141 research outputs found

    Erasure List-Decodable Codes from Random and Algebraic Geometry Codes

    Full text link
    Erasure list decoding was introduced to correct a larger number of erasures with output of a list of possible candidates. In the present paper, we consider both random linear codes and algebraic geometry codes for list decoding erasure errors. The contributions of this paper are two-fold. Firstly, we show that, for arbitrary 0000 (RR and ϵ\epsilon are independent), with high probability a random linear code is an erasure list decodable code with constant list size 2O(1/ϵ)2^{O(1/\epsilon)} that can correct a fraction 1Rϵ1-R-\epsilon of erasures, i.e., a random linear code achieves the information-theoretic optimal trade-off between information rate and fraction of erasure errors. Secondly, we show that algebraic geometry codes are good erasure list-decodable codes. Precisely speaking, for any 0<R<10<R<1 and ϵ>0\epsilon>0, a qq-ary algebraic geometry code of rate RR from the Garcia-Stichtenoth tower can correct 1R1q1+1qϵ1-R-\frac{1}{\sqrt{q}-1}+\frac{1}{q}-\epsilon fraction of erasure errors with list size O(1/ϵ)O(1/\epsilon). This improves the Johnson bound applied to algebraic geometry codes. Furthermore, list decoding of these algebraic geometry codes can be implemented in polynomial time

    Two Theorems in List Decoding

    Full text link
    We prove the following results concerning the list decoding of error-correcting codes: (i) We show that for \textit{any} code with a relative distance of δ\delta (over a large enough alphabet), the following result holds for \textit{random errors}: With high probability, for a \rho\le \delta -\eps fraction of random errors (for any \eps>0), the received word will have only the transmitted codeword in a Hamming ball of radius ρ\rho around it. Thus, for random errors, one can correct twice the number of errors uniquely correctable from worst-case errors for any code. A variant of our result also gives a simple algorithm to decode Reed-Solomon codes from random errors that, to the best of our knowledge, runs faster than known algorithms for certain ranges of parameters. (ii) We show that concatenated codes can achieve the list decoding capacity for erasures. A similar result for worst-case errors was proven by Guruswami and Rudra (SODA 08), although their result does not directly imply our result. Our results show that a subset of the random ensemble of codes considered by Guruswami and Rudra also achieve the list decoding capacity for erasures. Our proofs employ simple counting and probabilistic arguments.Comment: 19 pages, 0 figure

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    Algebraic Methods in Computational Complexity

    Get PDF
    Computational Complexity is concerned with the resources that are required for algorithms to detect properties of combinatorial objects and structures. It has often proven true that the best way to argue about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena polynomial-time primality test are some of the most prominent examples. In some of the most exciting recent progress in Computational Complexity the algebraic theme still plays a central role. There have been significant recent advances in algebraic circuit lower bounds, and the so-called chasm at depth 4 suggests that the restricted models now being considered are not so far from ones that would lead to a general result. There have been similar successes concerning the related problems of polynomial identity testing and circuit reconstruction in the algebraic model (and these are tied to central questions regarding the power of randomness in computation). Also the areas of derandomization and coding theory have experimented important advances. The seminar aimed to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic methods in a variety of settings. Researchers in these areas are relying on ever more sophisticated and specialized mathematics and the goal of the seminar was to play an important role in educating a diverse community about the latest new techniques

