5 research outputs found

    On triangulations with fixed areas

    Full text link
    We prove that the number of dissections of a given polygon into triangles with fixed areas of faces is finite and that an equidissection is algebraic as long as the vertices of the original polygon have algebraic coordinates.Comment: 3 pages, 1 figur

    Equidissections of darts

    Full text link
    We define the dart D(a)D(a) to be the nonconvex quadrilateral whose vertices are (0,1),(1,1),(1,0),(a,a)(0,1), (1,1), (1,0), (a,a) (in counterclockwise order), with a>1a>1. Such a dart can be dissected into any even number of equal-area triangles. Here we investigate darts that can be dissected into an odd number of equal-area triangle

    Decompositions of a polygon into centrally symmetric pieces

    Get PDF
    In this paper we deal with edge-to-edge, irreducible decompositions of a centrally symmetric convex (2k)(2k)-gon into centrally symmetric convex pieces. We prove an upper bound on the number of these decompositions for any value of kk, and characterize them for octagons.Comment: 17 pages, 17 figure

    Monskyn lause neliölle

    Get PDF
    Tässä työssä tutkitaan neliön tasaosittamiseen liittyvää Monskyn lausetta sekä esitellään sen todistamisessa tarvittava matemaattinen koneisto. Monskyn lause on matemaattinen lause, joka yhdistää kaksi toisistaan näennäisesti erillistä matematiikan osa-aluetta. Lauseen mukaan neliötä ei voida osittaa parittomaan määrään kolmioita, joilla on keskenään sama pinta-ala. Päämääränä on esitellä Monskyn lauseen todistamiseen tarvittava koneisto sekä itse lause ja tämän todistus. Monskyn lauseen merkittävyys piilee siinä, että sen todistus rakentuu kahdesta (tai kolmesta) osasta, jotka yhdistävät kaksi näennäisesti erillistä matematiikan osa-aluetta, topologian ja algebran. Todistuksen topologinen osuus tiivistyy niin kutsuttuun Spernerin lemmaan, josta on työssä esitetty useampi versio. Todistuksen algebrallinen osuus puolestaan sisältää valuaatiot ja näiden laajennukset. Valuaatioista työssä perehdytään erityisesti 2-adiseen valuaatioon sekä Chevalleyn lauseeseen, jonka avulla pystytään rationaalilukujen kunnassa määritelty 2-adinen valuaatio laajentamaan reaalilukujen kuntaan. Ensimmäisessä luvussa johdatellaan aiheeseen käymällä läpi, miten ongelma neliön tasaosittamisesta parittomaan määrään kolmioita on saanut alkunsa ja kuinka Monskyn lauseen todistus on pala palalta vuosien saatossa saavuttanut yleistetyn muotonsa. Toisessa ja kolmannessa luvussa luodaan matemaattinen koneisto Monskyn lauseen todistamiselle erityistapauksessa, kun neliön kärkipisteiden koordinaatit ovat rationaalilukuja. Näissä luvuissa lukija perehdytetään Spernerin lemmaan, valuaatioihin ja näiden ominaisuuksiin sekä 2-adisen valuaation käsitteeseen. Kappaleiden keskeisiä käsitteitä ovat muun muassa täydellisyys, valuaatio ja 2-adinen valuaatio. Neljännessä luvussa esitetään ja todistetaan Chevalleyn lauseesta välittömästi seuraava tulos, jonka avulla pystymme laajentamaan minkä tahansa valuaation mistä tahansa kunnasta tämän kunnan alikuntaan. Tuloksen ansiosta Monskyn lause on mahdollista yleistää. Viidennessä ja samalla viimeisessä luvussa päästään viimein varsinaiseen Monskyn lauseen todistukseen. Luvun alussa todistusta pohjustetaan vielä muutamilla valuaation ominaisuuksiin pohjautuvilla lemmoilla. Alaluvussa 5.1. todistetaan Monskyn lause nojautuen Spernerin lemmaan sekä luvussa aiemmin esitettyyn 2-adisen valuaation ominaisuuksiin perustuvaan lemmaan 5.4.. Lopuksi, alaluvuissa 5.2.-5.4. käsitellään vielä muutamia tunnettuja tuloksia liittyen muiden monikulmioiden tasaosituksiin
    corecore