130,998 research outputs found
Developments in modelling of backward erosion piping
One of the failure mechanisms that can affect the safety of a dyke or another water-retaining structure is backward erosion piping, a phenomenon that results in the formation of shallow pipes at the interface of a sandyor silty foundation and a cohesive cover layer. Themodels available for predicting the critical head at which the pipe progresses to the upstreamside have been validated and adapted on the basis of experiments
with two-dimensional (2D) configurations. However, the experimental base for backward erosion in three-dimensional (3D) configurations in which the flow concentrates towards one point, a situation that is commonly encountered in the field, is limited. This paper presents additional 3D configuration experiments at two scales with a range of sand types. The critical gradients, the formed pipes and the erosion mechanism were analysed for the available experiments, indicating that the erosion mechanism is more complex than previously assumed, as both erosion at the tip of the pipe (primary erosion) and in the pipe (secondary erosion) are relevant. In addition, a 3D configuration was found to result in significantly lower critical gradients than those predicted by an accepted calculation model calibrated on the basis of 2D experiments, a finding that is essential for the application of the model in the field
3D character of backward erosion piping
Backward erosion piping is an important failure mechanism for cohesive water-retaining structures which are founded on a sandy aquifer. Nowadays, piping research and safety assessments are often based on experimental or numerical modelling using arbitrary model widths or even two-dimensional (2D) assumptions. This technical note shows the influence of this limitation through a series of small-scale experiments with varying model widths. The flow pattern proves to be highly three-dimensional (3D), influencing both the pipe geometry and critical gradients leading to piping failure. A 2D model is unable to capture the important aspects of the erosion mechanism and a correction factor needs to be applied if the minimum width for correctly simulating a 3D situation is not accomplished
3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia
Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed
Erosion-corrosion behaviour of Zirconia WC-6Co, WC-6Ni and SS316
The current study investigates a ceramic, two cermets and a metal under solid-liquid impingement with 3.5% NaCl and 150mg/l hydraulic fracturing sand at two extreme angles of impact, 90° and 20°. The materials tested were Zirconia, sintered WC-6Co, sintered WC-6Ni and SS316. Each material was exposed to a testing regime using re-circulating impinging jet apparatus with a velocity of 19m/s and one hour duration. The electrochemical properties of the materials were investigated in-situ through anodic and cathodic polarisation and application of cathodic protection. Post experimental analysis of the degraded surface was completed using Scanning Electron Microscopy (SEM) and Optical 3D Imaging. Zirconia exhibited a brittle response to erosion-corrosion testing with the mass loss at 90° being fifty times greater than the negligible mass loss at 20°. WC-6Co and WC-6Ni both outperformed SS316 under all solid-liquid impingement erosion-corrosion testing regimes. WC-6Ni exhibited slightly better erosion-corrosion resistance over WC-6Co at both 90° and 20°. SS316 had the best corrosion resistance and showed passivation during anodic polarisations in solid-liquid impingement conditions. The nickel binder increased the corrosion resistance of WC-6Ni over WC-6Co. Cathodic protection was successfully applied on sintered WC-6Co and SS316 isolating the key components of erosion-corrosion
Advanced architectural descriptors in foams: novel 3D computational methods
This work presents 3D computational strategies aimed at providing foam de-structuration of the basic components of a cellular material (struts and cell walls) offering the possibility of analysing separately the structural elements that play an important role in the physical properties of thee materials. Two different methodologies have been used depending on the topological similarities existing between the struts and cell walls: 3D erosion-dilation procedure (thick struts) and solid classification algorithm (thin struts). In a second step, analysis of cell walls is performed in order to show the advantages of analysing separately the two foams components. Particularly, cell wall thickness distribution reveals differences that could not be found prior to the de-structuration
Improving the predictive capability of the soil erosion modeling tool EROSION-3D: From observation data to validation
Ziel dieser Arbeit ist die Verbesserung der Vorhersagekraft des Bodenerosionsmodelierungs-werkzeugs EROSION-3D, welche oftmals durch die Identifizierung der werkzeugspezifischen Parameter Skinfaktor und Erosionswiderstand limitiert ist.
Als drei Betrachtungsebenen der Arbeit werden 1. Beobachtungsdaten, 2. die FĂ€higkeit von EROSION-3D zur Beschreibung der Beobachtungsdaten und 3. die Vorhersagekraft des Werkzeugs untersucht. Aufzeichnungen verschiedener Beregnungsversuche wurden maschinenlesbar zusammengefasst. Daran wurde EROSION-3D mit den bisher ĂŒblichen sowie Monte-Carlo Methoden kalibriert. Anhand beschreibender Daten der Beregnungsversuche wurden Vorhersagemethoden zur SchĂ€tzung der modellspezifischen Parameter entwickelt und hinsichtlich der Parameterwerte und damit modellierter Abfluss-/Abtragswerte validiert.
