(neigh loc32 loc31)’))),
?(writeln(Stream,(’(neigh loc31 loc32)’))),
?(writeln(Stream,(’(neigh loc31 loc20)’))),
?(writeln(Stream,(’(neigh loc31 loc30)’))),
?(writeln(Stream,(’(neigh loc30 loc31)’))),
?(writeln(Stream,(’(neigh loc30 loc20)’))),
?(writeln(Stream,(’(neigh loc20 loc30)’))),
?(writeln(Stream,(’(neigh loc20 loc31)’))),
?(writeln(Stream,(’(neigh loc20 loc10)’))),
?(writeln(Stream,(’(neigh loc20 loc11)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act1 ’))),
?(write(Stream,(at(act1)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act2 ’))),
?(write(Stream,(at(act2)))),?(writeln(Stream,(’)’))),

172 A. The Full Code of the Example

?(write(Stream,(’(’))),?(write(Stream,(’at act3 ’))),
?(write(Stream,(at(act3)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act4 ’))),
?(write(Stream,(at(act4)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’atRobot rb1 ’))),
?(write(Stream,(atRobot(rb1)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’atRobot rb2 ’))),
?(write(Stream,(atRobot(rb2)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(batteryLevel rb1) ’))),
?(write(Stream,(batteryLevel(rb1)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(batteryLevel rb2) ’))),
?(write(Stream,(batteryLevel(rb2)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(batteryRecharging) ’))),
?(write(Stream,(batteryRecharging))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(generalBattery) ’))),
?(write(Stream,(generalBattery))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(debrisStep) ’))),
?(write(Stream,(debrisStep))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(= ’))),?(write(Stream,(’(moveStep) ’))),
?(write(Stream,(moveStep))),?(writeln(Stream,(’)’))),
if(photoTaken(loc00)=true,?(writeln(Stream,(’(photoTaken loc00)’))),[]),
if(photoTaken(loc01)=true,?(writeln(Stream,(’(photoTaken loc01)’))),[]),
if(photoTaken(loc02)=true,?(writeln(Stream,(’(photoTaken loc02)’))),[]),
if(photoTaken(loc03)=true,?(writeln(Stream,(’(photoTaken loc03)’))),[]),
if(photoTaken(loc10)=true,?(writeln(Stream,(’(photoTaken loc10)’))),[]),
if(photoTaken(loc11)=true,?(writeln(Stream,(’(photoTaken loc11)’))),[]),
if(photoTaken(loc13)=true,?(writeln(Stream,(’(photoTaken loc13)’))),[]),
if(photoTaken(loc20)=true,?(writeln(Stream,(’(photoTaken loc20)’))),[]),
if(photoTaken(loc23)=true,?(writeln(Stream,(’(photoTaken loc23)’))),[]),
if(photoTaken(loc30)=true,?(writeln(Stream,(’(photoTaken loc30)’))),[]),
if(photoTaken(loc31)=true,?(writeln(Stream,(’(photoTaken loc31)’))),[]),
if(photoTaken(loc32)=true,?(writeln(Stream,(’(photoTaken loc32)’))),[]),
if(photoTaken(loc33)=true,?(writeln(Stream,(’(photoTaken loc33)’))),[]),
?(write(Stream,(’(’))),?(write(Stream,(’status loc00 ’))),
?(write(Stream,(status(loc00)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc01 ’))),
?(write(Stream,(status(loc01)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc02 ’))),
?(write(Stream,(status(loc02)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc03 ’))),
?(write(Stream,(status(loc03)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc10 ’))),
?(write(Stream,(status(loc10)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc11 ’))),
?(write(Stream,(status(loc11)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc13 ’))),
?(write(Stream,(status(loc13)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc20 ’))),
?(write(Stream,(status(loc20)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc23 ’))),
?(write(Stream,(status(loc23)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc30 ’))),
?(write(Stream,(status(loc30)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc31 ’))),
?(write(Stream,(status(loc31)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc32 ’))),
?(write(Stream,(status(loc32)))),?(writeln(Stream,(’)’))),

173

?(write(Stream,(’(’))),?(write(Stream,(’status loc33 ’))),
?(write(Stream,(status(loc33)))),?(writeln(Stream,(’)’))),
if(evacuated(loc00)=true,?(writeln(Stream,(’(evacuated loc00)’))),[]),
if(evacuated(loc01)=true,?(writeln(Stream,(’(evacuated loc01)’))),[]),
if(evacuated(loc02)=true,?(writeln(Stream,(’(evacuated loc02)’))),[]),
if(evacuated(loc03)=true,?(writeln(Stream,(’(evacuated loc03)’))),[]),
if(evacuated(loc10)=true,?(writeln(Stream,(’(evacuated loc10)’))),[]),
if(evacuated(loc11)=true,?(writeln(Stream,(’(evacuated loc11)’))),[]),
if(evacuated(loc13)=true,?(writeln(Stream,(’(evacuated loc13)’))),[]),
if(evacuated(loc20)=true,?(writeln(Stream,(’(evacuated loc20)’))),[]),
if(evacuated(loc23)=true,?(writeln(Stream,(’(evacuated loc23)’))),[]),
if(evacuated(loc30)=true,?(writeln(Stream,(’(evacuated loc30)’))),[]),
if(evacuated(loc31)=true,?(writeln(Stream,(’(evacuated loc31)’))),[]),
if(evacuated(loc32)=true,?(writeln(Stream,(’(evacuated loc32)’))),[]),
if(evacuated(loc33)=true,?(writeln(Stream,(’(evacuated loc33)’))),[]),
?(writeln(Stream,(’)’))),
?(writeln(Stream,(’(:goal’))),
?(writeln(Stream,(’(and’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act1 ’))),
?(write(Stream,(at_exp(act1)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act2 ’))),
?(write(Stream,(at_exp(act2)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act3 ’))),
?(write(Stream,(at_exp(act3)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’at act4 ’))),
?(write(Stream,(at_exp(act4)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc00 ’))),
?(write(Stream,(status_exp(loc00)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc01 ’))),
?(write(Stream,(status_exp(loc01)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc02 ’))),
?(write(Stream,(status_exp(loc02)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc03 ’))),
?(write(Stream,(status_exp(loc03)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc10 ’))),
?(write(Stream,(status_exp(loc10)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc11 ’))),
?(write(Stream,(status_exp(loc11)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc13 ’))),
?(write(Stream,(status_exp(loc13)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc20 ’))),
?(write(Stream,(status_exp(loc20)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc23 ’))),
?(write(Stream,(status_exp(loc23)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc30 ’))),
?(write(Stream,(status_exp(loc30)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc31 ’))),
?(write(Stream,(status_exp(loc31)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc32 ’))),
?(write(Stream,(status_exp(loc32)))),?(writeln(Stream,(’)’))),
?(write(Stream,(’(’))),?(write(Stream,(’status loc33 ’))),
?(write(Stream,(status_exp(loc33)))),?(writeln(Stream,(’)’))),
if(evacuated_exp(loc00)=true,?(writeln(Stream,(’(evacuated loc00)’))),[]),
if(evacuated_exp(loc01)=true,?(writeln(Stream,(’(evacuated loc01)’))),[]),
if(evacuated_exp(loc02)=true,?(writeln(Stream,(’(evacuated loc02)’))),[]),
if(evacuated_exp(loc03)=true,?(writeln(Stream,(’(evacuated loc03)’))),[]),
if(evacuated_exp(loc10)=true,?(writeln(Stream,(’(evacuated loc10)’))),[]),

