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English Abstract

Reliability is one of the most important issues in the field of power electronics
components and systems. In most of the electro-mobile applications, e.g.
electric and hybrid electric vehicles, power electronic are commonly used in
a very harsh environment. Temperature variations, thermal cycles, power
cycles, humidity, vibration and other stresses affecting the device may cause
unreliable systems. Thus, designing reliable power electronic converters is
important for the aim of reducing the energy losses, maintenance cost and
extending the service lifetime as well. Research within power electronics is
of high interest as it has a huge impact in the industry of the electro-mobile
applications.

Boost converters are essentially needed in many applications such as
electro-mobility, fuel cell, and renewable energy applications that require the
output voltage to be higher than the input voltage. Recently, boost type con-
verters have been attracted by the industrial applications, and hence it has be-
come an extremely hot topic of research. Many researchers have proposed the
impedance source converters with their unique advantages as having a high
voltage gain in a small range of duty cycle ratios. However, the thermal be-
haviour of the semiconductor devices and passive elements in the impedance
source converter is an important issue from a reliability point of view and
has not been investigated yet in impedance source converters. Therefore,
a loss distribution comparison between three different types (Conventional
boost, Z-source and Y-source) of the boost converters has been analysed for
a wide voltage and power range. The Y-source converter has been selected
for validating the influence of heat loss generated from the devices. A simu-
lation model is developed and verified experimentally by a 300 W prototype
Y-source converter.

Fuel cells are a very promising technology since they are pollution free,
producing only electricity, water, and heat. There has been a significant force
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English Abstract

in the development of the fuel cell technology over the past 30 years, and
is drawing an increasing attention towards the technology today. Fuel cells
have been applied to DC/DC converters where the reliability and lifetime are
of high priority. A lifetime prediction model is applied for the power semi-
conductors, which are used in the fuel cell DC/DC converters. The common
used Coffin- Manson lifetime model and Semikron lifetime model for the
IGBTs solder and bond wire fatigues are considered and compared in the
three DC/DC converters. In order to estimate the lifetime of the converters,
a mission profile is taken into account to estimate the impact of the IGBTs
junction temperature and thus the lifetime during the steady state operation.
In addition to the thermal stresses generated due to the power losses during
the converter operation, a case study of Artemis motorway driving cycle is
considered in this analysis. Lifetime consumption and the expected number
of years before failure is presented and compared for the Boost, Z-source and
Y-source converters. The lifetime estimation results show that the Z-source
converter has a longer lifetime compared with the conventional boost and Y-
source converter, due to lowest maximum junction temperature profile of the
Z-source converter. Nevertheless, each converter is designed separately ac-
cording to its current and voltage stresses of the power device, where both the
Z-source and Y-source converters have IGBT modules with the same power
rating.

This Ph.D. thesis starts with the state of the art of the reliability of power
electronics in the electro-mobile applications, and the Fuel Cell Hybrid Elec-
tric Vehicle (FCHEV) system configuration. The design, parameter selection,
and basic theory of operation of the boost (conventional, Z-source and Y-
source) power converters are discussed in Chapter 2. In Chapter 3 the loss
and temperature modelling are given at different power loading. Chapter 4
analyzes the three compared converters at different voltage and power levels,
and validate the loss modelling of the Y-source converter based on the tem-
perature modelling. The reliability assessment for three converters is given in
Chapter 5, where the lifetime modelling, failures mechanisms, and the num-
ber of estimated lifetime years of the converters are presented based on the
assessment of only one component, which is the IGBT power module.

Finally, in Chapter 6 the conclusions, main contributions, and future work
is given to give a full overview of this Ph.D. project.
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Dansk Resumé

Pålidelighed er et af de vigtigste spørgsmål inden for effektelektroniske kom-
ponenter og systemer. I de fleste elektro-mobile applikationer, f.eks. elek-
triske og hybrid elektriske køretøjer, er effektelektronikken anvendt i et meget
hårdt miljø. Temperaturvariationer, termiske kredsløb, lastcykluser, vibra-
tioner og andre påvirkninger, der påvirker enheden, kan forårsage upålidelige
systemer. Således er design af pålidelige effektelektroniske omformere vigtigt
for at reducere energitab, vedligeholdelsesomkostninger og forlænge service-
tiden også. Forskning inden for effektelektronik er af stor interesse, da den
har en stor indflydelse i industrien indenfor elektro-mobile applikationer.

Boost-omformere er nødvendige i mange applikationer såsom elektro-
mobilitet, brændselsceller og vedvarende energi applikationer, der kræver,
at udgangsspændingen er højere end indgangsspændingen. Mange forskere
foreslog "impedans-source" omformere med deres unikke fordele som at
have en høj spændingsforstærkning med en lille "duty cycle". De termiske
egenskaber for de aktive og passive elementer i "impedanse-source" om-
formeren er imidlertid et vigtigt problem ud fra et pålidelighedssynspunkt
og er endnu ikke undersøgt. Derfor er en tabsfordelingssammenligning
mellem tre forskellige typer (Konventionelle boost, Z-source og Y-source)
af boost-omformerne blevet analyseret for et bredt spændings- og effektom-
råde. Y-source omformeren er valgt til at validere indflydelsen af varmetab,
der genereres fra enhederne. En simuleringsmodel er udviklet og verificeret
eksperimentelt med en 300 W prototype Y-source omformer.

Brændselsceller er en meget lovende teknologi, da de er forureningsfrie og
kun producerer elektricitet, vand og varme. Det har undergået en væsentlig
teknologisk udvikling sidste 30 år og der tegner sig en stigende opmærk-
somhed mod teknologien i dag. Brændselsceller er blevet anvendt til DC
/ DC-omformere, hvor pålideligheden og levetiden er af høj prioritet. Der
anvendes en levetidsprognosemodel for halvledere, som anvendes i DC /
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Dansk Abstrakt

DC-omformere til brændselsceller. Den fælles brugte Coffin- Manson lev-
etidsmodel og Semikron levetidsmodel til IGBT’ens loddemetal og udmat-
telse af trådlodning vurderes og sammenlignes i de tre DC / DC-omformere.
For at vurdere omformernes levetid tages der hensyn til en lastprofil for at
vurdere virkningen af IGBT’ens forbindelsestemperatur og dermed levetiden
under stabil drift. Ud over de termiske spændinger, der genereres på grund
af strømforbruget under brug, et konkret eksempel med Artemis motorve-
jskørecyklus anvendt i denne analyse. Levetidsforbrug og det forventede
antal år før fejl præsenteres og sammenlignes for Boost, Z-source og Y-source
omformere. Resultatet af levetidsopgørelsen viser, at Z-source- omformeren
har en længere levetid sammenlignet med den konventionelle boost- og Y-
source-omformer på grund af den laveste maksimale forbindelsestemperatur
for Z-source- omformeren. Hver omformer er designet separat afhængigt
af strømforsyningens levetidssammenligningen, hvor både Z-source og Y-
source omformere har IGBT moduler med samme effekt klassificering.

Denne Ph.D. afhandling begynder med at præsentere den nyeste viden
om pålidelighed af effektelektroniske omformere i elektro-mobile applika-
tioner. FCHEV-systemets konfiguration præsenteres. Udformningen, param-
etervalg og grundlæggende teori om virkemåden af boost (konventionelle,
Z-source og Y-source) -omformere omtales i kapitel 2. I kapitel 3 er tab-
smodellering og temperaturmodellering givet ved forskellige strømbelast-
ninger. Kapitel 4 analyserer de tre sammenlignede omformere ved forskellige
spændings- og effektniveauer, og tabsmodelleringen af Y-source-konverteren
valideres baseret på temperaturmodelleringen. Pålidelighedsvurderingen for
de omformere er angivet i kapitel 5, hvor levetidsmodellering, fejlmekanis-
mer og antallet af levetidsår af omformerne præsenteres ud fra vurderingen
af kun en komponent, som er IGBT-effektmodulet.

I kapitel 6 præsenteres konklusionerne, hovedbidragene og det fremtidige
arbejde.
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Chapter. 1

Introduction

In this chapter, an overview of the state of the art in reliability egineering of power
electronics in electro-mobile applications is given. This given overview is one of the
contributions in this PhD project and it is a partially direct copy from my paper [1]
which is published during my PhD study with the following details:

[1] B. Gadalla, E. Schaltz, and F. Blaabjerg, “A survey on the reliability
of power electronics in electro-mobility applications,” in Intl Conference
on Optimization of Electrical Electronic Equipment (OPTIM), Sept 2015,
pp. 304–310.

1.1 Introduction

This chapter presents the background of reliability engineering of power elec-
tronics used in electro-mobile applications. It includes a state of the art of
reliability in power electronics, sources of failure, components failure and
different life time prediction methods. Moreover, a general description of the
system configuration of the fuel cell hybrid electric vehicle (FCHEV) and the
driving cycle used. Then, the thesis structure is presented to give a better un-
derstanding about the flow of this research work. All the publications related
to this project are listed at the end of the thesis.
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Part 1. Introduction

1.2 Project background

This Ph.D. project presents a background of the boost power converters,
which are used in many applications. A comparison has been made between
three existing types of boost power converters (Conventional Boost, Z-source
and Y-source).

These types of boost converters are essentially needed in many applica-
tions [2] as also discussed later in Chapter 2. A better understanding of their
thermal aspects is important for their design in order to obtain a robust sys-
tem. Therefore, it is of high interest to investigate and compare their thermal
performances, which have an indirect impact on the reliability and the effi-
ciency [3], [4].

Power converters are being used in many different applications like indus-
trial motor drives [5, 6] renewable generation systems [7] and more recently
also electric vehicles [8, 9]. In order to have design flexibility, power convert-
ers should have both voltage-buck and boost capabilities. For that, many new
topologies have been proposed with each being claimed to have impressive
advantages as for example, the capability of ideally giving an infinite output
voltage regardless of the input voltage, using relatively small duty cycle ra-
tios for boosting the voltage which may improve the power losses generated
from the devices ect. [10, 11]. These advantages are, without doubt, verified
in the laboratories by researchers, but at present, a collective investigation of
some of the existing boost converters has not been initiated especially with
reference to their thermal and reliability properties. As an example of these
existing boost converters, two topologies of the impedance-source converters
are selected to initiate this investigation [2].

For illustrating its operational principles, the examples of Boost converter,
Z-source converter (ZSC) [12] and Y-source converter (YSC) [13] shown in Fig.
1.1 (a), (b), and (c) are chosen as a firm base for beginning with the investiga-
tion. The ZSC and YSC have the capability of ideally giving an infinite output
voltage regardless of the input voltage. This boosting feature has so far been
recommended for different applications including photovoltaic (PV), electric
vehicles (EV), wind power generators, battery management system (BMS).

The Boost converter circuit, which is shown in Fig.1.1 (a) and it compro-
mises one active switch SW, a diode D1, an inductor L1, and a capacitor C1
for introducing a high voltage boost. The Z-source converter circuit is shown
Fig.1.1 (b). It consists of two inductors (L1, L2) and two capacitors (C1, C2)
connected in an ’X’ shape to be coupled to the dc voltage source.
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1.2. Project background

 
Fig. 1.1: Impedance source converters. a) Boost converter equivalent circuit. b) Z-Source con-
verter equivalent circuit. c) Y-Source converter equivalent circuit [2].

The Y-source impedance network converter and its two modes of opera-
tion are shown Fig.1.1 (c). It is realized by a three-winding coupled inductor
(N1, N2, and N3) for introducing the high boost at a small duty ratio for the
SW. It has an active switch SW, two diodes (D1, D2), a capacitor C1, and the
windings of the coupled inductor are connected directly to SW and D1, to
ensure a very small leakage inductance at its winding terminals [2].

It is therefore conceptually logical to describe a particular application
which in this case, is a fuel cell hybrid electric vehicles (FCHEV). The dis-
cussion will mainly be direct through the reasons for selecting that particular
application by stating their advantages and disadvantages, and the reliability
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Part 1. Introduction

aspects of an FCHEV configuration.

1.3 System configuration of FCHEV and Driving
cycle

“Electric vehicle” is an extensive expression, which can be used to describe
different types and sizes of trucks and cars. These types could be one of
the following; plug-in electric, hybrid-electric, and battery electric vehicles.
In addition, fuel cell technologies could be also considered [14], [15] as the
source of power.

One of the main advantages of Fuel Cell Vehicles (FCVs) is the usage of
oxygen and hydrogen extracted from the sources of renewable energy [16].
Therefore, FCVs are considered as a clean source, and hence, categorized as
"zero-emission vehicles" [17]. The fuel cells are characterized by giving DC out-
put voltage, but this voltage is only constant if the operating conditions are
also constant [18].

In Fig 1.2 a system configuration of fuel cell hybrid electric vehicles (FCHEV)
[19] is shown, which consists of a fuel cell stack, DC/DC converter, auxiliary
devices, inverter and motor. The fuel cell stack delivers the power to the
wheels [20]. The torque of the wheels are provided by a differential in order
to compensate the speed difference between the high speed of the electric
machine shaft and the lower speed of the wheels.
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Fig. 1.2: Fuel cell hybrid electric vehicle configuration [19]

The torque and the speed of machine are controlled by the inverter where
it inverts the DC voltage of the battery to a three phase AC voltage which is
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1.3. System configuration of FCHEV and Driving cycle

usfel for the electric machine. Transferring the power from the low voltage
side (fuel cell stack) to the high voltage side of the battery is possible through
the DC/DC converter [19].

