975 research outputs found

    Equitability, mutual information, and the maximal information coefficient

    Get PDF
    Reshef et al. recently proposed a new statistical measure, the "maximal information coefficient" (MIC), for quantifying arbitrary dependencies between pairs of stochastic quantities. MIC is based on mutual information, a fundamental quantity in information theory that is widely understood to serve this need. MIC, however, is not an estimate of mutual information. Indeed, it was claimed that MIC possesses a desirable mathematical property called "equitability" that mutual information lacks. This was not proven; instead it was argued solely through the analysis of simulated data. Here we show that this claim, in fact, is incorrect. First we offer mathematical proof that no (non-trivial) dependence measure satisfies the definition of equitability proposed by Reshef et al.. We then propose a self-consistent and more general definition of equitability that follows naturally from the Data Processing Inequality. Mutual information satisfies this new definition of equitability while MIC does not. Finally, we show that the simulation evidence offered by Reshef et al. was artifactual. We conclude that estimating mutual information is not only practical for many real-world applications, but also provides a natural solution to the problem of quantifying associations in large data sets

    The Hellinger Correlation

    Full text link
    In this paper, the defining properties of a valid measure of the dependence between two random variables are reviewed and complemented with two original ones, shown to be more fundamental than other usual postulates. While other popular choices are proved to violate some of these requirements, a class of dependence measures satisfying all of them is identified. One particular measure, that we call the Hellinger correlation, appears as a natural choice within that class due to both its theoretical and intuitive appeal. A simple and efficient nonparametric estimator for that quantity is proposed. Synthetic and real-data examples finally illustrate the descriptive ability of the measure, which can also be used as test statistic for exact independence testing

    Copula Correlation: An Equitable Dependence Measure and Extension of Pearson's Correlation

    Full text link
    In Science, Reshef et al. (2011) proposed the concept of equitability for measures of dependence between two random variables. To this end, they proposed a novel measure, the maximal information coefficient (MIC). Recently a PNAS paper (Kinney and Atwal, 2014) gave a mathematical definition for equitability. They proved that MIC in fact is not equitable, while a fundamental information theoretic measure, the mutual information (MI), is self-equitable. In this paper, we show that MI also does not correctly reflect the proportion of deterministic signals hidden in noisy data. We propose a new equitability definition based on this scenario. The copula correlation (Ccor), based on the L1-distance of copula density, is shown to be equitable under both definitions. We also prove theoretically that Ccor is much easier to estimate than MI. Numerical studies illustrate the properties of the measures
    • …
    corecore