174 A. The Full Code of the Example

if(evacuated_exp(loc11)=true,?(writeln(Stream,(’(evacuated loc11)’))),[]),
if(evacuated_exp(loc13)=true,?(writeln(Stream,(’(evacuated loc13)’))),[]),
if(evacuated_exp(loc20)=true,?(writeln(Stream,(’(evacuated loc20)’))),[]),
if(evacuated_exp(loc23)=true,?(writeln(Stream,(’(evacuated loc23)’))),[]),
if(evacuated_exp(loc30)=true,?(writeln(Stream,(’(evacuated loc30)’))),[]),
if(evacuated_exp(loc31)=true,?(writeln(Stream,(’(evacuated loc31)’))),[]),
if(evacuated_exp(loc32)=true,?(writeln(Stream,(’(evacuated loc32)’))),[]),
if(evacuated_exp(loc33)=true,?(writeln(Stream,(’(evacuated loc33)’))),[]),
if(photoTaken_exp(loc00)=true,?(writeln(Stream,(’(photoTaken loc00)’))),[]),
if(photoTaken_exp(loc01)=true,?(writeln(Stream,(’(photoTaken loc01)’))),[]),
if(photoTaken_exp(loc02)=true,?(writeln(Stream,(’(photoTaken loc02)’))),[]),
if(photoTaken_exp(loc03)=true,?(writeln(Stream,(’(photoTaken loc03)’))),[]),
if(photoTaken_exp(loc10)=true,?(writeln(Stream,(’(photoTaken loc10)’))),[]),
if(photoTaken_exp(loc11)=true,?(writeln(Stream,(’(photoTaken loc11)’))),[]),
if(photoTaken_exp(loc13)=true,?(writeln(Stream,(’(photoTaken loc13)’))),[]),
if(photoTaken_exp(loc20)=true,?(writeln(Stream,(’(photoTaken loc20)’))),[]),
if(photoTaken_exp(loc23)=true,?(writeln(Stream,(’(photoTaken loc23)’))),[]),
if(photoTaken_exp(loc30)=true,?(writeln(Stream,(’(photoTaken loc30)’))),[]),
if(photoTaken_exp(loc31)=true,?(writeln(Stream,(’(photoTaken loc31)’))),[]),
if(photoTaken_exp(loc32)=true,?(writeln(Stream,(’(photoTaken loc32)’))),[]),
if(photoTaken_exp(loc33)=true,?(writeln(Stream,(’(photoTaken loc33)’))),[]),
?(writeln(Stream,(’(isConnected act1)’))),
?(writeln(Stream,(’(isConnected act2)’))),
?(writeln(Stream,(’(isConnected act3)’))),
?(writeln(Stream,(’(isConnected act4)’))),
?(writeln(Stream,(’))’))),
?(writeln(Stream,(’(:metric minimize (total-time))’))),
?(writeln(Stream,(’)’))),
?(nl(Stream)),?(close(Stream))]).

PDDL Planning Domain
(define (domain Derailment)
(:requirements :derived-predicates :typing :fluents :equality)
(:types service capability location_type status_type)

(:predicates
(free ?x - service)
(provides ?x - service ?c - capability)
(neigh ?y1 - location_type ?y2 - location_type)
(covered ?y - location_type)
(at ?x - service ?y - location_type)
(atRobot ?x - service ?y - location_type)
(status ?y - location_type ?s - status_type)
(evacuated ?y - location_type)
(photoTaken ?l - location_type)
(isRobotConnected ?x - service)
(isConnected ?x - service)
)

(:functions
(batteryLevel ?x - service)
(moveStep)
(debrisStep)
(generalBattery)

175

(batteryRecharging)
)

(:action go
:parameters (?x - service ?from - location_type ?to - location_type)
:precondition (and (provides ?x movement) (free ?x) (at ?x ?from) (isConnected ?x))
:effect (and (not (at ?x ?from)) (at ?x ?to))
)

(:action move
:parameters (?x - service ?from - location_type ?to - location_type)
:precondition (and (provides ?x battery) (free ?x) (atRobot ?x ?from) (>= (batteryLevel ?x)

(moveStep)) (isRobotConnected ?x))
:effect (and (not (atRobot ?x ?from)) (atRobot ?x ?to) (decrease (batteryLevel ?x) (moveStep)))
)

(:action extinguishfire
:parameters (?x - service ?y - location_type)
:precondition (and (provides ?x extinguisher) (free ?x) (at ?x ?y)

(status ?y fire) (isConnected ?x))
:effect (status ?y ok)
)

(:action evacuate
:parameters (?x - service ?y - location_type)
:precondition (and (provides ?x hatchet) (free ?x) (at ?x ?y) (status ?y ok)

(not (evacuated ?y)) (isConnected ?x))
:effect (evacuated ?y)
)

(:action removedebris
:parameters (?x - service ?y - location_type)
:precondition (and (provides ?x digger) (free ?x) (atRobot ?x ?y) (status ?y debris)

(>= (batteryLevel ?x) (debrisStep)) (isRobotConnected ?x))
:effect (and (status ?y ok) (decrease (batteryLevel ?x) (debrisStep)))
)

(:action chargebattery
:parameters (?x1 - service ?x2 - service ?y - location_type)
:precondition (and (provides ?x1 powerpack) (free ?x1) (at ?x1 ?y) (provides ?x2 battery)

(atRobot ?x2 ?y) (>= (generalBattery) (batteryRecharging)) (isConnected ?x1))
:effect (and (decrease (generalBattery) (batteryRecharging))

(increase (batteryLevel ?x2) (batteryRecharging)))
)