Furthermore, the assessment of the three converter topologies (Boost, Z-
source and Y-source) are shown in Fig 1.2 is based on the same FCHEV ap-
plication and the same input driving cycle.

Driving cycle: The speed characteristics of FCEVs is necessary when de-
signing the power system of the hybrid electric vehicle model. The speed
and power characteristics of the fuel cell converter are often obtained by set-
ting up models of the vehicles these models are based on the loads acting on
the vehicles [19]. Further a description of the system configuration and the
driving cycle is given in Chapter 5.

The advantages of the FCHEV are [21]:

1) Fuel Efficient - The hydrogen fuel cell powered vehicles fuel consump-
tion are equivalent to about half of the gasoline powered vehicles. Fuel
cell vehicles are often equipped with regenerative brakes, which also
contribute to their increased efficiency [22].

2) Reduced Pollution - Since the hydrogen cars only emits heat and wa-
ter and it can be powered from renewable energy, which therefore is a
clean source [22].

3) Reduced Maintenance - Lesser internal moving parts means lower main-
tenance related costs. Hydrogen powered vehicles are more quiet, and
normally more light in weight [23].

4) Uni-directional power flow - The FCHEV requires only uni-directional
power flow un-like a battery converter, which requires bi-directional
power flow.

5) Fast Refuelling - Although the amount of fill up stations are limited,
filling up a hydrogen car takes only a few minutes with enough fuel to
travel several hundred miles in contrast to pure battery electric vehicles
[24].
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Disadvantages of the FCHEV [21]:

1) Lacking Infrastructure - Currently there is a lacking sufficient infras-
tructure to support hydrogen refuelling on a mass scale [25].

2) Potential Dangers - One of the main concerns is that Hydrogen combus-
tions are almost unseen [26]. Storing pressurized hydrogen on board,
the vehicle can pose unique dangers.

3) Hydrogen Storage - In order to store Hydrogen a chemical procedure is
needed to be stored efficiently [27].

4) Climate Sensitivity - The Hydrogen power-driven cars are having some
temperature restrictions. It includes both risks, fuel cell water freezing
and overheating of the fuel cell components depending on the weather
conditions [28], [29].

5) Vehicle Production Costs - Platinum is one of the expensive materials,
which is frequently used for fuel cells [30].

1.4 State-of-the-art of reliability of power electron-
ics in electro-mobile applications

Reliability is an important issue in the field of power electronics since most of
the electrical energy today is processed by power electronics. In most of the
electro-mobile applications, e.g. electric and hybrid electric vehicles, power
electronic are commonly used in a very harsh environment [1]. Tempera-
ture variations, vibration and also humidity stresses are affecting the device
(which can come even from the device itself or from external sources) and
they may cause unreliable system. Thus, designing reliable power electronic
components is important for the aim of reducing the energy losses, mainte-
nance cost and extending the service lifetime as well.

Research within power electronics is of high interest as it has significant
impact in the industry of the electro-mobile applications. The reliability of
power electronics is affecting the overall system performance in these appli-
cation fields. The semiconductor devices are some of the most vulnerable
components in the power electronic apparatus [31]. Therefore, any fault that
occurs in the components will lead to a disorder in the system. These un-
desired disorders not only affect the safety, but also increases the system
operation cost and maintenance [32].
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Fig. 1.3: Cost breakdown of power electronics in the hybrid drive system [33]

One of the challenges in the electro-mobility industry is how to improve
the reliability of the vehicle’s power electronic systems [35]. Sources of failure
as vibration, humidity, temperature variations and thermal cycles have an in-
fluence on the reliability of power electronics [36]. Fig. 1.3(a) shows the cost
breakdown of the hybrid drive system which indicates that 24% of the cost is
for power electronics and in Fig. 1.3(b) 50% of the total costs break down of
power electronics components is due to the silicon devices and PCB [33], [37].
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Fig. 1.4: Aspects of power electronics reliability assessment [34].

Furthermore, in today’s perspective toward the reliability assessment of
power electronic components and systems [34], three main aspects should be
considered as shown in Fig. 1.4. Since the typical design target of lifetime
in the area of automotive electronics is 15 years [38] and therefore the design
and verification are important aspects to the reliability assessment in power
electronics which involve different phases as follows:

• Firstly, in this phase analysis is the first step in order to have a full
image of the circuit and system. Investigating aspects like stress and
strength, failure mode, critical component list and critical component
failure mechanism are important.

• The second step is to have an initial design after the analysis, then
this design can be optimized considering for example, reliability, power
efficiency, power density, robustness and life cycle cost.

• The last step is to verify the design by building prototype, perform
calibrated accelerated lifetime tests, reliability and durability analysis
before a system finally is in production.

1.5 Sources of failure in power electronics in elec-
tro mobile applications

Mapping the sources of failure it could be a method to prevent the creation
of failure in the initial design. The classifications of different sources of fail-
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ure is shown in Fig. 1.5 for which some of the power electronic components
are exposed to and affect their reliability performance. The different sources
are discussed in [1] in details. The sources of failure, which have been iden-
tified are vibration [39], humidity, thermal cycles [40], [41], and [20], power
cycles [42], voltage and current stresses.
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Fig. 1.5: Classification of reliability assessment in electro-mobile applications [1]
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1.6 Component failures in power electronics in elec-
tro mobility applications

Analysis is the first step to determine which metrics should be investigated in
order to evaluate and improve the reliability. Based on a review of condition
monitoring for device reliability in power electronic systems presented in
[43], semiconductors and soldering failures in device modules are sharing
totals 34% of converter system failures as shown in Fig. 1.6.

Capacitors
30%

PCB
26%

Semiconductors
21%

Solder
13%

Connectors
3%

Others
7%

Capacitors

PCB

Semiconductors

Solder

Connectors

Others

Fig. 1.6: Ranking and failure distribution of power electronic components and sources in power
converters [43].

One of the most important challenges in the vehicles manufacture is to
consider the component failure rate estimation [44]. Therefore, Fig.1.7 shows
an overview during the past 15 years on the components failure and their
reliability assessments methods which had been proposed by different re-
searchers in the literature [1]. The switching devices [26] are one of the most
critical components that the researchers focused on in the electro-mobile ap-
plications. As shown in Fig.1.7, where the red squares refer to the failed
components, and the green squares refer to different stressors. It is concluded
that the IGBT and chip resistors are critical components according to these
specific different research activity in the literature [45], [46], [47], [48], [49],
[20], [50], [42], [51], [40], [52], [53], [26], [54], [55], [56], [57], [39], [58], [59],
[60], [61], [62], [63] and [64]. It can be concluded from this figure that the
thermal cycles are a very common source of failure in the power electronics
of the electro-mobile applications.
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Fig. 1.7: Overview of selected publications which studied sources of failure and failure compo-
nents of power electronics [1]
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1.7 Different lifetime prediction methods

The reliability calculation method is one of the most critical issues, where
emerging technologies are studied and the reliability needs to be very high in
order to be useful for these types of applications. Table 1.1 shows a summary
of some of the established approaches used in the lifetime prediction of some
of the power electronic components.

1 

TABLE 1.1 Different methods of lifetime prediction and assessment [1] 

Methods Definitions Math. Equations Models 

Weibull 
distribution 

& 
Failure rate 

Frequently used to 
model fatigue 
failure. 

( )  1  exp [ ( ) ]
tF t β

η
= − −

F: Probability of failure 
t: Test statistics (e.g. no. of 
cycle)  
ɳ: Characteristics life  
β: Shape parameter 

Early life 
region
0<β<1 

Constant 
failure 

rate 
region
β=1 

Wear out 
region
β >1 

Module

Time 

Finite 
element 

A numerical method 
for solving a system 
of governing 
equations over a 
domain of a 
continuous physical 
system in to simple 
geometric shape. 

1{ } [ ] { }U K F−=

U: Behavior (e.g. 
temperature, velocity, …) 
K: Property  (e.g. 
conductivity, viscosity, …) 
F: Action (e.g. heat source, 
force, …) 

Electron 
backscatter 
diffraction 

A beam of electrons 
is directed at a point 
of interest on a tilted 
crystalline sample by 
70°. 

2 sinn dλ θ=   

n: positive integer  
λ: is the wavelength of 
incident wave 
d: a lattice spacing 
θ: diffraction angle 

Rain flow 
counting 

A method for 
counting fatigue 
cycles from a time 
history and these 
fatigue cycles are 
stress-reversals. 

The stress history should be 
reduced to peaks and 
valleys by software. (e.g. 
using Matlab ) 

Fa
il

ur
e 

ra
te

Thus, this field of reliability must be approached at the most fundamental
level when evaluating and predicting the products lifetime. Some of the
selected lifetime prediction methods are classified in details and Table 1.2
provides an overview on how to be applied for various power electronics
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Assessed 
Component 

Stressor Based Approach Ref 

Chip Resistors 
(solders) 

Thermal cycling Weibull model [7][6][1] 

Thermal cycling 
Electron Backscatter Diffraction (EBSD) [5] 

Vibration 

IGBT 

Thermal cycling 
Electron Backscatter Diffraction (EBSD) [16] 

Vibration 

Temperature  Finite Element Method (FEM) [12][10] 

Thermal cycling Finite Element Method (FEM) 
[14][15][20] 

[22] 

Thermal cycling Weibull model [8] 

Vibration Finite Element Method (FEM) [4] 

Power cycling Finite Element Method (FEM) [23][24] 

Thermal cycling Rain flow counting algorithm [25] 

Capacitors Thermal cycling Failure rate model [19] 

Voltage stresses Empirical model [26] 

Current ripple 
stresses 

Life time model [28] 

TABLE 1.2 A summary of lifetime prediction based approaches [1].

components.

1.8 Project objectives

The main objective of this project is to investigate the reliability of the Z-
source and Y-source power converter from a thermal point of view used in
the FCHEV application. This target can be achieved by answering to the
following questions:

1) How are the losses inside the converters distributed and their impact
on the lifetime of these converters?

2) What are the most critical components, and source of failure in the con-
verter?

3) Does the recently proposed impedance based boost power converter (Z-
source and Y-source) offer higher lifetime from a thermal point of view
compared to the conventional boost converter?

Thermal investigation is an important aspect to estimate the condition of
power electronic components, converters and systems. It is widely applied in
reliable or safety critical applications, such as electric vehicles, wind turbines,
and photovoltaic, etc.
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Due to the aforementioned preamble on reliability and power converters,
the thermal investigation is one of the most critical aspects to be considered
in modern power converter design.

1.9 Project limitations

The research in this thesis is limited to a collective investigation of the three
different topologies (conventional boost, Z-source and Y-source) converters
which has not been initiated yet especially with reference to their thermal
aspects, loss distribution and also the reliability issues. It is important to
study them in order to be designed for long-term reliable usage.

A comparison should be made between the three mentioned topologies in
order to select the most appropriate. Common specifications and design pa-
rameters are given at different power levels and voltage gains. Loss mapping
is presented and compared in the three topologies. Simulation case studies
are limited to 20 kW power loading and switching frequency of 20 kHz. The
validation of the Y-source converter is limited to 300 W due to the availability
of the components in the laboratory. An estimation of the junction tempera-
ture is also presented and as well as efficiency measurements when taking all
the relevant losses into consideration. Finally, two different lifetime models
are performed for the three converters with the applied fuel cell hybrid elec-
tric vehicle (FCHEV) application in order to be able to estimate the lifetime
of each converter based on the most critical component in the converter.

1.10 Thesis outline

The introduction of this thesis is presented in Chapter 1, and includes the
background of the project, system configuration of the application, general
reliability assessment methods, problem formulation, objectives and limita-
tions.

In Chapter 2, the basic operation of the DC/DC boost converters, their
theory of operation, specifications and common design parameters for the
compared topologies (boost, Z-source and Y-source) converters are given.

In Chapter 3, loss modelling and thermal design of the boost DC/DC con-
verters are done. Modelling both the electrical and magnetic losses followed
by the thermal design and the estimation of the junction temperature are de-
scribed.

In Chapter 4, the Y-source converter is verified in terms of operation and
followed by the a comparison between the three topologies for the same op-
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erating conditions (different power loading and voltage gains). In the end the
of this chapter a summary is given and the results are discussed.

Chapter 5 presents the reliability assessment method for the applied appli-
cation. Reliability analysis, lifetime estimation and the mission profile effect
on lifetime is discussed and compared between the three topologies.

Finally, conclusions are given including the main contributions, and also
the future work in Chapter 6.

1.11 List of publications

A list of the papers derived from this project, which are published until now
or to be submitted, is given as follows:

Journal Papers
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305, 2015. [Open Access]. ISSN:2356-8569.

J2. B. Gadalla, E. Schaltz, Y. Siwakoti, F. Blaabjerg, “Analysis of loss distribution
of Conventional Boost, Z-source and Y-source Converters for wide power and
voltage range,” Transaction on Environment and Electrical Engineering, vol. 2, No.
1, pp. 1-9, 2017. [Open Access].

Conference Contributions
C1. B. Gadalla, E. Schaltz, F. Blaabjerg “A survey on the reliability of power electron-

ics in electro-mobility applications,” in Proc. of IEEE INTERNATIONAL ACEMP
- OPTIM - ELECTROMOTION JOINT CONFERENCE: ACEMP – OPTIM, pp.
304-310, May. 2015.

