7 research outputs found

    Recoverability for Holevo's just-as-good fidelity

    Get PDF
    Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.Comment: 6 pages, submission to ISIT 201

    On the strong converses for the quantum channel capacity theorems

    Full text link
    A unified approach to prove the converses for the quantum channel capacity theorems is presented. These converses include the strong converse theorems for classical or quantum information transfer with error exponents and novel explicit upper bounds on the fidelity measures reminiscent of the Wolfowitz strong converse for the classical channel capacity theorems. We provide a new proof for the error exponents for the classical information transfer. A long standing problem in quantum information theory has been to find out the strong converse for the channel capacity theorem when quantum information is sent across the channel. We give the quantum error exponent thereby giving a one-shot exponential upper bound on the fidelity. We then apply our results to show that the strong converse holds for the quantum information transfer across an erasure channel for maximally entangled channel inputs.Comment: Added the strong converse for the erasure channel for maximally entangled inputs and corrected minor typo

    A family of generalized quantum entropies: definition and properties

    Get PDF
    We present a quantum version of the generalized (h, φ)-entropies, introduced by Salicrú et al. for the study of classical probability distributions.We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h, φ)-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.Facultad de Ciencias ExactasInstituto de Física La Plat
    corecore