(:action updatestatus
:parameters (?x - service ?y - location_type)
:precondition (and (provides ?x gprs) (free ?x) (at ?x ?y) (status ?y ok) (isConnected ?x))
:effect (status ?y ok)
)

(:action takephoto
:parameters (?x - service ?y - location_type)
:precondition (and (provides ?x camera) (free ?x) (at ?x ?y) (isConnected ?x))
:effect (photoTaken ?y)
)

176 A. The Full Code of the Example

(:derived (isConnected ?x - service)
(and (provides ?x movement)
(or (exists (?y - location_type) (and (at ?x ?y) (covered ?y)))

(exists (?r - service ?y - location_type ?z - location_type)
(and (provides ?r battery) (at ?x ?y) (atRobot ?r ?z)

(or (neigh ?y ?z) (= ?y ?z)) (isRobotConnected ?r)))
)

)
)

(:derived (isRobotConnected ?x - service) (and (provides ?x battery)
(or (exists (?y - location_type) (and (atRobot ?x ?y) (covered ?y)))

(exists (?y - location_type ?z - location_type)
(and (atRobot ?x ?y) (covered ?z) (neigh ?y ?z)))

(exists (?r - service ?y - location_type ?z - location_type ?k - location_type)
(and (provides ?r battery) (not (= ?x ?r))

(atRobot ?x ?y) (atRobot ?r ?z) (neigh ?y ?z) (or (covered ?z)
(and (covered ?k) (neigh ?k ?z)))))

(exists (?r - service ?y - location_type ?z - location_type
?k - location_type ?c - location_type)

(and (provides ?r battery)
(not (= ?x ?r)) (atRobot ?x ?y) (atRobot ?r ?z) (neigh ?y ?k) (neigh ?z ?k)

(or (covered ?z) (and (covered ?k) (neigh ?k ?z)))))
)

)
)
)

PDDL Planning Problem
(define (problem EM1) (:domain Derailment)
(:objects
act1 - service
act2 - service
act3 - service
act4 - service
rb1 - service
rb2 - service
ok - status_type
fire - status_type
debris - status_type
movement - capability
hatchet - capability
camera - capability
gprs - capability
extinguisher - capability
battery - capability
digger - capability
powerpack - capability
loc00 - location_type
loc01 - location_type
loc02 - location_type
loc03 - location_type
loc10 - location_type
loc11 - location_type
loc13 - location_type

177

loc20 - location_type
loc23 - location_type
loc30 - location_type
loc31 - location_type
loc32 - location_type
loc33 - location_type
)
(:init
(free act1)
(free act2)
(free act3)
(free act4)
(free rb1)
(free rb2)
(provides act1 movement)
(provides act1 gprs)
(provides act1 camera)
(provides act1 extinguisher)
(provides act2 movement)
(provides act2 gprs)
(provides act2 camera)
(provides act2 hatchet)
(provides act3 movement)
(provides act3 gprs)
(provides act3 camera)
(provides act3 hatchet)
(provides act4 movement)
(provides act4 powerpack)
(provides act4 gprs)
(provides rb1 battery)
(provides rb1 digger)
(provides rb2 battery)
(provides rb2 digger)
(covered loc00)
(covered loc10)
(covered loc20)
(covered loc01)
(covered loc11)
(covered loc02)
(neigh loc00 loc10)
(neigh loc00 loc11)
(neigh loc00 loc01)
(neigh loc11 loc10)
(neigh loc11 loc01)
(neigh loc11 loc00)
(neigh loc11 loc20)
(neigh loc11 loc02)
(neigh loc10 loc20)
(neigh loc10 loc00)
(neigh loc10 loc11)
(neigh loc10 loc01)
(neigh loc01 loc02)
(neigh loc01 loc11)
(neigh loc01 loc10)
(neigh loc01 loc00)
(neigh loc02 loc03)
(neigh loc02 loc13)

178 A. The Full Code of the Example

(neigh loc02 loc01)
(neigh loc02 loc11)
(neigh loc03 loc02)
(neigh loc03 loc13)
(neigh loc13 loc03)
(neigh loc13 loc23)
(neigh loc13 loc02)
(neigh loc23 loc13)
(neigh loc23 loc33)
(neigh loc23 loc32)
(neigh loc33 loc23)
(neigh loc33 loc32)
(neigh loc32 loc33)
(neigh loc32 loc23)
(neigh loc32 loc31)
(neigh loc31 loc32)
(neigh loc31 loc20)
(neigh loc31 loc30)
(neigh loc30 loc31)
(neigh loc30 loc20)
(neigh loc20 loc30)
(neigh loc20 loc31)
(neigh loc20 loc10)
(neigh loc20 loc11)
(at act1 loc03)
(at act2 loc00)
(at act3 loc00)
(at act4 loc00)
(atRobot rb1 loc00)
(atRobot rb2 loc00)
(= (batteryLevel rb1) 15)
(= (batteryLevel rb2) 15)
(= (batteryRecharging) 10)
(= (generalBattery) 30)
(= (debrisStep) 3)
(= (moveStep) 2)
(status loc00 ok)
(status loc01 ok)
(status loc02 ok)
(status loc03 ok)
(status loc10 ok)
(status loc11 ok)
(status loc13 ok)
(status loc20 ok)
(status loc23 ok)
(status loc30 ok)
(status loc31 ok)
(status loc32 ok)
(status loc33 ok)
)
(:goal
(and
(at act1 loc33)
(at act2 loc00)
(at act3 loc00)
(at act4 loc00)
(status loc00 ok)

179

(status loc01 ok)
(status loc02 ok)
(status loc03 ok)
(status loc10 ok)
(status loc11 ok)
(status loc13 ok)
(status loc20 ok)
(status loc23 ok)
(status loc30 ok)
(status loc31 ok)
(status loc32 ok)
(status loc33 ok)
(isConnected act1)
(isConnected act2)
(isConnected act3)
(isConnected act4)
))
(:metric minimize (total-time))
)

181

Bibliography

[1] Adams, M., ter Hofstede, A. H. M., Van Der Aalst, W. M. P.,
and Edmond, D. Dynamic, extensible and context-aware exception handling
for workflows. In Proceedings of the 2007 OTM Confederated international
conferences : CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I,
OTM’07, pp. 95–112. Springer-Verlag (2007).

[2] Adams, M. J. Facilitating dynamic flexibility and exception handling for work-
flows. Ph.D. thesis, Queensland University of Technology Brisbane, Australia
(2007).

[3] Aler, R., Borrajo, D., and Camacho, D. A Knowledge-based Approach
for Business Process Reengineering, SHAMASH. Know.-Based Syst., 15 (2002).