C2. B. Gadalla, E. Schaltz, Y. Siwakoti, F. Blaabjerg, “Thermal Performance and Ef-
ficiency Investigation of Conventional Boost, Z-source and Y-source converters
,” in Proc. of 16 IEEE International Conference on Environment and Electrical Engi-
neering (EEEIC16), pp. 1297- 1302, Jun. 2016.

C3. B. Gadalla, E. Schaltz, Y. Siwakoti, F. Blaabjerg, “Loss Distribution and Thermal
Behaviour of the Y-source Converter for a Wide Power and Voltage Range,” in
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Asia), pp. 1-6, Jun. 2017.
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source and Y-source Converters in Fuel Cell Hybrid Electric Vehicle Applica-
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Chapter. 2

Conventional and Impedance
Source DC/DC Boost Converters

In this chapter, basic theories of operation and design of each converter are presented.
It is a partially direct copy from my paper [5], and [65], which are published during
my PhD study with the following details:

[5] B. Gadalla, E. Schaltz, Y. Siwakoti and F. Blaabjerg, “Analysis of loss
distribution of conventional boost, z-source and y-source converters for
wide power and voltage range,” Trans. on Enviroment and Eectrical Enigneer-
ing, vol. 2, no. 1, pp. 1–9, Jan. 2017.

[65] B. Gadalla, E. Schaltz, Y. Siwakoti and F. Blaabjerg, “Loss distribu-
tion and thermal behaviour of the y-source converter for a wide power and
voltage range,” in Proceedings of 2017 IEEE 3rd International Future En-
ergy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), pp.
1–6, June 2017.

2.1 Introduction

In conventional boost converters, the needed voltage gain normally requires
higher duty cycle, which leads to high conduction losses, voltage and current
stresses on the switching devices. However, the abovementioned stressor fac-
tors may critically affect the reliability and the lifetime of the power electronic
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Part 2. Conventional and Impedance Source DC/DC Boost Converters

components as they are thermally loaded high [5], [65].

Recently, impedance source converters have been applied in industrial
applications, and hence it has become an interesting topic of research. Re-
searchers have claimed that the proposed impedance source converters have
their uniquely advantages such as having a high voltage gain in a small range
of duty cycle ratio [66].

Therefore, a comparison between the conventional boost, the Z-source,
and the Y-source converters based on the basic design, operational principle,
mathematical derivations and parameters selection is presented. Advantages
and limitations for each topology is given. Common design and specifica-
tions parameters is also discussed in order to have a fair comparison between
the three topologies.

This chapter intent to give a detailed study of the compared topologies
(boost, Z-source and Y-source) converters. Subsection 2.1 gives the common
specification parameters for the three topologies. Section 2.2, 2.3 and 2.4
describes the basic design procedure of the converters, theories of operation.
Section 2.5 gives the parameters selection for the boost, Z-source and Y-source
respectively. Finally a summary of the studied topologies is given in section
2.6.

2.1.1 Common specification parameters for the compared (Boost,
Z-source and Y-source) topologies

In order to have a fair comparison between different topologies many consid-
erations should be taken into account. Especially the efficiency and thermal
investigation, which can be done in many different ways. This project is not
only investigating the efficiency but also loss mapping models are considered
in order to have a better understanding of the nature of each converter.

2.1.1.1 Common Design Parameters

In this part, the common specifications and design parameters are given for
the compared topologies (Boost, Z-source and Y-source) converters. These
parameters can be summarized as following:

1) The load power Po = 20 kW, and the output voltage Vout = 400 V for both
boost factors (2, and 4).

2) The input voltage Vin = 100 V for boost factor = 4 and Vin = 200 V for boost
factor = 2.
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2.2. Boost converter

3) The switching frequency fs = 20 kHz.

4) The peak-to-peak ripple inductor current ∆ILp−p is 20 % of the average
inductor current IL in order to limit the size of the inductance. The
higher DC resistance, the higher inductor losses.

5) The peak-to-peak ripple voltage ∆Vout is 2 % of the average output voltage
Vout in order to eliminate the voltage fluctuations across the output
voltage.

6) A resistive load applied is RL = 8 Ω.

In the next sections 2.2, 2.3, and 2.4 the theory of operation of the convert-
ers and design formulas are presented.

2.2 Boost converter

A boost converter is a step up converter converting the voltage from low
input voltage to higher output voltage requiring a duty cycle (0 <D<1). Its
simple theory of operation as well as component count wise allows it to be a
competitor with other boosting converters.

2.2.1 Basic theory of operation

The basic structure of the boost converter circuit, the equivalent circuit for
the on state mode of operation and the off state mode of operation are shown
in Fig 2.1. It compromises of one active switch SW, a diode D1, an inductor
L1, and a capacitor C1 for introducing a high voltage boost with (D>0.5). The
two modes of operation are as following:

a) During the on state: the switch is closed, the current flows through the
inductor and store the energy by the generated magnetic field in the
inductor.

b) During the off state: the switch is opened, the current passed will be
reduced as the voltage across the inductor is reversed and the magnetic
field previously created will decrease to maintain the current flow to
the load and the current through the diode will charge the capacitor
giving a higher voltage.

The input/output voltage relationship and the duty cycle [67] is expressed
in (2.1) as:

Vout =
Vin

1− D
, (2.1)
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Fig. 2.1: Analysis of the boost converter a) Boost converter circuit topology. b) Equivalent circuit
for on state. c) Equivalent circuit for off state.

where Vout is the output voltage, Vin is the input voltage and D is the duty
cycle needed for the required voltage gain.

2.3 Z-source converter

The Z-source converter (ZSC) is an appropriate topology in many alternative
energy sources and other different applications [7, 10]. The ZSC has the
capability of ideally giving an output voltage up to infinity which of course
is not possible due to the limitations of the devices.

2.3.1 Basic theory of operation

The Z-Source converter circuit, and its two modes of operation are shown Fig.
2.2. It consists of two inductors (L1, L2) and two capacitors (C1, C2) connected
in X shape to be coupled to the dc voltage source. The ZSC can produce a
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required dc output voltage regardless of the input dc source voltage.
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Fig. 2.2: Analysis of the Z-source converter a) Z-Source converter circuit topology. b) Equivalent
circuit for on state. c) Equivalent circuit for off state.

The two modes of operation are as the following:

a) In the on state: the switch is closed and the impedance source capacitors
(C1, C2) release energy to the inductors (L1, L2) and then the voltage
source and the load will disconnect the Z- source network due to the
turn off of the diodes (D1, D2). The major concern is the large conduc-
tion current passing through the switch during the on state, which may
decrease the converter efficiency.

b) In the off state: the switch is opened and the input voltage will supply
energy to the load through the two inductors as well as add energy to
the two capacitors to compensate the energy lost during the on state.

The input/output voltage relationship and the duty cycle [68] are ex-
pressed in (2.2) as:
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Part 2. Conventional and Impedance Source DC/DC Boost Converters

Vout =
Vin

1− 2D
, (2.2)

where Vout is the output voltage, Vin is the input voltage and D is the duty
cycle needed for the required voltage gain.

2.4 Y-source converter

The Y-source converter is a promising topology for higher voltage gain using
a small duty ratio and has a very wide range to adjust the voltage gain [4, 13].
The range of duty cycle in the Y-source is narrower than the Z-source and the
boost converter but can also boost the voltage.

2.4.1 Basic theory of operation

Fig. 2.3 shows the Y-source impedance network converter and its two modes
of operation. It is realized by a three-winding coupled inductor (N1, N2, and
N3) for introducing the high boost at a small duty ratio for the SW. It has an
active switch SW, two diodes (D1, D2), a capacitor C1, and the windings of
the coupled inductor are connected directly to SW and D1, in order to ensure
a very small leakage inductance at its winding terminals.

The two modes of operation are as follows:

a) In the on state: the switch is closed, D1 and D2 are off causing the capac-
itor C1 to charge the magnetizing inductor of the coupled transformer
and the capacitor C2 to discharge the power to the load.

b) In the off state: the switch is opened, D1 starts to conduct causing the
input voltage to recharge the capacitor C1 and the energy from the sup-
ply and the transformer will also flow to the load. When D2 starts
conducting, it recharges C2 and the load is to be continuously powered.

The input/output voltage relationship and the duty cycle [13] are ex-
pressed in (2.3) as:

Vout =
Vin

1− KD
, (2.3)

where Vout is the output voltage, Vin is the input voltage, D is the duty
cycle and K is the winding factor of the inductance. The winding factor
K [13] is calculated according to the turns ratio of the three-winding coupled
inductor and it is expressed in (2.4) as:

K =
N1 + N3

N3 − N2
, (2.4)
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Fig. 2.3: Analysis of the Y-source converter a) Y-source converter circuit topology. b) Equivalent
circuit for the on state. c) Equivalent circuit for the off state.

where (N1 : N2 : N3) are the winding ratios of the coupled inductor. A
comparison between the inductors, the capacitors design, voltage and current
ripples for the three converters is shown in Table 2.1.
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2.5 Parameter selection for the boost, Z-source and
Y-source converters

Table 2.1 summarizes a comparison between the inductors, the capacitors de-
sign, voltage and current ripples for the three converters. As it can be seen
in Table 2.1, the current ripple across the inductor ∆IL is equal to 20% of the
inductor current IL, in the Y-source converter is equal to 20% of the magnetiz-
ing current IM. The voltage ripple across the output capacitor ∆VCout in the
three converter is designed to be 2% of the output voltage Vout. The inductor
and capacitor values are also listed in Table 2.1 which the duty cycle D, the
switching frequency fs and the resistive load RL are important factors when
designing the suitable values of the desired inductor and capacitor.

2.6 Summary

In this chapter a comparison between the Y-source, Z-source and the conven-
tional boost converter has been performed with respect to their basic design,
theory of operation and parameters selection. Common design and spec-
ification parameters are also presented in order to have a fair comparison
between the three topologies. Considering the load power Po is 20 kW, the
output voltage Vout is 400 V for the voltage gains (2 and 4), the switching
frequency fs is 20 kHz, the peak-to-peak ripple current ∆ILp−p is 2% of the
average inductor current IL, and the peak-to-peak ripple voltage ∆Vout is 2 %
of the average output voltage Vout.

0

1

2

3

Inductor L Capcitor C Switch sw Diode D

Boost Z-source Y-source

C
ou

nt

Fig. 2.4: Components count for the Boost, Z-source and Y-source converters

Fig.2.4 summarize the components count for the 3 topologies. It can be
seen that the Y-source converter is more intricacy than the Z-source and the
conventional boost converters. It can be also concluded that the Z-source and
Y-source converters are more expensive than the conventional Boost converter
according to the size, and the components count of each topology.
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Chapter. 3

Loss Modelling and Thermal
Design of Boost DC/DC converters

3.1 Introduction

Thermal design is a crucial step for power electronic manufactures and also
a decisive factor for the reliability assessments [69]. It is involved in all ap-
plications but it is particularly important for power semiconductors for two
reasons:

1) Semiconductors are very small in size, and they also have low heat ca-
pacity and therefore the temperature will rise quickly and need to be
contacted properly [70].

2) High current densities operation give a steep temperature rise between
junction and ambient.

Reliable thermal design of the power semiconductor is the key to their cost
effective utilization due to their limitations. Moreover, in order to have an op-
timum thermal design the designer should select a proper heat sink or other
cooling method [71]. Generally, the main target of the thermal design is the
selection of the proper heat sink that should have the following characteris-
tics [72]:

1) The ability to dissipate the semiconductor losses into the surroundings.

2) Keep the junction temperature within safe operating limits.

29



Part 3. Loss Modelling and Thermal Design of Boost DC/DC converters

In the following sections, some of the needed procedures as modelling of all
relevant losses are presented in order to have a better thermal design. These
procedures can be listed as:

1) Power dissipation in the active device, which are switching losses and
conduction losses, where they are in direct related to the duty cycle.

2) Passive elements losses, which are the Equivalent Series Resistance (ESR)
losses in the capacitors and the magnetic inductor losses.

3) Estimation of the junction temperature based on models.

This chapter describes the loss modelling and thermal design of the DC/DC
boost converters. Section 3.2 describes the electrical loss modelling which
are the semiconductors losses (switching and conduction losses). The heat
sink specifications and passive elements loss modelling are also discussed.
Section 3.3 discuss the temperature modelling. Section 3.4 gives a summary
of the studied investigation.

3.2 Modelling of the electrical losses

3.2.1 Semiconductors losses

1) Switching losses occur when the device is transitioning from the block-
ing state to the conducting state and vice-versa [73]. This interval is
characterized by a significant voltage across its terminals and a signifi-
cant current through it. The energy dissipated in each transition needs
to be multiplied by the switching frequency to in order to obtain the
switching losses. The switching losses Psw are expressed in (3.1) as:

Psw =
(

Eon + Eo f f

)
× fsw, (3.1)

where Eon and Eo f f are the energy losses during turn on and turn off
of the switch, fsw is the switching frequency.

2) Conduction losses appear when the device is in full conduction mode [73].
The average conduction losses Pcond are expressed in (3.2) as:

Pcond = R(on) × I2
sw(RMS), (3.2)

where R(on) is the resistance of the selected switch, Isw(RMS) is the root
mean square current passing through the switch. The switching time
period T is as given in (3.3):

T =
1

fsw
(3.3)

where fsw is inversely proportional to the time period T.
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(b) 

(a)
(a) 

(b) (b)

Fig. 3.1: (a) Mapping of the switching losses in PLECS toolbox. (b) Mapping of the conduction
losses in PLECS toolbox.

