10 research outputs found

    Temporal logic with predicate abstraction

    Full text link
    A predicate linear temporal logic LTL_{\lambda,=} without quantifiers but with predicate abstraction mechanism and equality is considered. The models of LTL_{\lambda,=} can be naturally seen as the systems of pebbles (flexible constants) moving over the elements of some (possibly infinite) domain. This allows to use LTL_{\lambda,=} for the specification of dynamic systems using some resources, such as processes using memory locations, mobile agents occupying some sites, etc. On the other hand we show that LTL_{\lambda,=} is not recursively axiomatizable and, therefore, fully automated verification of LTL_{\lambda,=} specifications is not, in general, possible.Comment: 14 pages, 4 figure

    Efficient First-Order Temporal Logic for Infinite-State Systems

    Get PDF
    In this paper we consider the specification and verification of infinite-state systems using temporal logic. In particular, we describe parameterised systems using a new variety of first-order temporal logic that is both powerful enough for this form of specification and tractable enough for practical deductive verification. Importantly, the power of the temporal language allows us to describe (and verify) asynchronous systems, communication delays and more complex properties such as liveness and fairness properties. These aspects appear difficult for many other approaches to infinite-state verification.Comment: 16 pages, 2 figure

    A Landscape of First-Order Linear Temporal Logics in Infinite-State Verification and Temporal Ontologies

    Get PDF
    We provide an overview of the main attempts to formalize and reason about the evolution over time of complex domains, through the lens of first-order temporal logics. Different communities have studied similar problems for decades, and some unification of concepts, problems and formalisms is a much needed but not simple task

    Practical First-Order Temporal Reasoning

    Full text link
    In this paper we consider the specification and verification of infinite-state systems using temporal logic. In particular, we describe parameterised systems using a new variety of first-order temporal logic that is both powerful enough for this form of specification and tractable enough for practical deductive verification. Importantly, the power of the temporal language allows us to describe (and verify) asynchronous systems, communication delays and more complex liveness and fairness properties. These aspects appear difficult for many other approaches to infinite-state verification. 1

    Non-Rigid Designators in Epistemic and Temporal Free Description Logics (Extended Version)

    Full text link
    Definite descriptions, such as 'the smallest planet in the Solar System', have been recently recognised as semantically transparent devices for object identification in knowledge representation formalisms. Along with individual names, they have been introduced also in the context of description logic languages, enriching the expressivity of standard nominal constructors. Moreover, in the first-order modal logic literature, definite descriptions have been widely investigated for their non-rigid behaviour, which allows them to denote different objects at different states. In this direction, we introduce epistemic and temporal extensions of standard description logics, with nominals and the universal role, additionally equipped with definite descriptions constructors. Regarding names and descriptions, in these languages we allow for: possible lack of denotation, ensured by partial models, coming from free logic semantics as a generalisation of the classical ones; and non-rigid designation features, obtained by assigning to terms distinct values across states, as opposed to the standard rigidity condition on individual expressions. In the absence of the rigid designator assumption, we show that the satisfiability problem for epistemic free description logics is NExpTime-complete, while satisfiability for temporal free description logics over linear time structures is undecidable

    Quantified epistemic logics for reasoning about knowledge in multi-agent systems

    Get PDF
    AbstractWe introduce quantified interpreted systems, a semantics to reason about knowledge in multi-agent systems in a first-order setting. Quantified interpreted systems may be used to interpret a variety of first-order modal epistemic languages with global and local terms, quantifiers, and individual and distributed knowledge operators for the agents in the system. We define first-order modal axiomatisations for different settings, and show that they are sound and complete with respect to the corresponding semantical classes.The expressibility potential of the formalism is explored by analysing two MAS scenarios: an infinite version of the muddy children problem, a typical epistemic puzzle, and a version of the battlefield game. Furthermore, we apply the theoretical results here presented to the analysis of message passing systems [R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, 1995; L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communication of the ACM 21 (7) (1978) 558–565], and compare the results obtained to their propositional counterparts. By doing so we find that key known meta-theorems of the propositional case can be expressed as validities on the corresponding class of quantified interpreted systems

    Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results

    No full text
    We investigate a class of first-order temporal-epistemic logics for reasoning about multiagent systems. We encode typical properties of systems including perfect recall, synchronicity, no learning, and having a unique initial state in terms of variants of quantified interpreted systems, a first-order extension of interpreted systems. We identify several monodic fragments of first-order temporal-epistemic logic and show their completeness with respect to their corresponding classes of quantified interpreted systems. 1

    Equality and Monodic First-Order Temporal Logic

    Get PDF
    It has been shown recently that monodic first-order temporal logic without functional symbols but with equality is incomplete, i.e. the set of the valid formulae of this logic is not recursively enumerable. In this paper we show that an even simpler fragment consisting of monodic monadic two-variable formulae is not recursively enumerable
    corecore