[4] Bandinelli, S. C., Fuggetta, A., and Ghezzi, C. Software process model
evolution in the spade environment. Software Engineering, IEEE Transactions
on, 19 (1993).

[5] Beckstein, C. and Klausner, J. A Meta Level Architecture for Workflow
Management. Journal of Integrated Design and Process Science, 3 (1999).

[6] Berens, P. The flower case-handling approach: beyond workflow management.
Process-Aware Information Systems, (2005).

[7] BPMI.org and OMG. Business Process Modeling Notation - Final Specifi-
cation Ver.2.0. http://www.omg.org/spec/BPMN/2.0/PDF/ (2011).

[8] Brachman, R. and Levesque, H. Knowledge Representation and Reasoning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004). ISBN
1558609326.

[9] Bucchiarone, A., Pistore, M., Raik, H., and Kazhamiakin, R. Adap-
tation of service-based business processes by context-aware replanning. In
SOCA, pp. 1–8 (2011).

[10] Capata, A., Marrella, A., Russo, R., Bortenschlager, M., and
Rieser, H. A Geo-based Application for the Management of Mobile Actors
during Crisis Situations. In 5th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2008) (2008).

[11] Casati, F. A discussion on approaches to handling exceptions in workflows.
ACM SIGGROUP Bulletin, 20 (1999).

http://www.omg.org/spec/BPMN/2.0/PDF/

182 Bibliography

[12] Casati, F., Ceri, S., Pernici, B., Pozzi, G., and Pozzi, G. Workflow
evolution. pp. 211–238 (1998).

[13] Casati, F. and Cugola, G. Error handling in process support systems.
Advances in Exception Handling Techniques, (2001).

[14] Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Borten-
schlager, M., and Steinmann, R. The WORKPAD Project Experience:
Improving the Disaster Response through Process Management and Geo Col-
laboration. In 7th International Conference on Information Systems for Crisis
Response and Management (ISCRAM 2010) (2010).

[15] Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Russo,
A., Steinmann, R., and Bortenschlager, M. WORKPAD: Process
Management and Geo-Collaboration Help Disaster Response. IJISCRAM, 3
(2011), 32. doi:10.4018/jiscrm.2011010103.

[16] Catarci, T., et al. Pervasive Software Environments for Supporting Disaster
Responses. IEEE Internet Computing, 12 (2008), 26. doi:10.1109/MIC.2008.
18.

[17] C.Hagen and G.Alonso. Exception Handling in Workflow Management
Systems. IEEE Trans. Software Engineering, 26 (2000).

[18] Chiu, D. K. W., Li, Q., and Karlapalem, K. A Logical Framework for
Exception Handling in ADOME Workflow Management System. In 12th In-
ternational Conference on Advanced Information Systems Engineering, CAiSE
’00, pp. 110–125. Springer-Verlag (2000).

[19] Coles, A. J., Coles, A., Fox, M., and Long, D. Forward-Chaining
Partial-Order Planning. In ICAPS (2010).

[20] Cosa GmbH. COSA BPM product description. Retrieved May
30, 2013, from: http://www.cosa.nl/docs/EN/COSA%20BPM%205.7%
20Productdescription_en_new_K.pdf (2013).

[21] Cossu, F., Marrella, A., Mecella, M., Russo, A., Bertazzoni, G.,
Suppa, M., and Grasso, F. Improving Operational Support in Hospital
Wards through Vocal Interfaces and Process-Awareness. In 25th IEEE Interna-
tional Symposium on Computer-Based Medical Systems (CBMS 2012) (2012).
doi:10.1109/CBMS.2012.6266329.

[22] Cumberlidge, M. Business Process Management with JBoss jBPM: A
Practical Guide for Business Analysts. Packt Publishing (2007).

[23] Dadam, P. and Rinderle, S. Workflow evolution. In Encyclopedia of
Database Systems, pp. 3540–3544 (2009).

[24] De Giacomo, G., Lespérance, Y., and Levesque, H. J. Congolog, a
concurrent programming language based on the situation calculus. Artificial
Intelligence, 121 (2000).

http://dx.doi.org/10.4018/jiscrm.2011010103
http://dx.doi.org/10.1109/MIC.2008.18
http://dx.doi.org/10.1109/MIC.2008.18
http://www.cosa.nl/docs/EN/COSA%20BPM%205.7%20Productdescription_en_new_K.pdf
http://www.cosa.nl/docs/EN/COSA%20BPM%205.7%20Productdescription_en_new_K.pdf
http://dx.doi.org/10.1109/CBMS.2012.6266329

Bibliography 183

[25] De Giacomo, G., Lespérance, Y., Levesque, H., and Sardina, S.
Indigolog: A high-level programming language for embedded reasoning agents.
In Multi-Agent Programming (edited by A. El Fallah Seghrouchni, J. Dix,
M. Dastani, and R. H. Bordini), pp. 31–72. Springer US (2009).

[26] De Giacomo, G. and Levesque, H. J. An incremental interpreter for
high-level programs with sensing. Logical Foundations for Cognitive Agents,
(1999).

[27] De Giacomo, G., Reiter, R., and Soutchanski, M. Execution Monitoring
of High-Level Robot Programs. In KR’98: Proceedings of the Sixth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning,
pp. 453–465 (1998).

[28] de Leoni, M., Marrella, A., Mecella, M., De Rosa, F., Poggi, A.,
Krek, A., and Manti, F. Emergency Management: from User Requirements
to a Flexible P2P Architecture. In 4th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2007) (2007).

[29] de Leoni, M., Marrella, A., Mecella, M., and Sardina, S. SmartPM
- Featuring Automatic Adaptation to Unplanned Exceptions. Tech. rep.,
Dipartimento di Informatica e Sistemistica ANTONIO RUBERTI, SAPIENZA
- Universitá di Roma (2011).

[30] de Leoni, M., Marrella, A., Mecella, M., Valentini, S., and Sardiña,
S. Coordinating Mobile Actors in Pervasive and Mobile Scenarios: An AI-
Based Approach. In 17th Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2008), pp. 82–87. IEEE (2008). doi:
10.1109/WETICE.2008.30.

[31] de Leoni, M., Marrella, A., and Russo, A. Process-Aware Information
Systems for Emergency Management. In ServiceWave Workshops, pp. 50–58
(2010). doi:10.1007/978-3-642-22760-8_5.

[32] Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., and Wash-
ington, R. Incremental Contingency Planning. In ICAPS’03 Workshop on
Planning under Uncertainty and Incomplete Information, pp. 38–47 (2003).