In Fig. 3.1 the switching and conduction losses are calculated according
to the thermal models inserted into the thermal library of the PLECS tool-
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box. Using the data sheet information of an IGBT rated at 600 V and 200 A
as an example. Mapping between the turn on and off energies for the de-
vice (IGBT), at different temperature levels (25◦C and 150◦C), at only (360
V) blocking voltage according to the available data from the manufacture in
the data sheet the current range is from ( 0 to 200 A), which describe the
calculations of the switching and conduction losses in the simulation model.

3.2.2 Capacitor ESR loss

The capacitor Equivalent Series Resistance (ESR) is "the value of the resis-
tance, which is equal to the total effect of a large set of energy loss mecha-
nisms occurring under the operating conditions where it can be a parameter
to measure the capacitor losses" [74]. The capacitor losses are expressed in
(3.17) as:

Pcap.loss = I2
cap. × ESR (3.4)

where Icap. is the rms current passing through the capacitor, and ESR is
the equivalent series resistance measuring the effect of the losses dissipated
in the capacitor.

3.2.3 Inductor loss

3.2.3.1 Magnetic core design

In this part, two different types of cores loss modelling are selected for the
voltage gain of 2 (high flux 58337 core) and voltage gain of 4 (Metglas power-
lite C-core) using two different methods (selection of the optimum powder
core from Magnetics and commonly used Kg method). The magnetic core
design [75] is done through the following steps:

1) In order to select a proper core size, the DC current IDC in Ampere and
the inductance L in mili Henry required with DC bias should be known
to select the core from the core selector chart according to the calculated
value (mH.A2) in (3.5):

LI2
DC = value. (3.5)

A high flux 58337 core [75] was selected for the three converters using the
voltage gain of 2.

2) Inductance, core size and permeability are now known, then calculating the no.
of turns by determining the minimum inductance factor ALmin by using the
worst case negative tolerance (generally −8%) given in the core data sheet in
(3.6) and (3.7)as:
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3.2. Modelling of the electrical losses

Almin = Al − 0.08Al, (3.6)

N =

√
L× 103

Almin
, (3.7)

where Almin is the minimum inductance factor (nH/T2), and L is the induc-
tance in (µH).

3) Choosing the suitable wire size according to the rated power and calculated
number of turns (N), is the last step before calculating the DC resistance
according to the wire size with a window fill factor assumed to be 40% in
(3.8) as:

CA =
W f ×WA

N
, (3.8)

where CA is the wire area, W f in the window fill factor, and N is the no. of
turns.

4) The DC resistance can be determined after knowing the winding factor of the
core, wire gauge (AWG), and the no. of turns. The DC resistance can be
calculated in (3.9) as:

RDC = MLT × N ×Ω/Length, (3.9)

where MLT is the mean length per turn, and Ω/Length is the resistance per
meter. Furthermore, in the voltage gain of 4 METGLAS power-lite C-core [39]
is used, since it has extremely low core loss and high permeability which are
required with higher voltage gains. The design steps are based on the Kg
method [76].

3.2.3.2 Core loss

The calculation of the core loss of magnetic materials is based on Steinmetz’s
equation, which is a physics based equation. The core losses are expressed in
(3.10):

Pv = k f α B̂β, (3.10)

where B̂ is the peak flux density excitation with frequency f , Pv is the
time-average power loss per unit volume, and (α, β, k) are material parame-
ters found by curve fitting. The improved generalized Steinmetz’s equation
is expressed in (3.11) as:
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Pv =
1
T

∫ T

0
ki

∣∣∣∣dB
dt

∣∣∣∣α (∆Bβ−α
)

dt, (3.11)

where ∆B is the flux density from peak to peak and in (3.12):

ki =
k

(2π)α−1 ∫ 2π
0 |cosθ|α × 2β−αdθ

, (3.12)

where θ is the angle of the sinusoidal waveform simulated.

3.2.3.3 DC and AC Winding loss

The copper losses in the winding describe the energy dissipated by the resis-
tance in the wire used in the coil. It is divided into two types (DC and AC
winding loss).

1) The DC winding losses can be calculated in (3.13) as:

PDC = I2
av × RDC (3.13)

where (PDC) is the DC copper losses in the winding, Iav is the average
current passing through the wire, and RDC is the DC resistance of the
wire.

2) AC copper losses can be significant for large current ripple and for higher
frequency. It can be calculated through the skin effect, where the cur-
rent density is an exponentially decaying function of the distance into
the wire, with the characteristic length δ is known as the skin depth in
(3.14) as:

δ =
7.5√

fs
, (3.14)

where δ is the skin depth in cm, and fs is the switching frequency which
in our design is 20 kHz.

In order to calculate the AC resistance RAC, the thickness h of the wire
should be known since it is a function of the DC resistance RDC which
can be calculated in (3.15) as:

RAC =
h
δ
× RDC, (3.15)

where h is the thickness of the wire in cm. The AC winding losses can
be calculated as given in (3.16) as:
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PAC = I2
AC−rms × RAC (3.16)

where PAC is the AC winding loss, IAC−rms is AC ripple rms current
passing through the wire, and RAC is the AC winding resistance.

3.3 Temperature Modelling

3.3.1 Procedures for heat sink design

A heat sink is the cooling device to absorb the thermal losses dissipated by the
components within its boundaries using natural, forced convection and/or
fluid cooling can be used if needed. The heat sink is designed separately for
each boost factor. The thermal equivalent demonstration for the total power
losses (switching and conduction loss), the thermal resistance from junction
to ambient is shown in Fig. 3.2.

Rth jc

Power loss
IGBT 

Ta

Rth saRth cs

Rth jc

Power loss
Diode 

Ta

Rth saRth cs

 

Fig. 3.2: Simplified thermal equivalent circuit of total power losses with their thermal model in
PLECS toolbox

The thermal resistance is an important parameters for the semiconduc-
tor device. It depends on structural and material properties of the device
(interfaces, dimensions and thermal conductivity of materials). It will give
an immediate information on the thermal properties of the device and will
give the size and the use of a heat sink for a safe operation. The thermal
resistance is a parameter used for steady state operation which can provide
the temperature level after an initial transient phase, but does not reveal any
information about the thermal behaviour in dynamic conditions.

The choice of a proper heat sink depends on the maximum allowable
junction temperature that the device can tolerate. Assuming 125◦C as a max-
imum junction temperature for the devices as a specification for the heat sink.
The ambient temperature is set to 25 ◦C in this investigation.
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1) In order to know if the natural/forced convection is needed the maxi-
mum allowable thermal resistance from junction-to-ambient need to be
known in (3.17) as:

Rja−IGBT =
Tj,max − Ta,max

Ploss
, (3.17)

where Rja−IGBT is the junction to ambient thermal resistance of the
IGBT, Tj,max is maximum junction temperature, Ta,max is the maximum
ambient thermal resistance and Ploss is the total power loss dissipated
by the IGBT.

2) According to the calculated value of the maximum allowable thermal re-
sistance from junction-to-ambient, a decision can be made whether nat-
ural or forced cooling should be selected. Then the total thermal resis-
tance from junction to ambient is calculated in (3.18) as:

Rth−ja = Rth−jc + Rth−cs + Rth−sa, (3.18)

where Rth−ja is the thermal resistance from junction to ambient, Rth−jc
is the thermal resistance from junction to case, Rth−cs is the thermal re-
sistance from case to heat sink and Rth−sa is the thermal resistance from
heat sink to ambient.

3) If the calculated maximum allowable thermal resistance from junction-to-
ambient is very small, that means that a large heat sink is needed for
natural convection.

The thermal resistance needed for the heat sink is given in (3.19) as:

Rth−sa = Rth−ja − Rth−jc + Rth−cs, (3.19)

where Rth−jc is the thermal resistance from junction to case and is given
in the data sheet of the device, Rth−cs is the thermal resistance from case
to heat sink or the thermal grease resistance, which can also be found in
the data sheet or calculating its value according to the type of material
used for isolation. For example, the thermal grease resistance of Silicon-
Free type of interface thickness 0.164 mm, thermal conductivity is 0.79
W/m◦C and operating temperature range is from -40 to 200 ◦C can be
calculated in (3.20) as:

Rth−cs =
interface thickness(mm)× 1000

thermal conductivity(W/m◦C)× contact area(mm2)
(3.20)

36



3.3. Temperature Modelling

4) According to the calculated Rth−sa, a heat sink can be chosen as e.g.
FISHER ELECTRONI part no. LA 9/100 230 V. Fig. 3.3 shows the heat
sink chosen thermal resistance 0.28 (◦C/W) for the devices which are
thermally separated and fit with the thermal resistances of the devices
calculated in (3.19).

 

Fig. 3.3: FISHER ELECTRONIK LA 9/100 230 V heat sink [77].

3.3.2 Estimation of the junction temperature at different power
loading

Simple thermal equations are frequently used to calculate junction temper-
ature in steady state as in (3.22). PLECS tool box is used to estimate the
junction temperature Tj depending on the thermal model of the devices in
the data sheet known as the thermal resistance Rth.

 

Fig. 3.4: General electro-thermal network of semiconductor devices

As shown in Fig. 3.4, a general representation for the electro thermal net-
work, where Rth−jc is the junction to case thermal resistance, Rth−cs is the
case to heat sink thermal resistance, Rsa is the heat sink to ambient thermal
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resistance, which are an example of a thermal model, in order to be able to
calculate the junction temperature Tj.

Calculating the Rth−ja (◦C/W) of the device and assuming ambient tem-
perature at 25 ◦C allows to estimate the rise of the junction temperature inside
the devices in (3.21) as:

∆TDevice = Ploss × Rth−ja, (3.21)

where ∆TDevice is the rise in the device temperature, Ploss is the total power
loss generated from the device, and Rth−ja is the junction to ambient thermal
resistance. The junction temperature of the device Tj is calculated in (3.22)
as:

Tj = ∆TDevice + Ta, (3.22)

where Ta is the ambient temperature.

Fig. 3.5 shows an example of a Foster model build into the PLECS toolbox,
where from R1 to R4 is the total thermal impedance for the junction to case
thermal resistance of the device in Kelvin/Watt and τ is the thermal time
constant in second, in order to be able to estimate the junction temperature
Tj. 

 
Fig. 3.5: Thermal impedance Foster model for an IGBT in the thermal description block of PLECS
toolbox
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3.4 Summary

The power loss models and thermal modelling are presented in this chap-
ter. The temperatures calculated in these conditions are all steady state tem-
peratures. Thermal design procedures of the DC/DC boost converters is
presented. Electrical loss modelling which models the semiconductors losses
(switching and conduction losses) and passive elements loss modelling which
are (capacitor ESR and magnetic core losses) are also presented. Heat sink
specifications and a proper design of the heat sink is also presented. It is
important to a have proper design for the heat sink in order to maintain the
device availability in a safe operation mode by decreasing the thermal stress
generated from the device. Moreover, how to estimate and get a full image
of the devices junction temperature is also given.
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Chapter. 4

Investigation of DC/DC Boost
Converters

In this chapter, an investiagtion of the DC/DC boost converters and the validation of
the Y-source converter are presented. This chapter is one of the main contributions in
this PhD project and part of it is a direct copy from two papers [78], and [65] which
are published during my PhD study with the following details:

[78] B. Gadalla, E. Schaltz, Y. Siwakoti and F. Blaabjerg, “Thermal per-
formance and efficiency investigation of conventional boost, z-source and
y-source converters,” in 2016 IEEE 16th International Conference on Envi-
ronment and Electrical Engineering (EEEIC), June 2016, pp. 1–6.

[65] B. Gadalla, E. Schaltz, Y. Siwakoti and F. Blaabjerg,“Loss distribu-
tion and thermal behaviour of the y-source converter for a wide power
and voltage range,” in Proceedings of 2017 IEEE 3rd International Future
Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia),
June 2017, pp. 1–6.

4.1 Introduction

In this chapter a comparison has been made between the conventional boost,
Z-source and Y-source converters from their efficiency and loss distribution
point of view based on the thermal evaluation of the semiconductors. In
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order to a have a fair realistic comparison between three different topologies,
some design parameters need to be the same as presented in Chapter 2.

The PLECS toolbox is used for the three converter analysis. It should be
kept in mind that the losses are calculated as an average value for a load
conditions when it reaches steady state value. The parameters selection for
each converter are compared according to the passive components counts and
their voltage and current ripples are as specified in Table 2.1 in Chapter 2. The
same is the case for the switching devices, which are designed according to
each converter requirements for the voltage and current ratings.

In this chapter Section 4.2 gives the general simulation models used for
the three topologies. Section 4.3 gives the results of the Y-source converter.
Section 4.4, 4.5 and 4.6 discuss the simulation results of the three compared
topologies at different voltages and power levels. Section 4.7 gives the con-
clusion and summary of the compared studied topologies.

4.2 Loss Model Implementation in PLECS

In this section, a general description of the used blocks (switching, conduc-
tion, capacitor ESR, magnetic losses) in the PLECS toolbox is described. In
Fig. 4.1 a demonstration of how to measure the switching and conduction
losses in PLECS is done.

Probe

IGBT
Periodic Average

Periodic Impulse
Average

+
+

      P_cond.

conduction losses

      P_swt.

 switching losses

P_tot

total P_loss (cond.+swt.)

