5,261 research outputs found

    Are Lock-Free Concurrent Algorithms Practically Wait-Free?

    Get PDF
    Lock-free concurrent algorithms guarantee that some concurrent operation will always make progress in a finite number of steps. Yet programmers prefer to treat concurrent code as if it were wait-free, guaranteeing that all operations always make progress. Unfortunately, designing wait-free algorithms is generally a very complex task, and the resulting algorithms are not always efficient. While obtaining efficient wait-free algorithms has been a long-time goal for the theory community, most non-blocking commercial code is only lock-free. This paper suggests a simple solution to this problem. We show that, for a large class of lock- free algorithms, under scheduling conditions which approximate those found in commercial hardware architectures, lock-free algorithms behave as if they are wait-free. In other words, programmers can keep on designing simple lock-free algorithms instead of complex wait-free ones, and in practice, they will get wait-free progress. Our main contribution is a new way of analyzing a general class of lock-free algorithms under a stochastic scheduler. Our analysis relates the individual performance of processes with the global performance of the system using Markov chain lifting between a complex per-process chain and a simpler system progress chain. We show that lock-free algorithms are not only wait-free with probability 1, but that in fact a general subset of lock-free algorithms can be closely bounded in terms of the average number of steps required until an operation completes. To the best of our knowledge, this is the first attempt to analyze progress conditions, typically stated in relation to a worst case adversary, in a stochastic model capturing their expected asymptotic behavior.Comment: 25 page

    Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards

    Get PDF
    We consider a random walk in a stationary ergodic environment in Z\mathbb Z, with unbounded jumps. In addition to uniform ellipticity and a bound on the tails of the possible jumps, we assume a condition of strong transience to the right which implies that there are no "traps". We prove the law of large numbers with positive speed, as well as the ergodicity of the environment seen from the particle. Then, we consider Knudsen stochastic billiard with a drift in a random tube in Rd{\mathbb R}^d, d≥3d\geq 3, which serves as environment. The tube is infinite in the first direction, and is a stationary and ergodic process indexed by the first coordinate. A particle is moving in straight line inside the tube, and has random bounces upon hitting the boundary, according to the following modification of the cosine reflection law: the jumps in the positive direction are always accepted while the jumps in the negative direction may be rejected. Using the results for the random walk in random environment together with an appropriate coupling, we deduce the law of large numbers for the stochastic billiard with a drift.Comment: 37 pages, 1 figure; to appear in Annales de l'Institut Henri Poincar\'e (B) Probabilit\'es et Statistique

    The Evolution of Dispersal in Random Environments and The Principle of Partial Control

    Full text link
    McNamara and Dall (2011) identified novel relationships between the abundance of a species in different environments, the temporal properties of environmental change, and selection for or against dispersal. Here, the mathematics underlying these relationships in their two-environment model are investigated for arbitrary numbers of environments. The effect they described is quantified as the fitness-abundance covariance. The phase in the life cycle where the population is censused is crucial for the implications of the fitness-abundance covariance. These relationships are shown to connect to the population genetics literature on the Reduction Principle for the evolution of genetic systems and migration. Conditions that produce selection for increased unconditional dispersal are found to be new instances of departures from reduction described by the "Principle of Partial Control" proposed for the evolution of modifier genes. According to this principle, variation that only partially controls the processes that transform the transmitted information of organisms may be selected to increase these processes. Mathematical methods of Karlin, Friedland, and Elsner, Johnson, and Neumann, are central in generalizing the analysis. Analysis of the adaptive landscape of the model shows that the evolution of conditional dispersal is very sensitive to the spectrum of genetic variation the population is capable of producing, and suggests that empirical study of particular species will require an evaluation of its variational properties.Comment: Dedicated to the memory of Professor Michael Neumann, one of whose many elegant theorems provides for a result presented here. 28 pages, 1 table, 1 figur
    • …
    corecore