1,171 research outputs found

    On differential-algebraic control systems

    Get PDF
    In der vorliegenden Dissertation werden differential-algebraische Gleichungen (differential-algebraic equations, DAEs) der Form \ddt E x = Ax + f betrachtet, wobei EE und AA beliebige Matrizen sind. Falls EE nichtverschwindende Einträge hat, dann kommen in der Gleichung Ableitungen der entsprechenden Komponenten von xx vor. Falls EE eine Nullzeile hat, dann kommen in der entsprechenden Gleichung keine Ableitungen vor und sie ist rein algebraisch. Daher werden Gleichungen vom Typ \ddt E x = Ax + f differential-algebraische Gleichungen genannt. Ein Ziel dieser Dissertation ist es, eine strukturelle Zerlegung einer DAE in vier Teile herzuleiten: einen ODE-Anteil, einen nilpotenten Anteil, einen unterbestimmten Anteil und einen überbestimmten Anteil. Jeder Anteil beschreibt ein anderes Lösungsverhalten in Hinblick auf Existenz und Eindeutigkeit von Lösungen für eine vorgegebene Inhomogenität ff und Konsistenzbedingungen an ff. Die Zerlegung, namentlich die quasi-Kronecker Form (QKF), verallgemeinert die wohlbekannte Kronecker-Normalform und behebt einige ihrer Nachteile. Die QKF wird ausgenutzt, um verschiedene Konzepte der Kontrollierbarkeit und Stabilisierbarkeit für DAEs mit~f=Buf=Bu zu studieren. Hier bezeichnet uu den Eingang des differential-algebraischen Systems. Es werden Zerlegungen unter System- und Feedback-Äquivalenz, sowie die Folgen einer Behavioral-Steuerung Kxx+Kuu=0K_x x + K_u u = 0 für die Stabilisierung des Systems untersucht. Falls für das DAE-System zusätzlich eine Ausgangs-Gleichung y=Cxy=Cx gegeben ist, dann lässt sich das Konzept der Nulldynamik wie folgt definieren: die Nulldynamik ist, grob gesagt, die Dynamik, die am Ausgang nicht sichtbar ist, d.h. die Menge aller Lösungs-Trajektorien (x,u,y)(x,u,y) mit y=0y=0. Für rechts-invertierbare Systeme mit autonomer Nulldynamik wird eine Zerlegung hergeleitet, welche die Nulldynamik entkoppelt. Diese versetzt uns in die Lage, eine Behavior-Steuerung zu entwickeln, die das System stabilisiert, vorausgesetzt die Nulldynamik selbst ist stabil. Wir betrachten auch zwei Regelungs-Strategien, die von den Eigenschaften der oben genannten System-Klasse profitieren: Hochverstärkungs- und Funnel-Regelung. Ein System \ddt E x = Ax + Bu, y=Cxy=Cx, hat die Hochverstärkungseigenschaft, wenn es durch die Anwendung der proportionalen Ausgangsrückführung u=kyu=-ky, mit k>0k>0 hinreichend groß, stabilisiert werden kann. Wir beweisen, dass rechts-invertierbare Systeme mit asymptotisch stabiler Nulldynamik, die eine bestimmte Relativgrad-Annahme erfüllen, die Hochverstärkungseigenschaft haben. Während der Hochverstärkungs-Regler recht einfach ist, ist es jedoch a priori nicht bekannt, wie groß die Verstärkungskonstante kk gewählt werden muss. Dieses Problem wird durch den Funnel-Regler gelöst: durch die adaptive Justierung der Verstärkung über eine zeitabhängige Funktion k()k(\cdot) und die Ausnutzung der Hochverstärkungseigenschaft wird erreicht, dass große Werte k(t)k(t) nur dann angenommen werden, wenn sie nötig sind. Eine weitere wesentliche Eigenschaft ist, dass der Funnel-Regler das transiente Verhalten des Fehlers e=yyrefe=y-y_{\rm ref} der Bahnverfolgung, wobei yrefy_{\rm ref} die Referenztrajektorie ist, beachtet. Für einen vordefinierten Performanz-Trichter (funnel) ψ\psi wird erreicht, dass e(t)<ψ(t)\|e(t)\|<\psi(t). Schließlich wird der Funnel-Regler auf die Klasse von MNA-Modellen von passiven elektrischen Schaltkreisen mit asymptotisch stabilen invarianten Nullstellen angewendet. Dies erfordert die Einschränkung der Menge der zulässigen Referenztrajektorien auf solche die, in gewisser Weise, die Kirchhoffschen Gesetze punktweise erfüllen.In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior. The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated. For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior. Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros

    Hamiltonian dynamics and geometry of phase transitions in classical XY models

    Full text link
    The Hamiltonian dynamics associated to classical, planar, Heisenberg XY models is investigated for two- and three-dimensional lattices. Besides the conventional signatures of phase transitions, here obtained through time averages of thermodynamical observables in place of ensemble averages, qualitatively new information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometrization of newtonian dynamics suggests to consider other observables of geometric meaning tightly related with the largest Lyapunov exponent. The numerical computation of these observables - unusual in the study of phase transitions - sheds a new light on the microscopic dynamical counterpart of thermodynamics also pointing to the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and the extrinsic geometry of the constant energy surfaces ΣE\Sigma_E of phase space can be naturally established. In this framework, an approximate formula is worked out, determining a highly non-trivial relationship between temperature and topology of the ΣE\Sigma_E. Whence it can be understood that the appearance of a phase transition must be tightly related to a suitable major topology change of the ΣE\Sigma_E. This contributes to the understanding of the origin of phase transitions in the microcanonical ensemble.Comment: in press on Physical Review E, 43 pages, LaTeX (uses revtex), 22 PostScript figure

    Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages

    Full text link
    The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, in practice, identifiability issues have led many authors to abandon VARMA modeling in favor of the simpler Vector AutoRegressive (VAR) model. Such a practice is unfortunate since even very simple VARMA models can have quite complicated VAR representations. We narrow this gap with a new optimization-based approach to VARMA identification that is built upon the principle of parsimony. Among all equivalent data-generating models, we seek the parameterization that is "simplest" in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We show that our estimator converges to a parsimonious element in the set of all equivalent data-generating models, in a double asymptotic regime where the number of component time series is allowed to grow with sample size. Further, we derive non-asymptotic upper bounds on the estimation error of our method relative to our specially identified target. Novel theoretical machinery includes non-asymptotic analysis of infinite-order VAR, elastic net estimation under a singular covariance structure of regressors, and new concentration inequalities for quadratic forms of random variables from Gaussian time series. We illustrate the competitive performance of our methods in simulation and several application domains, including macro-economic forecasting, demand forecasting, and volatility forecasting
    corecore