Fig. 4.1: Switching and conduction losses block in PLECS toolbox

1) The semiconductor device (IGBT and Diode) is added inside each probe
and includes both switching and conduction losses in order to be able
to calculate the losses generated from the semiconductor device.

2) The conduction loss can be measured through the periodic average
block, which periodically averages a continuous input signal over a
specified averaging time. The output is updated at the end of each
average period suited to determine the average conduction losses of the
power semiconductors.
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4.2. Loss Model Implementation in PLECS

3) Switching loss can be measured through the periodic impulse average
block, which periodically averages an input signal consisting of a series
of Dirac impulses. The output is updated at the end of each average
period suited to determine average switching losses of the power semi-
conductors.

The same idea is valid for the capacitor losses, as the measured current
passing through the capacitor is inserted inside the probe function and a
constant value of the Equivalent Series Resistance (ESR) is inserted inside a
constant block in order to have an instantaneous average value of the capac-
itor ESR losses. In Fig. 4.2 is the total magnetic loss measured according to
the Steinmetz equation as given in equations from (3.10) to (3.13).

1) In probe 4 in Fig. 4.2, the flux meter rate is inserted which is able to
measure the rate-of-change of the magnetic flux φ through the compo-
nent and provides it as a signal at the output and then connected to the
′K′ block which consists of a gain, which is the inverse of the area of
the core Ac.

2) In probe 5 in Fig. 4.2, the linear core is dragged into measure the mag-
netic flux density. Connecting both probes (4 and 5) to block ′X′ which
contains the parameters of the core as ( volume (g3), (α, β, k) are the
material parameters found by curve fitting and the excitation period 1

f )
give the calculation of the core losses.

3) In the copper loss block, the probe inside contains the DC resistance
(RDC) connected to the periodic average block to measure the DC wind-
ing losses.

P_DC_wgd

P_ core

P_loss_tot

total P_loss (core.+DC_wdg.)

 P_loss DC_wdg.

 P_loss core.

Fig. 4.2: Magnetic ( core, and winding ) losses block used in PLECS toolbox

In the next sections, the Y-source converter is scaled down from 20 kW to
300 W, due to the limitations in the laboratory and in order to prove the con-
cept of operating principle, as well as see the shapes of the obtained currents
and voltages waveforms.

The study of the Y-source converter at 300 W rated power to validate
the loss and the temperature modelling discussed in Chapter 3. Further,
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presenting the simulation results for the three compared converters at the
maximum power rating of 20 kW and different voltage gains. The simulation
results of the operated junction temperature Tj and the calculated efficiencies
η are also given under different power loadings. Finally, the distribution of
the losses of the three converters are summarized in dedicated charts for each
voltage gain and at 20 kW rated power separately.

4.3 Validation of the Y-source converter

In this section, the Y-source converter was selected to validate the models
developed. Due to complexity of the Y-source, which needs to be understood
and it is recently proposed compared to the Z-source and boost converters.

Fig. 4.3: The Y-source converter prototype.

A prototype has been designed for the components, semiconductors rat-
ings, selecting a proper core and heat sink [79] for 300 W rated power. Using
Altium designer for drawing the circuit layout and printing the PCB after-
wards, all components have been soldered and the prototype has been tested
with a resistive load. An experimental prototype of the Y-source converter
shown in Fig. 4.3 is used for this investigation.

The main purpose of the validation is to compare the efficiency and the
total switch (MOSFET) losses obtained from the simulation model. The same
operating conditions are applied as listed in Table 4.1, in order to have a re-
alistic comparison between the simulation model and the prototype. Both
the simulated and obtained experimental waveforms are compared and dis-
cussed in the following subsections.
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Parameter Value / description 

Rated power (P) 300 W 
Voltage gain 4 
Winding factor (K) , 1 3

3 2

N N
K

N N





4 

Input voltage (Vin) 60 V 
Output voltage (Vout) 240 V 
Duty cycle (dst) 0.1875 
Turns ratio of coupled inductor (N1:N2:N3) 5:1:3 
No. of turns (N1:N2:N3) 80:16:48 
Core MPP C055863A2 
Switching frequency (fs) 20 kHz 
Capacitors Cin = 470 µF, 400 V Kemet 

C1 = 470 µF, 400 V Kemet 
C2 = 470 µF, 400 V Kemet 

Heat sink (ABL) 173AB, 0.48 °C/W 
Switch (Mosfet) C2M0040120D, 1200 V, 60 A 
Diode D1 C3D25170H, 1700 V, 26.3 A 
Diode D2 C3D20060D, 600 V, 20 A

TABLE 4.1    Specifications and simulation parameters of the Y-source converter prototype [78].

4.3.1 Simulation results for the Y-source converter at 300 W
loaded power and voltage gain 4

The analysis of the loss distribution and junction temperature measurement
in the Y-source converter is performed.

Fig. 5.  Simulated power losses distribution for the Y-source converter at
300 W power loading and voltage gain of 4.

Fig. 6. Simulation results of different losses distribution for the Y-source
converter at different loadings 100 W, 200 W and 300 W loading and different 
voltage gains (3, and 4). 
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Fig. 4.4: Simulation results of different losses distribution for the Y-source converter at 100 W,
200 W and 300 W loading and different voltage gain (3 and 4).

Fig. 4.4 shows the loss distribution for the simulated converter at three
different power levels (100 W, 200 W, and 300 W) and two different voltage
gains (3 and 4).

The switch loss indicated in Fig. 4.4 is for the total losses (switching and
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conduction loss) generated from the MOSFET, the diodes loss is the total
losses for (D1 and D2). In the winding loss, only the DC winding loss is
presented since the AC winding loss is very small so it is neglected. It can
be seen from the losses distribution that the losses of the switch are highest
power loss at all different power levels and voltage gains.

It is also seen in Fig. 4.4 that reducing the power level from 300 W to 200
W has a significant influence on the loss reduction of the switch and capacitor
losses, whereas further reducing to 100 W reduces the loss approximately to
half. Furthermore, there are slightly difference in the estimated power losses
between the voltage gain (3 and 4), regardless the power level and with no
doubt the power losses in voltage gain 4 is higher than in the voltage gain 3.

   
 
 
 

Fig. 5.  Simulated power losses distribution for the Y-source converter at 
300 W power loading and voltage gain of 4. 
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Fig. 4.5: Power losses distribution for the Y-source converter at 300 W power loading and using
a voltage gain of 4.

Fig. 4.5 shows detailed analysis for losses distribution of the converter
at 300 W rated power and voltage gain of 4. The results indicate that the
switch losses is 76%, the total conduction losses of the two diodes (D1 and
D2) are 6%, the capacitor losses are 15%, and the heat loss generated from
the winding loss which are 3% of the total loss.

Furthermore, some of the basic waveforms from using simulations of the
Y-source converter at 300 W rated power and voltage gain of 4 is presented
in Fig. 4.6 where the input/out side simulated waveforms are shown ((vin),
(iin), (vout) and (iout)) and compared with the obtained waveforms from the
prototype.

As a part of the validation for the Y-source converter, in Fig. 4.7 the
voltage (vsw) and current (isw) of the (switch) MOSFET, and the current
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Fig. 4.6: Simulation waveforms of the Y-source converter with k = 4 and dst = 0.19 Where, Ch.
1: input current (iin), Ch. 2: output current (iout), Ch. 3: input voltage (vin). , and Ch.4: output
voltage (vout) in voltage gain 4.
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Fig. 4.7: Simulation waveforms of the Y-source converter with k = 4 and dst = 0.19 at its zoom
view Where, Ch. 1: current through winding N3 , Ch. 2: current through diode D2 (iD2 ), Ch. 3:
current through SW (isw), and Ch. 4: Switch voltage (vSW) in voltage gain 4.
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(iD2) through diode D2, and current (iN3) passing through the winding N3 is
shown.

4.3.2 Validation results for the Y-source converter at 300 W
loaded power and voltage gain 4

In this subsection, the prototype of the Y-source is tested under the same
rating conditions as in the simulation model in order to start the validation
steps. The input/output voltage sides, the voltage gain, and the general
efficiency are measured. Further, all the currents and the voltages through
each component in the prototype is measured in order to measure all the
losses.

In Fig. 4.8 different experimental current and voltage waveforms in the
converter are shown where they are as expected under the same conditions
for 300 W rated power and voltage gain 4. The input/output sides are shown
((vin), (iin), (vout) and (iout)), where they are compared and matches the rms
simulated waveforms. It is decided to show the switch loss results, since
they are the highest generated losses in the converter as shown in the sim-
ulation results. Further it is foreseeable from the efficiency measurement of
the prototype as shown in Fig. 4.8.

 

Fig. 4.8: Experimental waveforms of the Y-source converter with k = 4 and dst = 0.19 at its zoom
view where, Ch. 1: input current (iin), Ch. 2: output current (iout), Ch. 3: input voltage (vin). ,
and Ch.4: output voltage (vout).

In order to verify the switch loss modelling, the drain to source voltage
(vds) is measured by a voltage probe and the current passing through the
switch (ids) is measured through the math operation in the oscilloscope. The
total power loss of the switch is then calculated and compared with simulated
one in order to verify the total switch loss as shown in Fig. 4.9.
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Fig. 4.9: Experimental waveforms of the Y-source converter with k = 4 and dst = 0.19 at its zoom
view where, Ch. 1: current through winding N3 , Ch. 2: current through diode D2 (iD2 ), Ch.
M: current through SW (isw) obtained through the math opertaion on the osciliscope, and Ch.4:
drain to source voltage (vDS).

The total efficiency is an important factor in this analysis, since not all the
relevant losses can be measured directly from the prototype. The total effi-
ciency of the converter can be measured in both the simulation model and in
the prototype from and it is calculated to be Fig. 4.8 where the output/input
signals can be easily calculate the efficiency to be (Pout)/(Pin)= 84%, while in
the simulation model it is equal to 86%.

Experimental data of the Switch (isw) & (vds) MATLAB / SIMULINK environment
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power 
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Fig. 4.10: Illustration diagram of the switch loss calculation in the Y-source converter prototype.
a) waveform of the switch current (isw) and switch volatge (vds). b) calculation method.

As stated earlier, the loss calculations in the Y-source converter simulation
model are performed using the PLECS toolbox. Since the power losses of
the switch could not be measured directly, the total switch loss is calculated
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based on the switch voltage and current measurements.
Therefore, in order to validate the loss calculations in the Y-source proto-

type converter, the switch voltage (vds) and current (isw) waveforms obtained
from the prototype are processed in Matlab as shown in Fig. 4.10. In the sim-
ulation model the total switch losses is 36.5 W, and the measured average
power loss from the processed data through Matlab is 38.5 W.

4.4 Simulation results for the boost converter un-
der different power loadings and voltage gains

In this section the simulation model of the boost converter implemented in
the PLECS toolbox is shown in Fig. 4.11. The function blocks shown in this
figure are used in the loss mapping analysis as explained earlier in Chapter
3.

Fig. 4.11: Schematic diagram of boost converter in PLECS.

It consists of a DC source at the input voltage side, a linear magnetic core
with a certain number of turns depending on the calculated inductor value.
The semiconductors devices (IGBT, and diode) are placed with heat sinks in
order to be able to measure the device losses (switching and condition losses)
as well as estimating the junction temperature of the devices. An output ca-
pacitor and a resistive load is placed at the output side in order to be able
to measure the output voltage and the output current through the voltmeter
and ampere meter placed at the output side.

In the the following subsection, some of the obtained waveforms from the
simulation model of the boost converter are presented under two different
voltage gains (2, and 4).
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voltage gains

4.4.1 Basic waveforms of boost converter using voltage gain
2 and 4

In this subsection, it can be seen than the switch current is almost dou-
bled from voltage gain 2 to 4 and the switch voltage level are the same. In
Fig. 4.12 (a) the generated switch voltage and current at voltage gain two is
shown which matches the calculated values of these voltages and currents.
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Fig. 4.12: Generated waveforms for the voltage and current across a) Switch using voltage gain
2 b) Switch using voltage gain 4 of the Boost converter.

In Fig. 4.12 (b) the generated switch voltage and current at voltage gain four
is shown which matches the calculated values of these voltages and currents.

In order to clarify the results shown in Table 4.3, specification parameters
of the Boost converter at 20 kW load power and two different voltage gain
are listed in Table 4.2. In Table 4.3 a pie chart distribution of different losses
is presented at 20 kW rated power and two different voltage gains (2, and 4)
for the boost converter. To summarize the previous analysis for the efficiency
and loss mapping investigation to be easily compared. The total losses are
listed at the bottom right in Table 4.3 which is calculated from the total power
loss of the converter by measuring the total efficiency.
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Parameters 
Value 

Gain 2  Gain 4 
Input voltage Vin 200 V 100 V 
Output voltage Vout 400 V 400 V 
Duty cycle D 0.5 0.75
Output power Po 20 kW 20 kW 
Switching frequency fs 20 kHz 20kHz 
Inductor Lmin 250 µH 93.75 µH 
Ripple inductor current ΔIL 20 A 40 A 
No. of turns N 64 turns 27 turns 
Dc resistance Rdc 0.00624 Ω 0.00347 Ω 
Core type High flux 58337 Metglas AMCC 125 
Heat sink FISHER ELECTRONIK, part no. 

LA 9/100 230V,  0.28 °C/W 
H S MARSTON, part no.  