[33] Di Ciccio, C., Marrella, A., and Russo, A. Knowledge-intensive Pro-
cesses: An Overview of Contemporary Approaches. In 1st International
Workshop on Knowledge-intensive Business Processes (KiBP 2012) (2012).
Available from: http://ceur-ws.org/Vol-861/KiBP2012_paper_2.pdf.

[34] Dijkman, R. M., Dumas, M., and Ouyang, C. Semantics and analysis of
business process models in BPMN. Information and Software Technology, 50
(2008).

[35] Dumas, M. and ter Hofstede, A. H. M. UML Activity Diagrams as
a Workflow Specification Language. In Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pp. 76–90 (2001).

http://dx.doi.org/10.1109/WETICE.2008.30
http://dx.doi.org/10.1109/WETICE.2008.30
http://dx.doi.org/10.1007/978-3-642-22760-8_5
http://ceur-ws.org/Vol-861/KiBP2012_paper_2.pdf

184 Bibliography

[36] Dumas, M., Van Der Aalst, W., and Ter Hofstede, A. Process-aware
information systems. Wiley Online Library (2005).

[37] Edelkamp, S. and Hoffmann, J. PDDL2.2: The Language for the Classical
Part of the 4th International Planning Competition. Tech. rep., Albert-Ludwigs-
Universität Freiburg, Institut für Informatik (2004).

[38] Eder, J. and Liebhart, W. The Workflow Activity Model WAMO. In 3rd
international conference on Cooperative Information Systems (CoopIs), pp.
87–98 (1995).

[39] Eder, J. and Liebhart, W. Workflow Recovery. In Proceedings of the
First IFCIS International Conference on Cooperative Information Systems,
COOPIS ’96. IEEE Computer Society (1996).

[40] Ferreira, H. and Ferreira, D. An Integrated Life Cycle for Workflow
Management Based on Learning and Planning. Int. J. Cooperative Information
Systems, 15 (2006).

[41] Fox, M. and Long, D. PDDL2.1: an Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Int. Res., 20 (2003).

[42] Friedrich, G., Fugini, M., Mussi, E., Pernici, B., and Tagni, G.
Exception Handling for Repair in Service-Based Processes. IEEE Transactions
on Software Engineering, 36 (2010).

[43] Gajewski, M., Meyer, H., Momotko, M., Schuschel, H., and Weske,
M. Dynamic Failure Recovery of Generated Workflows. In Proceedings of the
16th International Workshop on Database and Expert Systems Applications
(DEXA), pp. 982–986. IEEE Computer Society Press (2005).

[44] Gerevini, A., Saetti, A., and Serina, I. Planning through stochastic
local search and temporal action graphs in lpg. J. Artif. Int. Res., 20 (2003).

[45] Gerevini, A., Saetti, A., Serina, I., and Toninelli, P. Lpg-td: a
fully automated planner for pddl2.2 domains. In In Proc. of the 14th Int.
Conference on Automated Planning and Scheduling (ICAPS-04) International
Planning Competition abstracts (2004).

[46] Ghallab, M., Aeronautiques, C., Isi, C. K., Wilkins, D., et al.
Pddl-the planning domain definition language. Tech. rep. (1998).

[47] Godefroid, P. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem (1996).

[48] Greiner, U., Ramsch, J., Heller, B., Loffler, M., Muller, R., and
Rahm, E. Adaptive guideline-based treatment workflows with adaptflow.
Studies in health technology and informatics, (2004).

[49] Hallerbach, A., Bauer, T., and Reichert, M. Capturing variabil-
ity in business process models: the provop approach. Journal of Software
Maintenance and Evolution: Research and Practice, 22 (2009).

Bibliography 185

[50] Hallerbach, A., Bauer, T., and Reichert, M. Configuration and
management of process variants. In Handbook on Business Process Management
1 (edited by J. Brocke and M. Rosemann), International Handbooks on
Information Systems. Springer Berlin Heidelberg (2010). ISBN 978-3-642-
00415-5.

[51] Hamadi, R., Benatallah, B., and Medjahed, B. Self-adapting recovery
nets for policy-driven exception handling in business processes. Distributed
and Parallel Databases, 23 (2008).

[52] Hammer, M. The Reengineering Revolution. HarperCollins (1995). ISBN
9780887307362.

[53] Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., and
Jansen, E. The gator tech smart house: A programmable pervasive space.
Computer, 38 (2005).

[54] Helmert, M. New complexity results for classical planning benchmarks. In
Proceedings of the sixteenth international conference on automated planning
and scheduling (ICAPS 2006), pp. 52–61 (2006).

[55] Hollingsworth, D. et al. Workflow management coalition: The workflow
reference model. Document Number TC00-1003, (1995).

[56] Hull, R. Artifact-Centric Business Process Models: Brief Survey of Re-
search Results and Challenges. In Proceedings of the OTM 2008 Confederated
International Conferences, OTM ’08, pp. 1152–1163 (2008).

[57] Humayoun, S. R., Catarci, T., de Leoni, M., Marrella, A., Mecella,
M., Bortenschlager, M., and Steinmann, R. Designing Mobile Systems
in Highly Dynamic Scenarios. The WORKPAD Methodology. Springer’s
International Journal on Knowledge, Technology and Policy, 22 (2009). doi:
10.1007/s12130-009-9070-3.

[58] Humayoun, S. R., Catarci, T., de Leoni, M., Marrella, A., Mecella,
M., Bortenschlager, M., and Steinmann, R. The WORKPAD User
Interface and Methodology: Developing Smart and Effective Mobile Applica-
tions for Emergency Operators. In 5th International Conference on Universal
Access in Human-Computer Interaction (UAHCI 2009), pp. 343–352. Springer
Berlin Heidelberg (2009). doi:10.1007/978-3-642-02713-0_36.

[59] I. Bider. Masking Flexibility Behind Rigidity: Notes on How Much Flexibility
People are Willing to Cope With. In Proceedings of CAiSE05 Workshops, pp.
7–18 (2005).

[60] IBM Inc. An introduction to WebSphere Process Server and WebSphere Inte-
gration Developer. Retrieved May 30, 2013, from: ftp://ftp.software.ibm.
com/software/integration/wps/library/WSW14021-USEN-01.pdf (2008).

[61] Jarvis, P., Moore, J., Stader, J., Macintosh, A., du Mont, A. C.,
and Chung, P. Exploiting AI Technologies to Realise Adaptive Workflow

http://dx.doi.org/10.1007/s12130-009-9070-3
http://dx.doi.org/10.1007/s12130-009-9070-3
http://dx.doi.org/10.1007/978-3-642-02713-0_36
ftp://ftp.software.ibm.com/software/integration/wps/library/WSW14021-USEN-01.pdf
ftp://ftp.software.ibm.com/software/integration/wps/library/WSW14021-USEN-01.pdf

186 Bibliography

Systems. Proceedings of the AAAI Workshop on Agent-Based Systems in the
Business Context, (1999).