Die Ergebnisse zeigen, dass verbesserte Vorhersagen mit den neuen SchÀtzmethoden möglich sind, aber auch Möglichkeiten zur Verbesserung der Modellstruktur bestehen
APPLICATION OF PHYSICALLY-BASED EROSION 3D MODEL IN SMALL CATCHMENT
The scope of this study is the application of a new approach for the estimation of potential soil erosion using a physically-based erosion model Erosion 3D for modelling potential erosion in the Myjava River basin, Slovakia. Erosion 3D is a physically-based model for predicting soil erosion by water on agricultural land (Schmidt, 1996). The model is predominantly based on physical principles and it simulates surface runoff, erosion, deposition and the detachment of soil particles for single events, and provides good tool to simulate and quantify soil erosion, but has not been established in Slovakian basins yet. The soil system of Erosion 3D is based on the fourth edition of the soil classification of âBodenkundliche Kartieranleitungâ (âKA 4â, AG Boden, 1994). Because of different soil classification it was required in the first step to create an overplot of KA 4 textural system with the USDA textural system used in Slovakia. The model requires three input parameter - relief, precipitation and soil parameters. The first two parameters are easy to obtain but soil input parameters are more complicated mainly for different areas where the model was calibrated and validated. In this study we focused to creation of the soil input data sets for Slovak condition including establishment of Parameter catalogue for every soil input parameters. The catalogue has been configured based on overplotted textural triangle. The Erosion 3D model was applied to a small catchment Tura Luka situated in the Myjava Hill Land which is known for its quick runoff response and related muddy floods. Four scenarios of initial moisture parameter, which is considered as the most sensitive soil input parameter, were applied in fallow and winter wheat. Simulations were done for 100-year design rainfall of 60 minutes duration. The results of potential erosion are well-capable to point to the spatial and temporal variability of the rainfall event with the wide range of the values
The application of two physically-based erosion models in small catchments: A case study of the Myjava Hill Land, Slovakia
Modelling of water erosion to identify areas which are endangered of potential soil loss and to estimate the intensity of processes at different scales. Evaluation of potential soil water erosion in two small catchment using eight scenarios of initial soil moisture for three different crops â fallow, silage corn and winter wheat. Estimate the potential soil water erosion during the real measured rainfall event. Taking advanatge of two physically-based erosion models Erosion-2D and Erosion-3D and compare the calculations
Current and potential water erosion estimation with RUSLE3D in Castellon province (Spain)
The purpose of this study was the estimation of current and potential water erosion rates in Castellon Province (Spain) using RUSLE3D (Revised Universal Soil Loss Equation-3D) model with Geographical Information System (GIS) support. RUSLE3D uses a new methodology for topographic factor estimation (LS factor) based on the impact of flow convergence allowing better assessment of sediment distribution detached by water erosion. In RUSLE3D equation, the effect that vegetation cover has on soil erosion rate is reflected by the C factor. Potential erosion indicates soil erosion rate without considering C factor in RUSLE3D equation. The results showed that 57% of estimated current erosion does not exceed 10 t/ha.year (low erosion). In the case of potential erosion rates, 5% of the area of Castellon Province does not exceed 10 t/ha.year but 55% exceed 200 t/ha.year. Based on these results, the current vegetation cover of Castellon Province is adequate but needs to be conserved to avoid an increase in the current soil erosion rates as shown by potential erosion rates.The purpose of this study was the estimation of current and potential water erosion rates in Castellon Province (Spain) using RUSLE3D (Revised Universal Soil Loss Equation-3D) model with Geographical Information System (GIS) support. RUSLE3D uses a new methodology for topographic factor estimation (LS factor) based on the impact of flow convergence allowing better assessment of sediment distribution detached by water erosion. In RUSLE3D equation, the effect that vegetation cover has on soil erosion rate is reflected by the C factor. Potential erosion indicates soil erosion rate without considering C factor in RUSLE3D equation. The results showed that 57% of estimated current erosion does not exceed 10 t/ha.year (low erosion). In the case of potential erosion rates, 5% of the area of Castellon Province does not exceed 10 t/ha.year but 55% exceed 200 t/ha.year. Based on these results, the current vegetation cover of Castellon Province is adequate but needs to be conserved to avoid an increase in the current soil erosion rates as shown by potential erosion rates
Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco
This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAVâs log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents
- âŠ