890SP-03000-A-100, 0.04 °C/W

 Switch  IGBT rating (IXXX200N60C3)  
600 V and 200 A 

(MG06600WB-BN4MM) 
600 V and 600 A 

Diode  D1 rating  (IDW100E60) 
600V and 100 A 

(DB2F200N/P6S) 
600V and 200 A 

TABLE 4.2  Specification parameters for the Boost converter at 20 kW load power and two voltage gain.     

Gain Boost converter 

G
ai

n 
2

Total losses: 1.7 %

G
ai

n 
4

Total losses: 3.9 %

Switching loss
83 W
26%

Conduction 
loss

169 W
53%

Capacitor ESR 
loss 

1.5 W
1%

Core loss 
3.3 W 

1%

DC winding
loss

61 W
19%

AC winding 
loss
1 W
0% Switching loss

Conduction loss
Capacitor ESR loss
Core loss
DC winding loss
AC winding loss

Switching 
loss

340 W
44%

Conduction 
loss

231 W
30%

Capacitor 
ESR loss 

3 W
0%

Core loss 
63 W
8%

DC winding 
loss

135 W
18%

AC winding 
loss
2 W
0%

TABLE 4.3  Distribution of the different losses for the Boost converter at 20 kW load power and two voltage gain 
[78]. 
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4.5. Simulation results for the Z-source converter under different power loadings
and voltage gains

4.5 Simulation results for the Z-source converter
under different power loadings and voltage gains

In this subsection the simulation model of the Z-source converter which is
implemented in the PLECS toolbox is shown in Fig. 4.13.

Fig. 4.13: Schematic diagram of Z-source converter in PLECS.

The function blocks shown in this figure are used for the loss mapping
analysis as explained earlier in Chapter 3. It consists of a DC source at the
input voltage side, two linear magnetic core (L1 and L2) with a certain num-
ber of turns depending on the calculated inductor value and two capacitors
(C1 and C2) connected in an ’X’ shape.

The semiconductors devices (IGBT, diodes D1 and D2) are placed with
heat sinks in order to be able to measure the device losses (switching and
condition losses) and as well as estimating the junction temperature of the
devices. An output capacitor and a resistive load is placed at the output
side in order to be able measure the output voltage and the output current
through the voltmeter and ampere-meter placed at the output side.

In the the following subsection, some of the obtained waveforms from the
simulation model of the Z-source converter are presented under two different
voltage gains (2, and 4).
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Part 4. Investigation of DC/DC Boost Converters

4.5.1 Basic waveforms of Z-source converter using voltage
gain 2 and 4

In this subsection, it can be seen than the switch current is almost doubled
from voltage gain 2 to 4 and the switch voltage level is the same. In Fig. 4.14
(a) the generated switch voltage and current at voltage gain two is shown.
In Fig. 4.14 (b) the generated switch voltage and current at voltage gain four
is shown which matches the calculated values of these voltages and currents
for both voltage gains.
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Fig. 4.14: Generated waveforms for the voltage and current across a) Switch using voltage gain
2 b) Switch using voltage gain 4 of the Z-source converter.

In order to clarify the results shown in Table 4.5, the used parameters
of the Z-source converter at 20 kW load power and two different voltage
gain are listed in Table 4.4. The switching losses remain almost the same for
gain 2 and 4 (unlike the boost converter), due to that two parallel devices
were added in the voltage gain of 4. The core losses are much bigger in
voltage gain 4, due to that the peak flux density B̂ is much higher than in
voltage gain of 2 and also it is using different type of core as shown in Table
4.4. In Table 4.5 a pie chart distribution of different losses is presented at
20 kW rated power and at two different voltage gains (2, and 4) for the Z-
source converter. To summarize the previous analysis for the efficiency and
loss mapping investigation to be easily compared. The total losses listed at
the bottom right in Table 4.5 is calculated from the total power loss of the
converter by measuring the total efficiency.
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4.5. Simulation results for the Z-source converter under different power loadings
and voltage gains

Parameters 
Value 

Gain 2 Gain 4 
Input voltage Vin 200 V 100 V 
Output voltage Vout 400 V 400 V 
Duty cycle D 0.25  0.375 
Output power Po 20 kW 20 kW 
Switching frequency fs 20 kHz 20kHz 
Inductor Lmin 93.75 µH 117.18 µH 

Capacitor C1 & C2 Cmin 208.33 µF 750 µF 
Capacitor Cout Cmin out 78 µF 117 µF 

Ripple inductor current ΔIL 20 A 40 A 
No. of turns N 55 turns 30 turns 

Dc resistance Rdc 0.00536 Ω 0.0027 Ω 

Core type High flux 58337 Metglas AMCC 160 

Heat sink H S MARSTON, part no.  
890SP-03000-A-100, 0.04 °C/W

H S MARSTON, part no.  
890SP-03000-A-100, 0.04 °C/W 

 Switch IGBT rating (MG06400D-BN4MM) 
600 V and 400  A 

 (MG06600WB-BN4MM)
600V and 600 A 

Diode D1 D1 rating (DS1F300N6S ) 
600V and 300 A 

(SD600N/R Series) 
600V and 600 A 

Diode D2 D2  rating (DS1F300N6S ) 
600V and 300 A 

(DS1F300N6S) 
600V and 300 A 

TABLE 4.4 Specification parameters for the Z-source converter at 20 kW load power and two different 
voltage gain.     

Gain Z-source converter 

G
ai

n 
2

G
ai

n 
4

Switching 
loss

335 W
52%

Conduction 
loss

198 W
31%

Capacitor 
ESR loss 

3.1 W
0%

Core loss 
7.4 W

1%

DC winding 
loss

103 W
16%

AC winding 
loss

1.4 W
0% Switching loss

Conduction loss

Capacitor ESR loss

Core loss

DC winding loss

AC winding loss

Switching 
loss

321 W
31%

Conduction 
loss

324 W
32%

Capacitor 
ESR loss 
23.7 W

2%

Core loss 
145 W
14%

DC winding 
loss

204 W
20%

AC winding loss
2 W

0%

TABLE 4.5    Distribution of the different losses for the Z-source converter at 20 kW load power and two 
voltage gain [78]. 

Total losses: 5 %

Total losses: 3.3 %
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Part 4. Investigation of DC/DC Boost Converters

4.6 Simulation results for the Y-source converter
under different power loadings and voltage gains

In this subsection the simulation model of the Y-source converter imple-
mented in PLECS is shown in Fig. 4.15.

Fig. 4.15: Schematic diagram of Y-source converter used in PLECS.

The function blocks shown in this figure are used in the loss mapping
analysis as explained earlier in Chapter 3. It consists of DC source at the input
voltage side, the Y-source impedance network with a three-winding coupled
inductor (N1, N2, and N3). It has an active switch SW, two diodes (D1, and
D2). The semiconductors devices (IGBT, diodes D1 and D2)are placed with
heat sinks in order to be able to measure the device losses (switching and
condition losses) and as well as estimating the junction temperature of the
devices. An output capacitor and a resistive load is placed at the output
side in order to be able measure the output voltage and the output current
through the voltmeter and ampere meter placed at the output side.

In the following subsection, some of the obtained waveforms from the
simulation model of the Y-source converter is presented under two different
voltage gain (2, and 4).

4.6.1 Basic waveforms in Y-source converter using voltage gain
2 and 4

In Fig. 4.16 (a) the generated switch voltage and current at voltage gain two is
shown, it can be seen that the switch current is almost triple from voltage gain
2 to 4 and the switch voltage level is the same. In Fig. 4.16 (b) the generated
switch voltage and current at voltage gain 4 is shown, which matches the
calculated values of these voltages and currents for both voltage gains.
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4.6. Simulation results for the Y-source converter under different power loadings
and voltage gains
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Fig. 4.16: Generated waveforms for the voltage and current across a) Switch using voltage gain
2 b) Switch using voltage gain 4 of the Y-source converter.

In order to clarify the results shown in Table 4.7, the specification param-
eters of the Y-source converter at 20 kW load power and two different voltage
gains are listed in Table 4.6. The core loss becomes higher for voltage gain 4
than voltage gain 2, due to lower turns ratio and different cores are used as
listed in Table 4.6 and also in order to improve the efficiency of voltage gain
4.

Parameters 
Value 

Gain 2  Gain 4 
Input voltage Vin 200 V 100 V 
Output voltage Vout 400 V 400 V 
Duty cycle D 0.167 0.375
Output power Po 20 kW 20 kW 
Switching frequency fs 20 kHz 20kHz 
Inductor Lmin 327.86 µH 31.25 µH 
Capacitor C1 Cmin 63 µF 750 µF 
Capacitor Cout Cmin_out 156.25 µF 234.375 µF 
Ripple inductor current ΔIL 20 A 120 A 
No. of turns N 32:32:64  turns 7:7:14  turns 
Dc resistance Rdc 0.00312, 0.00312 & 0.00624 Ω   0.001, 0.00068, & 0.0015 Ω 
Core type High flux 58337 Metglas AMCC 1000 

Heat sink H S MARSTON, part no.  
890SP-03000-A-100, 0.04 °C/W 

Hi-Contact Liquid Cold Plates,  
0.04 °C/W 

 Switch  IGBT rating (MG06600WB-BN4MM) 
600V and 600 A 

 (MG06600WB-BN4MM) 
600V and 600 A 

Diode D1 D1 rating (VSK.9112  ) 
1200V and  100A 

(SKN 501/12 Semikron) 
1200V and 720 A 

Diode D2 D2  rating (DS1F300N6S ) 
600V and 300 A 

(DS1F300N6S) 
600V and 300 A 

TABLE 4.6 Specification parameters for the Y-source converter at 20 kW load power and two different voltage 
gain.     
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Part 4. Investigation of DC/DC Boost Converters

In Table 4.7 a pie chart is shown to illustrate distribution of different losses
at 20 kW rated power and at two different voltage gains (2, and 4) for the Y-
source converter. The previous analysis for efficiency and loss mapping can
be used for comparison. The total losses listed at the bottom right in Table
4.7 is calculated from the total power loss of the converter by measuring the
total efficiency.

Voltage 
gain 

Y-source converter 

G
ai

n 
2

Total loss: 4.4 % 

G
ai

n 
4

Total loss: 6.3 % 

Switching 
loss

474 W
51%

Conduction 
loss

228 W
24%

Capacitor 
ESR loss 

12 W
1%

Core loss 
18 W
2%

DC winding 
loss

200 W
22%

AC winding 
loss

1.64 W
0%

Switching loss

Conduction loss

Capacitor ESR loss

Core loss

DC winding loss

AC winding loss

Switching 
loss

682 W
42%

Conduction 
loss

218 W
13%

Capacitor 
ESR loss 

42 W
3%

Core loss 
329 W
20%

DC 
winding 

loss
340 W
21%

AC 
winding 

loss
19.5 W

1%

TABLE 4.7    Distribution of the different losses for the Y-source converter at 20 kW load power and two different voltage 
gain [78]. 

4.6.2 Junction temperature investigation of the switch using
voltage gain 2 and 4

In this subsection, the load power is varying from 1 to 20 kW, and a constant
ambient temperature is assumed to be 25 ◦C. The junction temperature vari-
ation of the compared topologies are shown in Fig. 4.17 for voltage gain of 2.
Fig. 4.18 shows the junction temperature variation at different loading power
for voltage gain of 4.
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4.6. Simulation results for the Y-source converter under different power loadings
and voltage gains
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Fig. 4.17: Junction temperature for the switch at different power loading and using voltage gain
of 2.
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Fig. 4.18: Junction temperature for the switch at different power loading and using voltage gain
of 4.

The efficiency is calculated according to the total power losses for each
converter as listed in Chapter 3 by using the same conditions as listed ear-
lier. The results in Fig. 4.19 show that the boost converter has the highest
efficiency of 98 % compared with the Y-source converter of 96 % and the Z-
source converter of 96.7 % at 20 kW loading power. The measured efficiencies
from the low power loading (1 kW) to higher power loading (20 kW) is also
shown in 4.19. The same analysis is repeated for voltage gain of 4 as shown
in 4.20.

In Table 4.8 a comparison of the total efficiencies using voltage gains of 2
and 4 for the compared converters at 20 kW load power.
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Fig. 4.19: The efficiency at different loading power and using a voltage gain of 2.
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Fig. 4.20: The efficiency at different loading power and using a voltage gain of 4.

TABLE 4.8    Comparison of the total efficiencies using gain 2 and gain 4 for the 
compared converters at 20 kW load [78]. 

Efficiency Boost 
converter 

Z-source 
converter 

Y-source 
converter 

Gain 2 98.3 % 96.7% 95.6% 

Gain 4 96.1 % 95% 93.7% 

4.7 Summary

In this study different loading conditions between 1 kW and 20 kW are con-
sidered during the studies of the efficiency and junction temperature of the
converters for two different voltages gain (2 and 4). The results show that
the boost converter has higher efficiency than the Z-source and Y-source con-
verter for these specific voltage gains of 2 and 4.
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4.7. Summary

The junction temperature variation in voltage gain of 4 is higher than the
junction temperature variation in voltage gain of 2. Investigations on both
the magnetic and electrical losses are also given.

The magnetic losses which in the Y-source converter is sharing 34% and
42% of the total losses in voltage gain of 2 and 4 receptivity which is higher
than in the boost and Z-source converters.

In the electrical losses it can be noticed that the total electrical loss for
voltage gain of 4 is lower than for voltage gain of 2 which clarify that having
higher current ratings devices improve the efficiency.