[62] Kaldeli, E., Lazovik, A., and Aiello, M. Continual planning with
sensing for web service composition. In AAAI (2011).

[63] Kemsley, S. The changing nature of work: From structured to unstructured,
from controlled to social. In BPM, p. 2 (2011).

[64] Klein, M., Dellarocas, C., and Bernstein, A. Introduction to the
Special Issue on Adaptive Workflow Systems. Computer Supported Cooperative
Work (CSCW), 9 (2000).

[65] Kowalski, R. A. et al. Using meta-logic to reconcile reactive with rational
agents. Meta-logics and logic programming, (1995).

[66] Künzle, V. and Reichert, M. PHILharmonicFlows: towards a framework
for object-aware process management. Journal of Software Maintenance and
Evolution: Research and Practice, 23 (2011).

[67] Künzle, V. and Reichert, M. Striving for Object-aware Process Support:
How Existing Approaches Fit Together. In 1st Int’l Symposium on Data-driven
Process Discovery and Analysis (SIMPDA’11) (2011).

[68] Leake, D. B. Case-based reasoning. John Wiley and Sons Ltd. (2003).

[69] Lenz, R. and Reichert, M. It support for healthcare processes - premises,
challenges, perspectives. Data Knowl. Eng., 61 (2007).

[70] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,
S., and Scarcello, F. The dlv system for knowledge representation and
reasoning. ACM Transactions on Computational Logic (TOCL), 7 (2006).

[71] Lerner, B., Christov, S., Osterweil, L., Bendraou, R., Kan-
nengiesser, U., and Wise, A. Exception handling patterns for process
modeling. Software Engineering, IEEE Transactions on, 36 (2010).

[72] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and Scherl,
R. B. Golog: A logic programming language for dynamic domains. The
Journal of Logic Programming, 31 (1997).

[73] Leymann, F. and Roller, D. Production workflow: concepts and techniques.
Prentice Hall (2000).

[74] Liu, C. and Conradi, R. Automatic replanning of task networks for process
model evolution in EPOS. In Software Engineering - ESEC’93, pp. 434–450.
Springer Berlin Heidelberg (1993).

[75] Lu, R. and Sadiq, S. A survey of comparative business process modeling
approaches. In Business Information Systems, Lecture Notes in Computer
Science, pp. 82–94. Springer (2007). ISBN 978-3-540-72034-8.

Bibliography 187

[76] Marrella, A. and Lesperance, Y. Synthesizing a Library of Process
Templates through Partial-Order Planning Algorithms. In 14th International
Working Conference on Business Process Modeling, Development and Support
(BPMDS 2013), pp. 277–291. Springer Berlin Heidelberg (2013). doi:10.
1007/978-3-642-38484-4_20.

[77] Marrella, A. and Mecella, M. Continuous Planning for Solving Business
Process Adaptivity. In 12th International Working Conference on Business
Process Modeling, Development and Support (BPMDS 2011), pp. 118–132
(2011). doi:10.1007/978-3-642-21759-3_9.

[78] Marrella, A., Mecella, M., and Russo, A. Collaboration On-the-field:
Suggestions and Beyond. In 8th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2011) (2011).

[79] Marrella, A., Mecella, M., and Russo, A. Featuring Automatic Adaptiv-
ity through Workflow Enactment and Planning. In 7th International Conference
on Collaborative Computing: Networking, Applications and Worksharing (Col-
laborateCom 2011), pp. 372–381 (2011). doi:10.4108/icst.collaboratecom.
2011.247096.

[80] Marrella, A., Mecella, M., Russo, A., ter Hofstede, A. H. M.,
and Sardiña, S. Making YAWL and SmartPM Interoperate: Managing
Highly Dynamic Processes by Exploiting Automatic Adaptation Features. In
9th International Conference on Business Process Management (BPM 2011),
Demonstration Track (2011). Available from: http://ceur-ws.org/Vol-820/
Demo6.pdf.

[81] Marrella, A., Russo, A., and Mecella, M. Planlets: Automatically
Recovering Dynamic Processes in YAWL. In 20th International Conference
on Cooperative Information Systems (CoopIS 2012) - OTM Conferences (1),
pp. 268–286 (2012). doi:10.1007/978-3-642-33606-5_17.

[82] McCarthy, J. and Hayes, P. J. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence, 4 (1969).

[83] Minor, M., Bergmann, R., and Görg, S. Case-based adaptation of
workflows. Information Systems, (2012).

[84] Minor, M., Tartakovski, A., and Schmalen, D. Agile workflow tech-
nology and case-based change reuse for long-term processes. International
Journal of Intelligent Information Technologies (IJIIT), 4 (2008).

[85] M.Kinateder. Sap advanced workflow techniques. Retrieved May 30, 2013,
from: http://scn.sap.com/docs/DOC-3286.

[86] Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani, F.,
Mello, P., and Storari, S. Declarative specification and verification of
service choreographies. ACM Transactions on the Web (TWEB), 4 (2010).

http://dx.doi.org/10.1007/978-3-642-38484-4_20
http://dx.doi.org/10.1007/978-3-642-38484-4_20
http://dx.doi.org/10.1007/978-3-642-21759-3_9
http://dx.doi.org/10.4108/icst.collaboratecom.2011.247096
http://dx.doi.org/10.4108/icst.collaboratecom.2011.247096
http://ceur-ws.org/Vol-820/Demo6.pdf
http://ceur-ws.org/Vol-820/Demo6.pdf
http://dx.doi.org/10.1007/978-3-642-33606-5_17
http://scn.sap.com/docs/DOC-3286

188 Bibliography

[87] Müller, R., Greiner, U., and Rahm, E. AGENT WORK: a work-
flow system supporting rule-based workflow adaptation. Data & Knowledge
Engineering, 51 (2004).

[88] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77 (1989).

[89] Myers, K. and Berry, P. Workflow Management Systems: An AI Perspec-
tive. AIC-SRI report, (1998).

[90] Nau, D., Ghallab, M., and Traverso, P. Automated Planning: Theory &
Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004).

[91] Nigam, A. and Caswell, N. S. Business Artifacts: An approach to
Operational Specification. IBM Systems Journal, 42 (2003).

[92] OASIS. Web Services Business Process Execution Language (WS-BPEL) ver.
2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007).