    AG codes achieve list decoding capacity over contant-sized fields

    Full text link
    The recently-emerging field of higher order MDS codes has sought to unify a number of concepts in coding theory. Such areas captured by higher order MDS codes include maximally recoverable (MR) tensor codes, codes with optimal list-decoding guarantees, and codes with constrained generator matrices (as in the GM-MDS theorem). By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of optimally list-decodable Reed-Solomon codes over exponential sized fields. Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li have shown that randomly punctured Reed-Solomon codes achieve list-decoding capacity (which is a relaxation of optimal list-decodability) over linear size fields. We extend these works by developing a formal theory of relaxed higher order MDS codes. In particular, we show that there are two inequivalent relaxations which we call lower and upper relaxations. The lower relaxation is equivalent to relaxed optimal list-decodable codes and the upper relaxation is equivalent to relaxed MR tensor codes with a single parity check per column. We then generalize the techniques of GZ and AGL to show that both these relaxations can be constructed over constant size fields by randomly puncturing suitable algebraic-geometric codes. For this, we crucially use the generalized GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We obtain the following corollaries from our main result. First, randomly punctured AG codes of rate RR achieve list-decoding capacity with list size O(1/ϵ)O(1/\epsilon) and field size exp(O(1/ϵ2))\exp(O(1/\epsilon^2)). Prior to this work, AG codes were not even known to achieve list-decoding capacity. Second, by randomly puncturing AG codes, we can construct relaxed MR tensor codes with a single parity check per column over constant-sized fields, whereas (non-relaxed) MR tensor codes require exponential field size.Comment: 38 page

    Efficiently decoding Reed-Muller codes from random errors

    Full text link
    Reed-Muller codes encode an mm-variate polynomial of degree rr by evaluating it on all points in {0,1}m\{0,1\}^m. We denote this code by RM(m,r)RM(m,r). The minimal distance of RM(m,r)RM(m,r) is 2mr2^{m-r} and so it cannot correct more than half that number of errors in the worst case. For random errors one may hope for a better result. In this work we give an efficient algorithm (in the block length n=2mn=2^m) for decoding random errors in Reed-Muller codes far beyond the minimal distance. Specifically, for low rate codes (of degree r=o(m)r=o(\sqrt{m})) we can correct a random set of (1/2o(1))n(1/2-o(1))n errors with high probability. For high rate codes (of degree mrm-r for r=o(m/logm)r=o(\sqrt{m/\log m})), we can correct roughly mr/2m^{r/2} errors. More generally, for any integer rr, our algorithm can correct any error pattern in RM(m,m(2r+2))RM(m,m-(2r+2)) for which the same erasure pattern can be corrected in RM(m,m(r+1))RM(m,m-(r+1)). The results above are obtained by applying recent results of Abbe, Shpilka and Wigderson (STOC, 2015), Kumar and Pfister (2015) and Kudekar et al. (2015) regarding the ability of Reed-Muller codes to correct random erasures. The algorithm is based on solving a carefully defined set of linear equations and thus it is significantly different than other algorithms for decoding Reed-Muller codes that are based on the recursive structure of the code. It can be seen as a more explicit proof of a result of Abbe et al. that shows a reduction from correcting erasures to correcting errors, and it also bares some similarities with the famous Berlekamp-Welch algorithm for decoding Reed-Solomon codes.Comment: 18 pages, 2 figure

    Generalized List Decoding

    Get PDF
    This paper concerns itself with the question of list decoding for general adversarial channels, e.g., bit-flip (XOR\textsf{XOR}) channels, erasure channels, AND\textsf{AND} (ZZ-) channels, OR\textsf{OR} channels, real adder channels, noisy typewriter channels, etc. We precisely characterize when exponential-sized (or positive rate) (L1)(L-1)-list decodable codes (where the list size LL is a universal constant) exist for such channels. Our criterion asserts that: "For any given general adversarial channel, it is possible to construct positive rate (L1)(L-1)-list decodable codes if and only if the set of completely positive tensors of order-LL with admissible marginals is not entirely contained in the order-LL confusability set associated to the channel." The sufficiency is shown via random code construction (combined with expurgation or time-sharing). The necessity is shown by 1. extracting equicoupled subcodes (generalization of equidistant code) from any large code sequence using hypergraph Ramsey's theorem, and 2. significantly extending the classic Plotkin bound in coding theory to list decoding for general channels using duality between the completely positive tensor cone and the copositive tensor cone. In the proof, we also obtain a new fact regarding asymmetry of joint distributions, which be may of independent interest. Other results include 1. List decoding capacity with asymptotically large LL for general adversarial channels; 2. A tight list size bound for most constant composition codes (generalization of constant weight codes); 3. Rederivation and demystification of Blinovsky's [Bli86] characterization of the list decoding Plotkin points (threshold at which large codes are impossible); 4. Evaluation of general bounds ([WBBJ]) for unique decoding in the error correction code setting
    corecore