169 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationMost humans have difficulty performing precision tasks, such as writing and painting, without additional physical support(s) to help steady or offload their arm's weight. To alleviate this problem, various passive and active devices have been developed. However, such devices often have a small workspace and lack scalable gravity compensation throughout the workspace and/or diversity in their applications. This dissertation describes the development of a Spatial Active Handrest (SAHR), a large-workspace manipulation aid, to offload the weight of the user's arm and increase user's accuracy over a large three-dimensional workspace. This device has four degrees-of-freedom and allows the user to perform dexterous tasks within a large workspace that matches the workspace of a human arm when performing daily tasks. Users can move this device to a desired position and orientation using force or position inputs, or a combination of both. The SAHR converts the given input(s) to desired velocit

    A review on design of upper limb exoskeletons

    Get PDF

    Concept of an exoskeleton for industrial applications with modulated impedance based on Electromyographic signal recorded from the operator

    Get PDF
    The introduction of an active exoskeleton that enhances the operator power in the manufacturing field was demonstrated in literature to lead to beneficial effects in terms of reducing fatiguing and the occurrence of musculo-skeletal diseases. However, a large number of manufacturing operations would not benefit from power increases because it rather requires the modulation of the operator stiffness. However, in literature, considerably less attention was given to those robotic devices that regulate their stiffness based on the operator stiffness, even if their introduction in the line would aid the operator during different manipulations respect with the exoskeletons with variable power. In this thesis the description of the command logic of an exoskeleton for manufacturing applications, whose stiffness is modulated based on the operator stiffness, is described. Since the operator stiffness cannot be mechanically measured without deflecting the limb, an estimation based on the superficial Electromyographic signal is required. A model composed of 1 joint and 2 antagonist muscles was developed to approximate the elbow and the wrist joints. Each muscle was approximated as the Hill model and the analysis of the joint stiffness, at different joint angle and muscle activations, was performed. The same Hill muscle model was then implemented in a 2 joint and 6 muscles (2J6M) model which approximated the elbow-shoulder system. Since the estimation of the exerted stiffness with a 2J6M model would be quite onerous in terms of processing time, the estimation of the operator end-point stiffness in realtime would therefore be questionable. Then, a linear relation between the end-point stiffness and the component of muscle activation that does not generate any end-point force, is proposed. Once the stiffness the operator exerts was estimated, three command logics that identifies the stiffness the exoskeleton is required to exert are proposed. These proposed command logics are: Proportional, Integral 1 s, and Integral 2 s. The stiffening exerted by a device in which a Proportional logic is implemented is proportional, sample by sample, to the estimated stiffness exerted by the operator. The stiffening exerted by the exoskeleton in which an Integral logic is implemented is proportional to the stiffness exerted by the operator, averaged along the previous 1 second (Integral 1 s) or 2 seconds (Integral 2 s). The most effective command logic, among the proposed ones, was identified with empirical tests conducted on subjects using a wrist haptic device (the Hi5, developed by the Bioengineering group of the Imperial College of London). The experimental protocol consisted in a wrist flexion/extension tracking task with an external perturbation, alternated with isometric force exertion for the estimation of the occurrence of the fatigue. The fatigue perceived by the subject, the tracking error, defined as the RMS of the difference between wrist and target angles, and the energy consumption, defined as the sum of the squared signals recorded from two antagonist muscles, indicated the Integral 1 s logic to be the most effective for controlling the exoskeleton. A logistic relation between the stiffness exerted by the subject and the stiffness exerted by the robotic devices was selected, because it assured a smooth transition between the maximum and the minimum stiffness the device is required to exert. However, the logistic relation parameters are subject-specific, therefore an experimental estimation is required. An example was provided. Finally, the literature about variable stiffness actuators was analyzed to identify the most suitable device for exoskeleton stiffness modulation. This actuator is intended to be integrated on an existing exoskeleton that already enhances the operator power based on the operator Electromyographic signal. The identified variable stiffness actuator is the DLR FSJ, which controls its stiffness modulating the preload of a single spring

    Design, implementation, control, and user evaluations of assiston-arm self-aligning upper-extremity exoskeleton

