In this paper, we consider medium access control of local area networks
(LANs) under limited-information conditions as befits a distributed system.
Rather than assuming "by rule" conformance to a protocol designed to regulate
packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game
framework and build a dynamic altruism term into the net utility. The effects
of altruism are analyzed at Nash equilibrium for both the ALOHA and CSMA
frameworks in the quasistationary (fictitious play) regime. We consider either
power or throughput based costs of networking, and the cases of identical or
heterogeneous (independent) users/players. In a numerical study we consider
diverse players, and we see that the effects of altruism for similar players
can be beneficial in the presence of significant congestion, but excessive
altruism may lead to underuse of the channel when demand is low