[93] Oberweis, A. Person-to-application processes: Workflow management. In
Process-Aware Information Systems (2005).

[94] Object Management Group (OMG). Case Management Process Modeling
(CMPM) – Request For Proposal. http://www.omg.org/cgi-bin/doc?bmi/
2009-9-23 (2009).

[95] Ouvans, C., Dumas, M., Ter Hofstede, A. H., and Van Der Aalst,
W. M. From bpmn process models to bpel web services. In Web Services,
2006. ICWS’06. International Conference on, pp. 285–292. IEEE (2006).

[96] Pesic, M., Schonenberg, H., and van der Aalst, W. M. P. DECLARE:
Full Support for Loosely-Structured Processes. In Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing Conference, pp.
287–300 (2007).

[97] Pesic, M. and van der Aalst, W. M. P. A Declarative Approach for
Flexible Business Processes Management. In Business Process Management
Workshops, vol. 4103 of LNCS, pp. 169–180. Springer Berlin / Heidelberg
(2006).

[98] Peterson, J. L. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA (1981). ISBN 0136619835.

[99] R-Moreno, M. D., Borrajo, D., Cesta, A., and Oddi, A. Integrating
planning and scheduling in workflow domains. Expert Systems with Applica-
tions: An International Journal, 33 (2007).

[100] R-Moreno, M. D. and Kearney, P. Integrating AI planning techniques
with Workflow Management System. Knowl.-Based Syst., 15 (2002).

[101] R-Moreno, M. D., Oddi, A., Borrajo, D., and Cesta, A. IPSS: A
Hybrid Approach to Planning and Scheduling Integration. Trans. on Kn. and
Data Eng., 18 (2006).

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/cgi-bin/doc?bmi/2009-9-23
http://www.omg.org/cgi-bin/doc?bmi/2009-9-23

Bibliography 189

[102] Reichert, M. What bpm technology can do for healthcare process support.
In AIME, pp. 2–13 (2011).

[103] Reichert, M. and Dadam, P. Adeptflex-supporting dynamic changes of
workflows without losing control. J. Intell. Inf. Syst., 10 (1998).

[104] Reichert, M., Rinderle, S., Kreher, U., and Dadam, P. Adaptive
process management with adept2. In ICDE, pp. 1113–1114 (2005).

[105] Reichert, M. and Weber, B. Enabling Flexibility in Process-Aware Infor-
mation Systems - Challenges, Methods, Technologies. Springer (2012). ISBN
978-3-642-30408-8.

[106] Reiter, R. Readings in Nonmonotonic Reasoning. chap. On Closed World
Data Bases, pp. 300–310. Morgan Kaufmann Publishers Inc. (1987). ISBN
0-934613-45-1.

[107] Reiter, R. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press (2001). ISBN 978-0262182188.

[108] Rinderle, S. and Reichert, M. Data Driven Process Control and Exception
Handling in Process Management Systems. In Advanced Information Systems
Engineering (edited by E. Dubois and K. Pohl), vol. 4001 of LNCS, pp. 273–287.
Springer Berlin / Heidelberg (2006).

[109] Rinderle, S., Weber, B., Reichert, M., and Wild, W. Integrating
Process Learning and Process Evolution - A Semantics Based Approach. In
Business Process Management (edited by W. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera), vol. 3649 of LNCS, pp. 252–267. Springer Berlin /
Heidelberg (2005).

[110] Rosemann, M. and Recker, J. Context-aware process design exploring the
extrinsic drivers for process flexibility. In BPMDS (2006).

[111] Russell, N., ter Hofstede, A., Edmond, D., and van der Aalst,
W. M. P. Workflow Data Patterns: Identification, Representation and Tool
Support. In ER’05 (2005).

[112] Russell, N., van der Aalst, W., Ter Hofstede, A., and Edmond, D.
Workflow resource patterns: Identification, representation and tool support.
In Advanced Information Systems Engineering, pp. 11–42. Springer (2005).

[113] Russell, N., van der Aalst, W. M. P., and ter Hofstede, A. H. M.
Workflow Exception Patterns. In Advanced Information Systems Engineering
(edited by E. Dubois and K. Pohl), vol. 4001 of LNCS, pp. 288–302. Springer
Berlin / Heidelberg (2006).

[114] Russo, A., Mecella, M., and de Leoni, M. ROME4EU - A service-
oriented process-aware information system for mobile devices. Softw., Pract.
Exper., 42 (2012).

190 Bibliography

[115] Sadiq, S. W., Sadiq, W., and Orlowska, M. E. Pockets of flexibility in
workflow specification. In Proceedings of the 20th International Conference on
Conceptual Modeling: Conceptual Modeling, ER ’01, pp. 513–526 (2001).

[116] Schmidt, R. Flexible Support of Inter-Organizational Business Processes
Using Web Services. In Proceedings of CAiSE05 Workshops, pp. 51–58 (2005).

[117] Schonenberg, H., Mans, R., Russell, N., Mulyar, N., and van der
Aalst, W. M. P. Process flexibility: A survey of contemporary approaches.
In CIAO! / EOMAS (2008).

[118] Selman, B., Kautz, H. A., and Cohen, B. Noise strategies for improving
local search. In Proceedings of the twelfth national conference on Artificial
intelligence (vol. 1), AAAI ’94, pp. 337–343. American Association for Artificial
Intelligence, Menlo Park, CA, USA (1994). ISBN 0-262-61102-3.

[119] SHAZIA, W. S., Marjanovic, O., and MARIA, E. O. Managing change
and time in dynamic workflow processes. International Journal of Cooperative
Information Systems, 9 (2000).

[120] Smith, D. E. and Weld, D. S. Conformant graphplan. In AAAI/IAAI, pp.
889–896 (1998).

[121] Soffer, P. On the Notion of Flexibility in Business Processes. In Proceedings
of CAiSE05 Workshops, pp. 26–37 (2005).

[122] Staines, T. S. Intuitive Mapping of UML 2 Activity Diagrams into Fun-
damental Modeling Concept Petri Net Diagrams and Colored Petri Nets. In
Proceedings of the 15th Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, pp. 191–200 (2008).

[123] Strong, D. M. and Miller, S. M. Exceptions and exception handling in
computerized information processes. ACM Trans. Inf. Syst., 13 (1995).

[124] ter Hofstede, A. H. M., van der Aalst, W. M. P., Adams, M., and
Russell, N. Modern Business Process Automation: YAWL and its Support
Environment. Springer (2009).

[125] Tibco Software Inc. TIBCO iProcess Engine - Architec-
ture Guide. Retrieved May 30, 2013, from: https://docs.
tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/
tib-iprocess-engine-architecture-guide.pdf (2009).