The thermal performances are quite similar in the 3 converters for both
voltage gains. The boost converter has better efficiencies in the two selected
voltage gains, but it has also the highest decrease in the efficiency from gain
2 to gain 4 at 20 kW power loading compared with the Z-source and Y-source
converters.
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Chapter. 5

Applied DC/DC Boost Converters
in Fuel Cell Applications

5.1 Introduction

Fuel cells are a very promising source of energy since they are pollution free,
producing only electricity, water, and heat. It has been a significant force
in the development of technology over the past 30 years, and an increasing
attention is drawn towards the technology today.

Regardless the size, fuel cells are one of the clean energy and efficient
sources. They are also flexible with respect to their physical allocation [80].
In respect to the efficiency, fuel cells are able to operate with the double effi-
ciency of conventional combustion engines [80], [81].

Serenergy’s fuel cell (Serenus 166 / 390 Air C) voltage/current character-
istic (polarization curve) [82] is used in this study has some advantages such
as:

1) Simple, cost-effective, air-cooled fuel cell technology.

2) High fuel flexibility (through use of fuel cell reformer systems).

3) Reliable operation under extreme temperature conditions.

4) High fuel cell system efficiency.

5) Cooling under all environmental conditions.

6) Compact and lightweight fuel cell module design [82].
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Part 5. Applied DC/DC Boost Converters in Fuel Cell Applications

The polarization curve illustrating the Voltage/Current characteristic is
shown in Fig. 5.1

Specifications

R
Majsmarken 1
DK-9500 Hobro
Denmark

tel: +45 8880 7040
e-mail: info@serenergy.com
www.serenergy.com

Mechanical characteristics

Parameter 166 Air C v2.5 390 Air C v2.5

Number of stacks 1 3

Cells/stack 65 89

Height [±2mm] 178 178

Width [±2mm] 159 375

Length [±2mm] 523 700

Weight [kg] ≈7 ≈22

1 Length excluding connectors on front and rear panel

Typical electrical characteristics (Stated for beginning of life (BOL))

Parameter 166 Air C v2.5 390 Air C v2.5

Nominal power 1 [W] 1000 3200

Nominal voltage 1, 2 [VDC] 31.5 140

Nominal current 1, 2 [A] 32 23

Idle voltage [VDC] ≈50
(spikes to 65)

≈200
(spikes to 267)

1 Definition is based on operation at 160°C, with pure H2  and 20°C cooling air.  Other conditions 
   will shift nominal/peak load points
2  ± 5% variation
* Contact us regarding applications requiring short duration peak power

System parasitics

Parameter Power [W]

Blower @ nominal load ≈35W

Heating element/stack 100W (max)

EFCU (embedded FC 
control unit) 2W (max)

Reactant characteristics

Parameter Value/Criteria

Cathode/cooling supply Atmospheric air [°C] 0-40

Anode supply

Pu
re

 H
2

Fuel Industrial grade H2
(99.9%)

Inlet pressure 1 [mBar] 50-75

Min stoichiometry 2 1.15

Max inlet temperature [°C] 175

Re
fo

rm
at

e

Min H2 content 25%, wet basis

CO% 3 <5%

Min stoichiometry 4 1.15

Max inlet temperature [°C] 175

Operation
Operating temperature [°C] 

100-175 (max range)

140-170 (recom range)

1  Dead-end configuration (closed anode exhaust) 
2  Continuous feed configuration (open anode exhaust)
3  Depending on H2 concentration
4  Higher stoichiometry for higher CO concentrations

Serenus 166 Air C v2.5 - Front & Rear panel connections

Serenus 390 Air C v2.5 - Front & Rear panel connections

Note: the thick lines indicate the expected performance range.

Polarization Curve
(Pure H2 operation, 160°C at BOL)
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Fig. 5.1: Fuel cell stack module of Serenus 166 / 390 Air C polarization curve [82].

Some of the disadvantages of the fuel cells are that they have lower perfor-
mance with the ripple current and an output voltage that varies with current
and age. For those reasons, power converters are normally used in order to
step-up (boost) and regulate the voltage. In addition, they also serve as DC
power source [83].

Fuel cells have been applied to DC/DC converters where the reliability
and lifetime are some of the high priority performance factors. The ambient
temperature is set to 25 ◦C based on a study in [84] for the lifetime prediction
of a fuel cell converter comparing two different cases (India and Denmark)
considering the annual ambient temperature mission profiles range from 15
◦C to 35 ◦C as an average value.

A lifetime prediction model is applied for the power semiconductors
which are used in the fuel cell DC/DC converters. The common used Coffin-
Manson lifetime model and Semikron lifetime model for the IGBTs solder
and bond wire fatigues are considered and used to compare in the three de-
signed DC/DC converters where voltage gain 4 is selected using the same
switch rating for the three converters, in order to investigate whether the
boost converter is efficient any more with higher voltage gain than the two
converters as discussed in the previous chapters.

The main component details of the fuel cell hybrid electric vehicle system
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5.1. Introduction

is shown in Fig. 5.2 as stated earlier in Chapter 1. It can be seen that the
detailed system is consisting of the following models; the fuel cell stack,
electric machines, inverters, energy storage devices, and DC/DC converters
[19].
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Fig. 5.2: Representation of the Fuell Cell Hybrid Electric Vehicle diagram [19].

In order to estimate the lifetime of the converters a junction temperature
mission profile is taken into account to estimate the impact on the IGBTs life-
time during the steady state operation. A case study using "Artemis motor-
way driving cycle" is considered and applied to the three compared convert-
ers in order to fix the application in this analysis. Lifetime consumption and
the expected number of years before failure is presented and compared for
the Boost, Z-source and Y-source converters. Therefore, a reliability metric as
lifetime prediction should be studied for the same compared three converters
which are Boost, Z-source and Y-source converters.

In this study the power semiconductors devices are the main component
to assess the lifetime of the converters based on the investgation in [78]. There
are several lifetime models for power semiconductor devices, and they can
be classified into empirical lifetime models used for the characterization of
power cycling capabilities of power modules, e.g., the lifetime models pre-
sented in [85], [86]. It is the most widely used method for the lifetime predic-
tion of IGBT modules. The main disadvantage of empirical lifetime models
is that they are based on statistical analysis of available lifetime data, which
do not directly describe the physical failure mechanisms [87].

Other lifetime prediction models are the analytical ones. Analytical life-
time models estimate the life of an IGBT power module in terms of number of
cycles to failure considering different factors as temperature swing, average
temperature, bond wire current and frequency [87]. The analytical lifetime
modelling is combined the use of Palmgren Miner rule. The problem with
these models is to accurately identify, extract and count the cycles from the
junction temperature profile.
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The most commonly used cycle counting method for accurately extract-
ing thermal cycles within the temperature profile is the Rainflow counting
analysis. It assumes that each identified thermal cycle produces some degree
of damage on the IGBT and thus it contributes to the life consumption of the
device [88].

There are different sources of failures in power semiconductor modules
and two of the most commonly observed are solder fatigue and bond-wire
damage. The power loss variation of the converter will lead to temperature
cycling in the device as discussed previously, and the temperature cycling
may affect the connections of the solder and the bond wires. When the power
cycling and temperature cycling come to a certain number, the solder or the
bond wire will wear out. Although different types of semiconductors and
converters are used, they share the same lifetime prediction procedure [89].

Furthermore, the load conditions are one of the most dependent factors
that affect the lifetime of a power module, since most of the wear out mech-
anisms are related to the cyclic loading of the module. Therefore, it is nec-
essary to consider the mission profile of the application when estimating the
power cycling lifetime of a power module. The power cycling lifetime N f of a
power module is typically given as a function of junction temperature swing
amplitude ∆Tj and mean junction temperature Tm.

This chapter apply lifetime prediction models for three types of a DC/DC
fuel cell converters based on a driving cycle using Artemis Motorway, and
using the generated junction temperature profile of the power module upon
operation in order to assess the lifetime of the converters.

5.2 Fuel cell hybrid electric vehicle (FCHEV) sys-
tem configuration for the reliability analysis

In the fuel cell applications, the power semiconductor devices are exposed
to different stresses as thermal stresses due to the load variation behaviour
and the ambient temperature as well. The mission profile can be the output
power, output current, or the junction temperature profile of the device.

Therefore, a mission profile of 10 repetitions of Artemis Motorway Driv-
ing Cycle [90] is applied on a FCHEV based on Toyota Avensis physical pa-
rameter as shown in Fig. 5.3 and Fig. 5.4 which shows the speed of the
HEV in km/h (driving cycle length = 287.4 km/cycle) presented from the 10
repetitions of Artemis Motorway Driving Cycle.

This driving cycle is the frame work of this investigation. Based on the
obtained results shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6 the junction temper-
ature profiles can be defined in the power converter.
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5.2. Fuel cell hybrid electric vehicle (FCHEV) system configuration for the reliability
analysis

 
Fig. 5.3: Artemis Motorway Driving Cycle mission profile [90].

 
        

 
              

 Fig. 5.4: 10 repetitions of Artemis Motorway Driving Cycle presents the speed of the hybrid
electric vehicle (HEV) [90].
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Fig. 5.5: The state of charge (SOC) of the converter battery.

 

 

 

Fig. 5.6: The fuel cell converter power, the converter battery and the load.
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5.3. Lifetime modelling for fuel cell converters

The operation of a Hybrid Electric Vehicle is presented in Fig. 5.5 which
shows the converter fuel cell power, the battery converter and the load and
Fig. 5.6 which shows the state of charge (SOC) of the battery. The fuel cell
follows the load with low dynamic power production and the battery acts as
a buffer.

5.3 Lifetime modelling for fuel cell converters

In this section, based on the previously mentioned loss evaluation in Chapter
3, the IGBT module is the most stressed component in the converter fuel
cell [78] seen from the junction temperature profile. The process of lifetime
estimation is shown in Fig. 5.7.
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Fig. 5.7: Process to estimate lifetime of the IGBT module in years.

It starts with the vehicle modelling and it is an input of 10 repetition of
Artemis Motor way driving cycle (Driving cycle), output of the fuel cell con-
verter (PFCconv) is the output from the vehicle model, fuel cell converter power
loss profile (PLoss) and thermal modelling of the IGBT module for extracting
the junction temperature profile (Tj). Applying the Rainflow counting algo-
rithm to count the cycles with their minimum and mean junction tempera-
ture, pulse duration and the counted number of cycles to failure ( Tjmin, Ton,
Tjmean, and ∆Tj). The lifetime modelling is the next step in order to get the
cycles to failure and its counted number (N f , and n), and finally calculate the
consumed life (LC), then Miner rule is applied to find total consumed life
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(TCL) and according to the usage per day based on (5.7) the estimation for
the number of years seen before failure is calculated.

As shown in Fig. 5.7 which present the process of the lifetime estimation,
the Rainflow counting (RFC) algorithm is one of the common steps used
to predict the lifetime of the IGBT module. RFC has been one of the most
popular cycle counting techniques used in fatigue analysis. A Rainflow code
is programmed, where it divides the input curve into tsim (simulation time),
Tj (junction temperature readings) and ∆Tj (cycle amplitude). It is decide
that a resolution of ∆Tj = 0.36 ◦C is used in order to consider also the small
amplitudes of the cycle fatigue in the junction temperature profile.

5.3.1 Failure mechanisms during the power cycling

In a power cycling test, components are actively heated up by the losses in
the semiconductor and cooled down again with the aid of cooling equipment.
The exposure to this temperature changes leads to the thermo-mechanical
stress between the material layers of the module. Therefore, some of the
most common failures with the power cycling are the solder fatigue in the
chip soldering and the bond wire fatigue [34]. In the solder fatigue, the
thermo-mechanical stress leads to an increase in the thermal resistance Rth
and the chip temperature, which gives higher losses and therefore a higher
temperature difference ∆T.

In the bond wire fatigue, which mostly appears with the solder fatigue
of the chip, where it is of longer life than the solder fatigue, due to the
parallel positioned of the bond wires inside the chips. Thus, the loss of
a bond wire will not immediately result in a component failure. But the
parallel bond wires should carry additional current, which means that it is
not fully destroyed. Afterwards, the bond feet will be heated even more
and eventually the chip will be destroyed at the instant of bond wire lift
off [91]. Consequently the failure of the component depends on the load and
the cooling conditions.

The number of power cycles N f before failure can be calculated through
specific lifetime models, Coffin-Manson lifetime model which is one of the
common used model in lifetime prediction for the IGBT modules solder fa-
tigue [92] as given in (5.1):

N f = A.∆Tβ1
j .exp

(
β2

Tjm + 273

)
.tβ3

on, (5.1)

where ∆Tj is the junction temperature swing, Tjm is the mean junction tem-
perature, and ton is the cycle on-time duration. The constant parameters A,
β1, β2, and β3 are provided by the manufacture according to the test data
performed [91].
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Another lifetime model, which especially focuses on the bond wire fatigue
[93]. The number of cycles to failure N f would be the best calculated if
the lifetime model considers the same testing conditions as the ones in the
field operation. However, it is almost not feasible in practice due to the
required time for testing. The LESIT curves [91] consider the effect of the
mean temperature and the temperature level when the temperature cycling
takes place. Although many test results indicate that other parameters, such
as pulse duration ton and the current amplitude IB will influence the test
results just as much as packaging parameters such as bond wire thickness,
chip and solder thicknesses.

