2,938 research outputs found

    Completeness in Equational Hybrid Propositional Type Theory

    Get PDF
    Equational Hybrid Propositional Type Theory (EHPTT) is a combination of propositional type theory, equational logic and hybrid modal logic. The structures used to interpret the language contain a hierarchy of propositional types, an algebra (a nonempty set with functions) and a Kripke frame. The main result in this paper is the proof of completeness of a calculus specifically defined for this logic. The completeness proof is based on the three proofs Henkin published last century: (i) Completeness in type theory (ii) The completeness of the first-order functional calculus and (iii) Completeness in propositional type theory. More precisely, from (i) and (ii) we take the idea of building the model described by the maximal consistent set; in our case the maximal consistent set has to be named, ♦- saturated and extensionally algebraic-saturated due to the hybrid and equational nature of EHPTT. From (iii), we use the result that any element in the hierarchy has a name. The challenge was to deal with all the heterogeneous components in an integrated system.publishe

    Propositional logic with short-circuit evaluation: a non-commutative and a commutative variant

    Get PDF
    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Short-circuit evaluation is widely used in programming, with sequential conjunction and disjunction as primitive connectives. We study the question which logical laws axiomatize short-circuit evaluation under the following assumptions: compound statements are evaluated from left to right, each atom (propositional variable) evaluates to either true or false, and atomic evaluations can cause a side effect. The answer to this question depends on the kind of atomic side effects that can occur and leads to different "short-circuit logics". The basic case is FSCL (free short-circuit logic), which characterizes the setting in which each atomic evaluation can cause a side effect. We recall some main results and then relate FSCL to MSCL (memorizing short-circuit logic), where in the evaluation of a compound statement, the first evaluation result of each atom is memorized. MSCL can be seen as a sequential variant of propositional logic: atomic evaluations cannot cause a side effect and the sequential connectives are not commutative. Then we relate MSCL to SSCL (static short-circuit logic), the variant of propositional logic that prescribes short-circuit evaluation with commutative sequential connectives. We present evaluation trees as an intuitive semantics for short-circuit evaluation, and simple equational axiomatizations for the short-circuit logics mentioned that use negation and the sequential connectives only.Comment: 34 pages, 6 tables. Considerable parts of the text below stem from arXiv:1206.1936, arXiv:1010.3674, and arXiv:1707.05718. Together with arXiv:1707.05718, this paper subsumes most of arXiv:1010.367

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics

    Boole's Method I. A Modern Version

    Full text link
    A rigorous, modern version of Boole's algebra of logic is presented, based partly on the 1890s treatment of Ernst Schroder

    Probabilistic Argumentation. An Equational Approach

    Get PDF
    There is a generic way to add any new feature to a system. It involves 1) identifying the basic units which build up the system and 2) introducing the new feature to each of these basic units. In the case where the system is argumentation and the feature is probabilistic we have the following. The basic units are: a. the nature of the arguments involved; b. the membership relation in the set S of arguments; c. the attack relation; and d. the choice of extensions. Generically to add a new aspect (probabilistic, or fuzzy, or temporal, etc) to an argumentation network can be done by adding this feature to each component a-d. This is a brute-force method and may yield a non-intuitive or meaningful result. A better way is to meaningfully translate the object system into another target system which does have the aspect required and then let the target system endow the aspect on the initial system. In our case we translate argumentation into classical propositional logic and get probabilistic argumentation from the translation. Of course what we get depends on how we translate. In fact, in this paper we introduce probabilistic semantics to abstract argumentation theory based on the equational approach to argumentation networks. We then compare our semantics with existing proposals in the literature including the approaches by M. Thimm and by A. Hunter. Our methodology in general is discussed in the conclusion
    • …
    corecore