[126] van Beest, N., Bulanov, P., Wortmann, H., and Lazovik, A. Resolving
business process interference via dynamic reconfiguration. In 8th International
Conference on Service-Oriented Computing (ICSOC’10), pp. 47–60 (2010).

[127] van Beest, N., Kaldeli, E., Bulanov, P., Wortmann, H., and Lazovik,
A. Automatic detection of business process interference. In 1st International
Workshop on Knowledge-intensive Business Processes (KiBP’12), pp. 6–20
(2012).

https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf
https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf
https://docs.tibco.com/pub/iprocess-engine/11.1.0-september-2009/pdf/tib-iprocess-engine-architecture-guide.pdf

Bibliography 191

[128] van der Aalst, W. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, (1998).

[129] Van der Aalst, W., Adams, M., Ter Hofstede, A., Pesic, M., and
Schonenberg, H. Flexibility as a service. In Database Systems for Advanced
Applications, pp. 319–333. Springer (2009).

[130] van der Aalst, W. and van Hee, K. Workflow Management: Models,
Methods, and Systems. MIT Press (2004).

[131] van der Aalst, W. M. P. Formalization and verification of Event-driven
Process Chains. Information and Software Technology, 41 (1999).

[132] van der Aalst, W. M. P. Exterminating the dynamic change bug: A
concrete approach to support workflow change. Information Systems Frontiers,
3 (2001).

[133] van der Aalst, W. M. P., Aldred, L., Dumas, M., and ter Hofstede,
A. H. M. Design and Implementation of the YAWL System. In Proc. CAiSE’04,
vol. 3084 of LNCS, pp. 142–159 (2004).

[134] van der Aalst, W. M. P. and Pesic, M. DecSerFlow: Towards a Truly
Declarative Service Flow Language. In Web Services and Formal Methods, vol.
4184 of LNCS, pp. 1–23. Springer Berlin / Heidelberg (2006).

[135] van der Aalst, W. M. P., Pesic, M., and Schonenberg, H. Declarative
workflows: Balancing between flexibility and support. Computer Science -
R&D, 23 (2009).

[136] van der Aalst, W. M. P., ter Hofstede, A., Kiepuszewski, B., and
Barros, A. P. Workflow Patterns. Distrib. Parallel Databases, 14 (2003).

[137] Vardi, M. An automata-theoretic approach to linear temporal logic. Logics
for concurrency, (1996).

[138] Weber, B., Reichert, M., and Rinderle-Ma, S. Change Patterns and
Change Support Features - Enhancing Flexibility in Process-aware Information
Systems. Data Knowl. Eng., 66 (2008).

[139] Weber, B., Wild, W., and Breu, R. Cbrflow: Enabling adaptive workflow
management through conversational case-based reasoning. Advances in Case-
Based Reasoning, (2004).

[140] Weld, D. S. An introduction to least commitment planning. AI Magazine,
15 (1994).

[141] Weske, M. Formal Foundation and Conceptual Design of Dynamic Adapta-
tions in a Workflow Management System. In Proceedings of the 34th Annual
Hawaii International Conference on System Sciences (HICSS) (2001).

[142] Weske, M. Business Process Management: Concepts, Languages, Architec-
tures. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007).

192 Bibliography

[143] White, S. A. and Miers, D. BPMN Modeling and Reference Guide:
Understanding and Using BPMN. Future Strategies Inc. (2008).

[144] Wielemaker, J. An overview of the swi-prolog programming environment.
In WLPE, pp. 1–16 (2003).

[145] Wilkins, D. E., Myers, K. L., Lowrance, J. D., and Wesley, L. P.
Planning and reacting in uncertain and dynamic environments. Journal of
Experimental and Theoretical AI, (1994).

[146] Workflow Management Coalition (WfMC). XPDL 2.1 Complete
Specification. http://www.wfmc.org/xpdl.html (2008).

[147] Workflow Management Coalition (WfMC). Adaptive Case Man-
agement. http://www.xpdl.org/nugen/p/adaptive-case-management/
public.htm (2010).

[148] Zur Muehlen, M. Workflow-based process controlling: foundation, design,
and application of workflow-driven process information systems, vol. 6. Michael
zur Muehlen (2004).

http://www.wfmc.org/xpdl.html
http://www.xpdl.org/nugen/p/adaptive-case-management/public.htm
http://www.xpdl.org/nugen/p/adaptive-case-management/public.htm

	Extended Abstract
	Introduction
	Flexibility Issues in Process Management Systems
	The Spectrum of Process Management and Modeling Paradigms
	Structured Processes
	Loosely Structured Processes
	Unstructured Processes
	Dynamic Processes

	Case Study

	State of the Art
	Process Adaptation
	Exception Handling Techniques
	Analysis of Existing PMSs
	Discussion

	AI-based Process Adaptation
	Discussion

	The SmartPM Approach
	Overview of the Approach
	Representing Tasks in SmartPM
	Resource Model and Task Life-Cycle in SmartPM

	Preliminaries
	Situation Calculus
	Indigolog
	Classical Planning

	Formalizing processes in IndiGolog
	Realizing the Framework

	Monitoring for Failures
	The SmartPM Adaptation Mechanisms
	The Built-in Adaptation Mechanism
	The Plan-based Adaptation Approach
	The Continuous Planning Approach

	Conclusion

	The SmartPM System
	System Architecture
	The IndiGolog Platform
	The Top-level Main Cycle and Language Semantics
	The Temporal Projector
	The Communication Manager
	The Domain Application

	The SmartPM Definition Tool
	The SmartML Modeling Language
	Defining Processes in SmartPM through BPMN
	The XML-to-IndiGolog Parser

	Building the Planning Domain and the Planning Problem
	SmartPM in Action

	Validation
	Performances of SmartPM in Computing Recovery Procedures
	Effectiveness of SmartPM in Adapting Processes

	Automatic Generation of Process Templates
	Case Study
	Partial-Order Planning
	Process Templates
	On Synthesizing a Library of Process Templates
	The General Framework
	Properties

	Translation Algorithms
	Representing Domain Theories and Process Cases in PDDL
	Translating a Partially Ordered Plan P into a Process Template PT

	Experiments
	Related Work
	Conclusion

	Recovering Dynamic Processes in YAWL
	Running Example
	The YAWL Architecture
	Making YAWL and SmartPM interoperate
	The Planlets Approach
	Incorporating Planlets into YAWL
	Annotating YAWL Specifications in Planlets

	Conclusion

	Conclusion
	The Full Code of the Example

