717 research outputs found

    A methodology for the efficient computer representation of dynamic power systems : application to wind parks

    Get PDF
    This contribution presents a methodology to efficiently obtain the numerical and computer solution of dynamic power systems with high penetration of wind turbines. Due to the excessive computational load required to solve the abc models that represent the behavior of the wind turbines, a parallel processing scheme is proposed to enhance the solution of the overall system. Case studies are presented which demonstrate the effectiveness and applications of the proposed methodology

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Keeping track of phaeodactylum tricornutum (Bacillariophyta) culture contamination by potentiometric e-tongue

    Get PDF
    The large-scale cultivation of microalgae provides a wide spectrum of marketable bioproducts, profitably used in many fields, from the preparation of functional health products and feed supplement in aquaculture and animal husbandry to biofuels and green chemistry agents. The commercially successful algal biomass production requires effective strategies to maintain the process at desired productivity and stability levels. Hence, the development of effective early warning methods to timely indicate remedial actions and to undertake countermeasures is extremely important to avoid culture collapse and consequent economic losses. With the aim to develop an early warning method of algal contamination, the potentiometric E-tongue was applied to record the variations in the culture environments, over the whole growth process, of two unialgal cultures, Phaeodactylum tricornutum and a microalgal contaminant, along with those of their mixed culture. The E-tongue system ability to distinguish the cultures and to predict their growth stage, through the application of multivariate data analysis, was shown. A PLS regression method applied to the E-tongue output data allowed a good prediction of culture growth time, expressed as growth days, with R-2 values in a range from 0.913 to 0.960 and RMSEP of 1.97-2.38 days. Moreover, the SIMCA and PLS-DA techniques were useful for cultures contamination monitoring. The constructed PLS-DA model properly discriminated 67% of cultures through the analysis of their growth media, i.e., environments, thus proving the potential of the E-tongue system for a real time monitoring of contamination in microalgal intensive cultivation

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Discretization and Bayesian modeling in inverse problems and imaging

    Get PDF
    In this thesis the Bayesian modeling and discretization are studied in inverse problems related to imaging. The treatise consists of four articles which focus on the phenomena that appear when more detailed data or a priori information become available. Novel Bayesian methods for solving ill-posed signal processing problems in edge-preserving manner are introduced and analysed. Furthermore, modeling photographs in image processing problems is studied and a novel model is presented

    Determination of articulatory parameters from speech waveforms

    Get PDF
    Imperial Users onl

    Array signal processing for source localization and enhancement

    Get PDF
    “A common approach to the wide-band microphone array problem is to assume a certain array geometry and then design optimal weights (often in subbands) to meet a set of desired criteria. In addition to weights, we consider the geometry of the microphone arrangement to be part of the optimization problem. Our approach is to use particle swarm optimization (PSO) to search for the optimal geometry while using an optimal weight design to design the weights for each particle’s geometry. The resulting directivity indices (DI’s) and white noise SNR gains (WNG’s) form the basis of the PSO’s fitness function. Another important consideration in the optimal weight design are several regularization parameters. By including those parameters in the particles, we optimize their values as well in the operation of the PSO. The proposed method allows the user great flexibility in specifying desired DI’s and WNG’s over frequency by virtue of the PSO fitness function. Although the above method discusses beam and nulls steering for fixed locations, in real time scenarios, it requires us to estimate the source positions to steer the beam position adaptively. We also investigate source localization of sound and RF sources using machine learning techniques. As for the RF source localization, we consider radio frequency identification (RFID) antenna tags. Using a planar RFID antenna array with beam steering capability and using received signal strength indicator (RSSI) value captured for each beam position, the position of each RFID antenna tag is estimated. The proposed approach is also shown to perform well under various challenging scenarios”--Abstract, page iv

    Integration of Antennas and Solar Cells for Autonomous Communication Systems

    Get PDF
    Solar energy is becoming an attractive alternative for powering autonomous communication systems. These devices often involve the use of separate photovoltaics and antennas, which demand a compromise in the utilization of the limited space available. This thesis deals with the design, analysis, fabrication and validation of different techniques for the integration of antennas and solar cells in a single multifunctional device. Four different photovoltaic technologies are considered within this work, namely, polycrystalline silicon (poly-Si), monocrystalline (mono-Si) emitter-wrap-through (EWT) rear contact solar cells, amorphous silicon (a-Si) thin film on glass substrate, and bifacial solar cells. The use of a poly-Si solar cell was investigated as ground plane for a microstrip patch antenna as well as reflector for a half-wave dipole antenna. Looking forward to further minimize the shade of the solar element on the solar cell and to increase the smart appearance, a film that is both transparent and conductive, the AgHT-4, was evaluated as an antenna radiating element for the integration with an a-Si thin film photovoltaic module on glass substrate. A different approach involves the use of EWT solar cells as a folded dipole for integration with solar concentration. The solar cells in this structure are used both for power generation and as radiating element, and a parabolic trough is employed as well with a double function as solar concentrator for the PV cells as well as reflector for the folded dipole antenna. Numerical simulation results obtained with CST Microwave Studio were validated experimentally with the construction of the corresponding prototypes. The performance of these prototypes is thoroughly evaluated in an anechoic chamber. The approaches proposed in this work for integration of antennas and PV technology will help to reduce the marginal cost of renewable energy, improving its economic viability due to the possibility of an integrated production and easier maintenance. It also reduces the need for cable deployment and leads to compact reliable systems with decreased exposure to natural disasters and vandalism
    • 

    corecore