10,421 research outputs found

    The minority game: An economics perspective

    Get PDF
    This paper gives a critical account of the minority game literature. The minority game is a simple congestion game: players need to choose between two options, and those who have selected the option chosen by the minority win. The learning model proposed in this literature seems to differ markedly from the learning models commonly used in economics. We relate the learning model from the minority game literature to standard game-theoretic learning models, and show that in fact it shares many features with these models. However, the predictions of the learning model differ considerably from the predictions of most other learning models. We discuss the main predictions of the learning model proposed in the minority game literature, and compare these to experimental findings on congestion games.Comment: 30 pages, 4 figure

    Congestion, equilibrium and learning: The minority game

    Get PDF
    The minority game is a simple congestion game in which the players' main goal is to choose among two options the one that is adopted by the smallest number of players. We characterize the set of Nash equilibria and the limiting behavior of several well-known learning processes in the minority game with an arbitrary odd number of players. Interestingly, different learning processes provide considerably different predictions

    Joint strategy fictitious play with inertia for potential games

    Get PDF
    We consider multi-player repeated games involving a large number of players with large strategy spaces and enmeshed utility structures. In these ldquolarge-scalerdquo games, players are inherently faced with limitations in both their observational and computational capabilities. Accordingly, players in large-scale games need to make their decisions using algorithms that accommodate limitations in information gathering and processing. This disqualifies some of the well known decision making models such as ldquoFictitious Playrdquo (FP), in which each player must monitor the individual actions of every other player and must optimize over a high dimensional probability space. We will show that Joint Strategy Fictitious Play (JSFP), a close variant of FP, alleviates both the informational and computational burden of FP. Furthermore, we introduce JSFP with inertia, i.e., a probabilistic reluctance to change strategies, and establish the convergence to a pure Nash equilibrium in all generalized ordinal potential games in both cases of averaged or exponentially discounted historical data. We illustrate JSFP with inertia on the specific class of congestion games, a subset of generalized ordinal potential games. In particular, we illustrate the main results on a distributed traffic routing problem and derive tolling procedures that can lead to optimized total traffic congestion

    CSMA Local Area Networking under Dynamic Altruism

    Full text link
    In this paper, we consider medium access control of local area networks (LANs) under limited-information conditions as befits a distributed system. Rather than assuming "by rule" conformance to a protocol designed to regulate packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game framework and build a dynamic altruism term into the net utility. The effects of altruism are analyzed at Nash equilibrium for both the ALOHA and CSMA frameworks in the quasistationary (fictitious play) regime. We consider either power or throughput based costs of networking, and the cases of identical or heterogeneous (independent) users/players. In a numerical study we consider diverse players, and we see that the effects of altruism for similar players can be beneficial in the presence of significant congestion, but excessive altruism may lead to underuse of the channel when demand is low

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for α≥αδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum
    • …
    corecore