    Get PDF
    Physical rehabilitation therapy is indispensable for treating neurological disabilities. The use of robotic devices for rehabilitation holds high promise, since these devices can bear the physical burden of rehabilitation exercises during intense therapy sessions, while therapists are employed as decision makers. Robot-assisted rehabilitation devices are advantageous as they can be applied to patients with all levels of impairment, allow for easy tuning of the duration and intensity of therapies and enable customized, interactive treatment protocols. Moreover, since robotic devices are particularly good at repetitive tasks, rehabilitation robots can decrease the physical burden on therapists and enable a single therapist to supervise multiple patients simultaneously; hence, help to lower cost of therapies. While the intensity and quality of manually delivered therapies depend on the skill and fatigue level of therapists, high-intensity robotic therapies can always be delivered with high accuracy. Thanks to their integrated sensors, robotic devices can gather measurements throughout therapies, enable quantitative tracking of patient progress and development of evidence-based personalized rehabilitation programs. In this dissertation, we present the design, control, characterization and user evaluations of AssistOn-Arm, a powered, self-aligning exoskeleton for robotassisted upper-extremity rehabilitation. AssistOn-Arm is designed as a passive back-driveable impedance-type robot such that patients/therapists can move the device transparently, without much interference of the device dynamics on natural movements. Thanks to its novel kinematics and mechanically transparent design, AssistOn-Arm can passively self-align its joint axes to provide an ideal match between human joint axes and the exoskeleton axes, guaranteeing ergonomic movements and comfort throughout physical therapies. The self-aligning property of AssistOn-Arm not only increases the usable range of motion for robot-assisted upper-extremity exercises to cover almost the whole human arm workspace, but also enables the delivery of glenohumeral mobilization (scapular elevation/depression and protraction/retraction) and scapular stabilization exercises, extending the type of therapies that can be administered using upper-extremity exoskeletons. Furthermore, the self-alignment property of AssistOn-Arm signi cantly shortens the setup time required to attach a patient to the exoskeleton. As an impedance-type device with high passive back-driveability, AssistOn- Arm can be force controlled without the need of force sensors; hence, high delity interaction control performance can be achieved with open-loop impedance control. This control architecture not only simpli es implementation, but also enhances safety (coupled stability robustness), since open-loop force control does not su er from the fundamental bandwidth and stability limitations of force-feedback. Experimental characterizations and user studies with healthy volunteers con- rm the transparency, range of motion, and control performance of AssistOn- Ar

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    Doctor of Philosophy

    Get PDF
    dissertationHumans generally have difficulty performing precision tasks with their unsupported hands. To compensate for this difficulty, people often seek to support or rest their hand and arm on a fixed surface. However, when the precision task needs to be performed over a workspace larger than what can be reached from a fixed position, a fixed support is no longer useful. This dissertation describes the development of the Active Handrest, a device that expands its user's dexterous workspace by providing ergonomic support and precise repositioning motions over a large workspace. The prototype Active Handrest is a planar computer-controlled support for the user's hand and arm. The device can be controlled through force input from the user, position input from a grasped tool, or a combination of inputs. The control algorithm of the Active Handrest converts the input(s) into device motions through admittance control where the device's desired velocity is calculated proportionally to the input force or its equivalent. A robotic 2-axis admittance device was constructed as the initial Planar Active Handrest, or PAHR, prototype. Experiments were conducted to optimize the device's control input strategies. Large workspace shape tracing experiments were used to compare the PAHR to unsupported, fixed support, and passive moveable support conditions. The Active Handrest was found to reduce task error and provide better speedaccuracy performance. Next, virtual fixture strategies were explored for the device. From the options considered, a virtual spring fixture strategy was chosen based on its effectiveness. An experiment was conducted to compare the PAHR with its virtual fixture strategy to traditional virtual fixture techniques for a grasped stylus. Virtual fixtures implemented on the Active Handrest were found to be as effective as fixtures implemented on a grasped tool. Finally, a higher degree-of-freedom Enhanced Planar Active Handrest, or E-PAHR, was constructed to provide support for large workspace precision tasks while more closely following the planar motions of the human arm. Experiments were conducted to investigate appropriate control strategies and device utility. The E-PAHR was found to provide a skill level equal to that of the PAHR with reduced user force input and lower perceived exertion
    corecore