63,447 research outputs found

    The Role of Consciousness in Memory

    Get PDF
    Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition

    Spatiotemporal Dynamics of Neural Activity During Human Episodic Memory Encoding and Retrieval

    Get PDF
    Throughout literary history, the ability to travel in time has been a source of wonder and amusement. Why this fascination with moving through time? One reason may be that people are especially attuned to the concept of time travel because we each possess our own personal mental time machine: episodic memory. Through episodic memory, we transport ourselves back in time to re-live experiences from our past. This allows us to reflect on our own self-knowledge, effectively placing ourselves in context of our lives. This dissertation investigates how our brains accomplish this highly sophisticated cognitive operation. Using a laboratory model of episodic memory (free recall) and a particularly powerful neuroimaging tool (intracranial EEG), I document the changes that occur in the brain as episodic memories are first formed and then later retrieved. I find that the episodic memory system is best conceptualized as stage-wise process consisting of distinct brain regions that activate at highly conserved times relative to memory formation/retrieval. These discrete activations are used to construct a novel neurological model of episodic memory, the Neurological Stages of Episodic Retrieval and Formation (N-SERF) model. Future work should be aimed at verifying the hypotheses put forward by the N-SERF model, we well as relating the N-SERF model to prominent computational models of episodic memory

    Semantic Compression of Episodic Memories

    Get PDF
    Storing knowledge of an agent's environment in the form of a probabilistic generative model has been established as a crucial ingredient in a multitude of cognitive tasks. Perception has been formalised as probabilistic inference over the state of latent variables, whereas in decision making the model of the environment is used to predict likely consequences of actions. Such generative models have earlier been proposed to underlie semantic memory but it remained unclear if this model also underlies the efficient storage of experiences in episodic memory. We formalise the compression of episodes in the normative framework of information theory and argue that semantic memory provides the distortion function for compression of experiences. Recent advances and insights from machine learning allow us to approximate semantic compression in naturalistic domains and contrast the resulting deviations in compressed episodes with memory errors observed in the experimental literature on human memory.Comment: CogSci201

    Neural modeling of episodic memory: Encoding, retrieval, and forgetting

    Get PDF
    This paper presents a neural model that learns episodic traces in response to a continuous stream of sensory input and feedback received from the environment. The proposed model, based on fusion adaptive resonance theory (ART) network, extracts key events and encodes spatio-temporal relations between events by creating cognitive nodes dynamically. The model further incorporates a novel memory search procedure, which performs a continuous parallel search of stored episodic traces. Combined with a mechanism of gradual forgetting, the model is able to achieve a high level of memory performance and robustness, while controlling memory consumption over time. We present experimental studies, where the proposed episodic memory model is evaluated based on the memory consumption for encoding events and episodes as well as recall accuracy using partial and erroneous cues. Our experimental results show that: 1) the model produces highly robust performance in encoding and recalling events and episodes even with incomplete and noisy cues; 2) the model provides enhanced performance in a noisy environment due to the process of forgetting; and 3) compared with prior models of spatio-temporal memory, our model shows a higher tolerance toward noise and errors in the retrieval cues

    Spatially-Aware Transformer for Embodied Agents

    Full text link
    Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.Comment: ICLR 2024 Spotlight. First two authors contributed equall

    Prospection in cognition: the case for joint episodic-procedural memory in cognitive robotics

    Get PDF
    Prospection lies at the core of cognition: it is the means by which an agent \u2013 a person or a cognitive robot \u2013 shifts its perspective from immediate sensory experience to anticipate future events, be they the actions of other agents or the outcome of its own actions. Prospection, accomplished by internal simulation, requires mechanisms for both perceptual imagery and motor imagery. While it is known that these two forms of imagery are tightly entwined in the mirror neuron system, we do not yet have an effective model of the mentalizing network which would provide a framework to integrate declarative episodic and procedural memory systems and to combine experiential knowledge with skillful know-how. Such a framework would be founded on joint perceptuo-motor representations. In this paper, we examine the case for this form of representation, contrasting sensory-motor theory with ideo-motor theory, and we discuss how such a framework could be realized by joint episodic-procedural memory. We argue that such a representation framework has several advantages for cognitive robots. Since episodic memory operates by recombining imperfectly recalled past experience, this allows it to simulate new or unexpected events. Furthermore, by virtue of its associative nature, joint episodic-procedural memory allows the internal simulation to be conditioned by current context, semantic memory, and the agent\u2019s value system. Context and semantics constrain the combinatorial explosion of potential perception-action associations and allow effective action selection in the pursuit of goals, while the value system provides the motives that underpin the agent\u2019s autonomy and cognitive development. This joint episodic-procedural memory framework is neutral regarding the final implementation of these episodic and procedural memories, which can be configured sub-symbolically as associative networks or symbolically as content-addressable image databases and databases of motor-control scripts

    The Temporal Context Model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains

    Get PDF
    The medial temporal lobe (MTL) has been studied extensively at all levels of analysis, yet its function remains unclear. Theory regarding the cognitive function of the MTL has centered along 3 themes. Different authors have emphasized the role of the MTL in episodic recall, spatial navigation, or relational memory. Starting with the temporal context model (M.W. Howard and M. J. Kahana, 2002), a distributed memory model that has been applied to benchmark data from episodic recall tasks, the authors propose that the entorhinal cortex supports a gradually changing representation of temporal context and the hippocampus proper enables retrieval of these contextual states. Simulation studies show this hypothesis explains the firing of place cells in the entorhinal cortex and the behavioral effects of hippocampal lesion in relational memory tasks. These results constitute a first step towards a unified computational theory of MTL function that integrates neurophysiological, neuropsychological and cognitive findings

    How checking breeds doubt:reduced performance in a simple working memory task

    Get PDF
    A paradox of memory research is that repeated checking results in a decrease in memory certainty, memory vividness and confidence [van den Hout, M. A., & Kindt, M. (2003a). Phenomenological validity of an OCD-memory model and the remember/know distinction. Behaviour Research and Therapy, 41, 369–378; van den Hout, M. A., & Kindt, M. (2003b). Repeated checking causes memory distrust. Behaviour Research and Therapy, 41, 301–316]. Although these findings have been mainly attributed to changes in episodic long-term memory, it has been suggested [Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323] that representations in working memory could already suffer from detrimental checking. In two experiments we set out to test this hypothesis by employing a delayed-match-to-sample working memory task. Letters had to be remembered in their correct locations, a task that was designed to engage the episodic short-term buffer of working memory [Baddeley, A. D. (2000). The episodic buffer: a new component in working memory? Trends in Cognitive Sciences, 4, 417–423]. Of most importance, we introduced an intermediate distractor question that was prone to induce frustrating and unnecessary checking on trials where no correct answer was possible. Reaction times and confidence ratings on the actual memory test of these trials confirmed the success of this manipulation. Most importantly, high checkers [cf. VOCI; Thordarson, D. S., Radomsky, A. S., Rachman, S., Shafran, R, Sawchuk, C. N., & Hakstian, A. R. (2004). The Vancouver obsessional compulsive inventory (VOCI). Behaviour Research and Therapy, 42(11), 1289–1314] were less accurate than low checkers when frustrating checking was induced, especially if the experimental context actually emphasized the irrelevance of the misleading question. The clinical relevance of this result was substantiated by means of an extreme groups comparison across the two studies. The findings are discussed in the context of detrimental checking and lack of distractor inhibition as a way of weakening fragile bindings within the episodic short-term buffer of Baddeley's (2000) model. Clinical implications, limitations and future research are considered
    • …
    corecore