25 research outputs found

    Equitable colorings of Kronecker products of graphs

    Get PDF
    AbstractFor a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xy∈E(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<j≤k. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by χ=∗(G), is the minimum t such that G is equitably k-colorable for k≥t. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and χ=∗(G×H) when G and H are complete graphs, bipartite graphs, paths or cycles

    Problems in graph theory and partially ordered sets

    Get PDF
    This dissertation answers problems in three areas of combinatorics - processes on graphs, graph coloring, and antichains in a partially ordered set.First we consider Zero Forcing on graphs, an iterative infection process introduced by AIM Minimum Rank - Special Graphs Workgroup in 2008. The Zero Forcing process is a graph infection process obeying the following rules: a white vertex is turned black if it is the only white neighbor of some black vertex. The Zero Forcing Number of a graph is the minimum cardinality over all sets of black vertices such that, after a finite number of iterations, every vertex is black. We establish some results about the zero forcing number of certain graphs and provide a counter example of a conjecture of Gentner and Rautenbach. This chapter is joint with Gabor Meszaros, Antonio Girao, and Chapter 3 appears in Discrete Math, Vol. 341(4).In the second part, we consider problems in the area of Dynamic Coloring of graphs. Originally introduced by Montgomery in 2001, the r-dynamic chromatic number of a graph G is the least k such that V(G) is properly colored, and each vertex is adjacent to at least r different colors. In this coloring regime, we prove some bounds for graphs with lattice like structures, hypercubes, generalized intervals, and other graphs of interest. Next, we establish some of the first results in the area of r-dynamic coloring on random graphs. The work in this section is joint with Peter van Hintum.In the third part, we consider a question about the structure of the partially ordered set of all connected graphs. Let G be the set of all connected graphs on vertex set [n]. Define the partial ordering \u3c on G as follows: for G,H G let G \u3c H if E(G) E(H). The poset (G

    Combinatorics

    Get PDF
    This is the report on the Oberwolfach workshop on Combinatorics, held 1–7 January 2006. Combinatorics is a branch of mathematics studying families of mainly, but not exclusively, finite or countable structures – discrete objects. The discrete objects considered in the workshop were graphs, set systems, discrete geometries, and matrices. The programme consisted of 15 invited lectures, 18 contributed talks, and a problem session focusing on recent developments in graph theory, coding theory, discrete geometry, extremal combinatorics, Ramsey theory, theoretical computer science, and probabilistic combinatorics

    Variations on a Theme: Graph Homomorphisms

    Get PDF
    This thesis investigates three areas of the theory of graph homomorphisms: cores of graphs, the homomorphism order, and quantum homomorphisms. A core of a graph X is a vertex minimal subgraph to which X admits a homomorphism. Hahn and Tardif have shown that, for vertex transitive graphs, the size of the core must divide the size of the graph. This motivates the following question: when can the vertex set of a vertex transitive graph be partitioned into sets which each induce a copy of its core? We show that normal Cayley graphs and vertex transitive graphs with cores half their size always admit such partitions. We also show that the vertex sets of vertex transitive graphs with cores less than half their size do not, in general, have such partitions. Next we examine the restriction of the homomorphism order of graphs to line graphs. Our main focus is in comparing this restriction to the whole order. The primary tool we use in our investigation is that, as a consequence of Vizing's theorem, this partial order can be partitioned into intervals which can then be studied independently. We denote the line graph of X by L(X). We show that for all n ≥ 2, for any line graph Y strictly greater than the complete graph Kₙ, there exists a line graph X sitting strictly between Kₙ and Y. In contrast, we prove that there does not exist any connected line graph which sits strictly between L(Kₙ) and Kₙ, for n odd. We refer to this property as being ``n-maximal", and we show that any such line graph must be a core and the line graph of a regular graph of degree n. Finally, we introduce quantum homomorphisms as a generalization of, and framework for, quantum colorings. Using quantum homomorphisms, we are able to define several other quantum parameters in addition to the previously defined quantum chromatic number. We also define two other parameters, projective rank and projective packing number, which satisfy a reciprocal relationship similar to that of fractional chromatic number and independence number, and are closely related to quantum homomorphisms. Using the projective packing number, we show that there exists a quantum homomorphism from X to Y if and only if the quantum independence number of a certain product graph achieves |V(X)|. This parallels a well known classical result, and allows us to construct examples of graphs whose independence and quantum independence numbers differ. Most importantly, we show that if there exists a quantum homomorphism from a graph X to a graph Y, then ϑ̄(X) ≤ ϑ̄(Y), where ϑ̄ denotes the Lovász theta function of the complement. We prove similar monotonicity results for projective rank and the projective packing number of the complement, as well as for two variants of ϑ̄. These immediately imply that all of these parameters lie between the quantum clique and quantum chromatic numbers, in particular yielding a quantum analog of the well known ``sandwich theorem". We also briefly investigate the quantum homomorphism order of graphs
    corecore