1,037 research outputs found

    Pac-Learning Recursive Logic Programs: Efficient Algorithms

    Full text link
    We present algorithms that learn certain classes of function-free recursive logic programs in polynomial time from equivalence queries. In particular, we show that a single k-ary recursive constant-depth determinate clause is learnable. Two-clause programs consisting of one learnable recursive clause and one constant-depth determinate non-recursive clause are also learnable, if an additional ``basecase'' oracle is assumed. These results immediately imply the pac-learnability of these classes. Although these classes of learnable recursive programs are very constrained, it is shown in a companion paper that they are maximally general, in that generalizing either class in any natural way leads to a computationally difficult learning problem. Thus, taken together with its companion paper, this paper establishes a boundary of efficient learnability for recursive logic programs.Comment: See http://www.jair.org/ for any accompanying file

    The Consistency dimension and distribution-dependent learning from queries

    Get PDF
    We prove a new combinatorial characterization of polynomial learnability from equivalence queries, and state some of its consequences relating the learnability of a class with the learnability via equivalence and membership queries of its subclasses obtained by restricting the instance space. Then we propose and study two models of query learning in which there is a probability distribution on the instance space, both as an application of the tools developed from the combinatorial characterization and as models of independent interest.Postprint (published version

    Complexity of Equivalence and Learning for Multiplicity Tree Automata

    Full text link
    We consider the complexity of equivalence and learning for multiplicity tree automata, i.e., weighted tree automata over a field. We first show that the equivalence problem is logspace equivalent to polynomial identity testing, the complexity of which is a longstanding open problem. Secondly, we derive lower bounds on the number of queries needed to learn multiplicity tree automata in Angluin's exact learning model, over both arbitrary and fixed fields. Habrard and Oncina (2006) give an exact learning algorithm for multiplicity tree automata, in which the number of queries is proportional to the size of the target automaton and the size of a largest counterexample, represented as a tree, that is returned by the Teacher. However, the smallest tree-counterexample may be exponential in the size of the target automaton. Thus the above algorithm does not run in time polynomial in the size of the target automaton, and has query complexity exponential in the lower bound. Assuming a Teacher that returns minimal DAG representations of counterexamples, we give a new exact learning algorithm whose query complexity is quadratic in the target automaton size, almost matching the lower bound, and improving the best previously-known algorithm by an exponential factor

    Towards unsupervised ontology learning from data

    Get PDF
    Data-driven elicitation of ontologies from structured data is a well-recognized knowledge acquisition bottleneck. The development of efficient techniques for (semi-)automating this task is therefore practically vital - yet, hindered by the lack of robust theoretical foundations. In this paper, we study the problem of learning Description Logic TBoxes from interpretations, which naturally translates to the task of ontology learning from data.In the presented framework, the learner is provided with a set of positive interpretations (i.e., logical models) of the TBox adopted by the teacher. The goal is to correctly identify the TBox given this input. We characterize the key constraints on the models that warrant finite learnability of TBoxes expressed in selected fragments of the Description Logic ε λ and define corresponding learning algorithms.This work was funded in part by the National Research Foundation under Grant no. 85482

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft
    • …
    corecore