In [94] an extended model based on the analysis of a large number of tests
is given in (5.2):

N f = A.∆Tβ1
j .exp

(
β2

Tjmin + 273

)
.tβ3

on.Iβ4
B .Vβ5

C .Dβ6 , (5.2)

where ∆Tj is the junction temperature swing, Tjmin is the minimum junction
temperature, ton is the pulse duration and it is assumed to be half the cy-
cle duration for simplicity, IB is the current per bond foot, VC is the voltage
class/100, and D is the bond wire diameter in µm. The constant parame-
ters A, β1, β2, β3,β4, β5, and β6 are given in [91] according to the test data
performed and they are listed in the Table 5.1.

A β1 β 2 β 3 β 4 β 5 β 6

2.03E+14  -4.416 1285 -0.463  -0.716  -0.761 -0.5

TABLE 5.1    Parameters and cofficient used in Coffin-Manson and Semikron lifetime model  [89].

Further, the consumed life CL according to Miner’s rule [95] linear fatigue
model, the failure occurs when the sum of cycles stress at different magni-
tudes of n with respect to their corresponding number of cycles to failure N f
reaches one (i.e. LC = 1). Thus the consumed lifetime per cycle amplitude i
is given in (5.3) as:

CL(i) =
n(i)

N f (i)
, (5.3)

where n(i) is the number of cycles of amplitude i, and N f (i) is the correspond-
ing cycle to failure of amplitude i.

The total consumed lifetime TCL is calculted based on the Miner’s rule
[95] assuming the linear damage accumulation given in (5.4):

TCL =
I

∑
i

CL(i), (5.4)
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which means the summation of the consumed lifetime as listed in (5.3).
The number of cycles to failure has been calculated based on (5.1) and

(5.2) considering the load variations with respect to the mission profile. The
junction temperature response is extracted from the mission profile for each
load variation. It is worth to mention that both lifetime consumption models
are considering the crack in the solder fatigue and the end-of life of the bond
wires [91], [92].

5.4 Lifetime estimation based on junction temper-
ature mission profile

5.4.1 Temperature modelling and estimation of the junction
temperature of the fuel cell converters

Simple thermal equations are typically used to calculate the junction tem-
perature in steady state as given in (5.6). PLECS simulation tool is used in
estimating the junction temperature Tj depending on the thermal description
of the devices as given in the data sheet known as the thermal resistance Rth.

Calculating the Rth−ja (◦C/W) of the device as earlier discussed in Chap-
ter 3 and assuming an ambient temperature of 25 ◦C allows to estimate the
rise of the junction temperature inside the devices as in :

∆TDevice = Ploss × Rth−ja, (5.5)

where ∆TDevice is the rise in the device temperature, Ploss is the total power
loss generated from the device, and Rth−ja is the junction to ambient thermal
impedance.

Tj = ∆TDevice + Ta, (5.6)

where Tj is the device junction temperature, and Ta is the ambient tem-
perature.

Based on the previous calculations, the mission profiles of the junction
temperature of the converters fuel cell are obtained with respect to the driv-
ing cycle of the HEV. These profiles are presented in the next subsection with
a comparison of the results for the lifetime estimation.

5.4.2 Comparison for the three fuel cell converters lifetime
estimation results

Based on the previous analysis discussed in sections (5.2) and (5.3), the three
DC/DC boost converters are applied for the same fuel cell hybrid electric
vehicle application, and the same technique for the cycle counting (RFC al-
gorithm) are used and compared with respect to the following:
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1) Coffin-Manson lifetime model for solder fatigue

2) Semikron lifetime model for bond wire fatigue.

Assuming a constant ambient temperature of 25 ◦C, and the mission
profiles are repeated once per day MPday (10 repetition of driving cycle of
Artemis Motorway Drive mission profile). The number of years can be calcu-
lated in (5.7):

No. of years =
1(

TCL×MPday × DY
) (5.7)

where TCL is the total consumed life per IGBT module, MPday is the no. of
repeated mission profiles per day, and DY is the no. of days per year (i.e DY
= 365 days).

As shown in Fig. 5.8, Fig. 5.9, and Fig. 5.10 the achieved junction tem-
perature mission profiles for each converter is presented. In each figure that
the blue curve is the generated junction temperature via the IGBT module
from the converter simulation model, the black dashed line is the input to
the RFC- program with a resolution of 0.36 ◦C, and the red diamond shaped
is the minimum temperature representation per cycle.

 
Fig. 5.8: Rainflow counting of the junction temperature profile of the IGBT module in the Boost
converter.
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.  
Fig. 5.9: Rainflow counting of the junction temperature profile of the IGBT module in the Z-
source converter.

 

Fig. 5.10: Rainflow counting of the junction temperature profile of the IGBT module in the
Y-source converter.
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For more detailed analysis of the achieved junction temperature profile of
the converters RFC results, Fig. 5.11, Fig. 5.12, and Fig. 5.13 are presented.

 
Fig. 5.11: Rainflow counting of the junction temperature profile of the IGBT module in the Boost
converter zoomed in.

In Fig. 5.11, RFC of the junction profile of the IGBT module in the Boost
converter is zoomed in, in order to be easy to track the counting algorithm of
the path of the rain drops down the roof which can be seen for example with
the pink path in Fig. 5.12 and more zoomed in is shown in Fig. 5.13.

Moreover, in Fig. 5.14 and Fig. 5.15 the reason for the selection of a res-
olution of 0.36 ◦C is shown. In Fig. 5.14, it can be seen from the black line
which represent input of the RFC- program with a resolution of 0.36 ◦C is
able to count most of the small cycle amplitudes.

In Fig. 5.15, the same mission profile is achieved but with a resolution of
2.5 ◦C where it can be obviously seen from the black line is that not all the
cycle amplitude is taken in consideration.

Further, the obtained results from the RFC- program is then analysed for
the three converters. The results of the boost converter is shown in Fig. 5.16,
Fig. 5.17, and Fig. 5.18 respectively.
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 Fig. 5.12: Rainflow counting of the junction temperature profile of the IGBT module in the Boost
converter cycle path zoomed in. 

 

 Fig. 5.13: Rainflow counting of the junction temperature profile of the IGBT module in the Boost
converter more zoomed in.
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 Fig. 5.14: The junction temperature profile of the IGBT module applied to the RFC-program with
resolution of 0.36 ◦C. 

 

 
Fig. 5.15: The junction temperature profile of the IGBT module applied to the RFC-program with
resolution of 2.5 ◦C.
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In Fig. 5.16, the junction temperature cycle amplitude (cycle depth) based
on the resolution of 0.36 ◦C with respect to the number of full cycles is shown.

It can be seen that there are three different levels of the junction tempera-
ture cycle amplitude, where the most of the high full cycle counts are found
in the range between (0 and 10 ◦C). A medium amplitude is seen in another
range with a cycle amplitude higher than of (10 to 70 ◦C). The last lowest full
cycle counts is shown in the range for higher than 70 ◦C.

 
(a) 

 
(b)

Fig. 5.16: Boost converter junction temperature cycle amplitude with respect to full cycle counts.

In Fig. 5.17, four different plots for the junction temperature cycle ampli-
tude ∆Tj, the minimum value of the junction temperature Tjmin, the half cycle
pulse duration Ton, and the total consumed life TCL all versus the number of
half cycles which counts 490 cycles.

In Fig. 5.18, the histogram of the 3D plotting of the three main criterias in
this analysis, the number of half cycles, the junction temperature cycle am-
plitude ∆Tj, and the minimum value of the junction temperature Tjmin which
obtained based on the RFC- program highest range is from (50 to 110 ◦C).
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(a) 

 
(b)Fig. 5.17: Boost converter where ∆Tj, Tjmin, Ton and TCL with respect to half cycle counts

 
(c)

 

 

 

 

Fig. 5.18: Boost converter half cycle count with respect to Tjmin and ∆Tj.
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The same analysis is applied to both Z-source and Y-source converters, in
Fig. 5.19, Fig. 5.20, Fig. 5.21, Fig. 5.22, Fig. 5.23, and Fig. 5.24 respectively.

 
(a) 

 
(b)

Fig. 5.19: Z-source converter junction temperature cycle amplitude with respect to full cycle
counts.  

(a) 

 
(b)

Fig. 5.20: Z-source converter where ∆Tj, Tjmin, Ton and TCL with respect to half cycle counts
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(c)

  Fig. 5.21: Z-source converter half cycle count with respect to Tjmin and ∆Tj.

 
(a) 

 
(b)

Fig. 5.22: Y-source converter junction temperature cycle amplitude with respect to full cycle
counts.
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(a) 

 
(b)

Fig. 5.23: Y-source converter where ∆Tj, Tjmin, Ton and TCL with respect to half cycle counts.

 
(c)

  Fig. 5.24: Y-source converter half cycle count with respect to Tjmin and ∆Tj.

It can be seen from Fig. 5.20 and Fig. 5.23 that they can be distinguished
in the same 3 intervals (high, medium, and low) but with different full cycle
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count. The number of half cycles count is 406 cycles in the Z-source converter
and 730 cycles in the Y-source converter. In Table 5.2 a summary for the
lifetime estimation in years and the total consumed life of each mission profile
of the three DC/DC boost converters based on the lifetime models using
Coffin-Manson and Semikron models for the solder and bond wire fatigues,
respectively.

Boost Z-source Y-source 

Coffin-Manson 
Model 

(Solder fatigue)

Life consumption  
LC_MP 

78.5e-6 32.147e-06 61.454e-6 

Expected lifetime in 
years 

35 years 85 years 44 years 

Semikron 
Model 

(Bond wire fatigue) 

Life consumption  
LC_MP 

174.84e-6 67.431e-06 129e-6 

Expected lifetime in 
years 

16 years 40 years 21 years 

TABLE 5.2   Lifetime estimation for the three power converters used in fuel cell based electric 
vehice. 

It can be seen that the estimated number of years is higher than the aver-
age lifetime of the fuel cell converter, which typically is five to ten years [96].
Due to the fact that the analysis for estimating the lifetime of the converters
is only assessing one component, which is the IGBT module, an increased
number of years than the average lifetime of the fuel cell converters can be
expected since not all the system configuration is assessed. The results show
that the Z-source converter has the longest lifetime estimated than the other
two converters, due to its lowest maximum junction temperature profile and
the lowest cycle to failure counts, which reflects that the total consumed life is
the lowest compared to Boost and Y-source converters. The obtained results
indicates also that the total driving distance for the HEV is 105,000 km/year,
based on that the speed of the vehicle is achieved from 10 repetitions of
Artemis Motorway Drive mission profiles where the mission profile MPday is
repeated only once per day.

5.5 Summary

In this chapter two different methods to predict the lifetime of power semi-
conductors for DC/DC fuel cell converters are presented. An Artemis Mo-
torway Drive mission profile is taken into consideration as a frame base of
the analysis.
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Three DC/DC fuel cell converters (Boost, Z-source and Y-source convert-
ers) are designed for 20 kW rated power at gain 4. The IGBT modules are
the only assessed component in this investigation, and thus the lifetime of the
converters are predicted. Solder and bond wire fatigues are analysed through
two lifetime models (Coffin-Manson and Semikron). A rainflow counting al-
gorithm is performed in order to count the cycles to failure for both lifetime
models. Junction temperature profiles are the main criteria upon which the
lifetime of the converters are decided. The same condition is applied for the
three compared converters but separately designed according each converter
requirements.

The results shows that Z-source converter basically has a longer lifetime
in both lifetime models than the other two converters (Boost and Y-source
converters) for the same fuel cell application due to its lowest maximum
junction temperature profile and cycle count. It can also be concluded from
this analysis that the bond wire fatigue is more critical than the solder fatigue
seen from the lifetime estimation.
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Chapter. 6

Conclusions

This chapter summarizes the work and concludes the main contributions
presented in the thesis based on the obtained results. Finally, future work is
added in the last section.

6.1 Summary

The scope of this thesis is presented in Chapter 1, which is divided into sev-
eral sections which includes the background of the reliability engineering of
power electronics, its state of the art, sources of failure in power electronics,
components failure and also different life time prediction methods. More-
over, a general description of the system configuration of the fuel cell hybrid
electric vehicle (FCHEV) using the Artemis Motorway driving cycle which is
used for the analysis in Chapter 5. Then, the thesis structure is presented in
order to give a better understanding about the flow of this research work.

Three existing types of boost converters are the frame work of the in-
vestigation through this Ph.D. project, which are the Conventional Boost,
Z-source and Y-source converters. These types of boost converters are essen-
tially needed in many applications. The basic design, operational principle,
mathematical derivations and parameters selection are presented. Advan-
tages for each topology is given, taken into consideration a study and a com-
parison with their thermal performances of the semiconductors device which
indirectly will affect their reliability assessment and efficiency. This investi-
gation is aiming to improve the reliability of the applied FCHEV application
from the expected lifetime point of view.

Chapter 3 focuses on the power losses evaluation of the boost type power
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converter. The electrical losses (switching and conduction losses), and mag-
netic losses (inductors) and the capacitor losses are modelled. Thermal mod-
elling is based on the design of the heat sink, temperature modelling of the
semiconductor devices and the junction temperature estimations. Each con-
verter is designed separately based on the required ratings and specifications
having the same variation of the power loading and voltage gains.

On the basis of the studied DC/DC boost converters, loss distribution,
and thermal evaluation of the semiconductors obtained from Chapter 2 and
Chapter 3, Chapter 4 further gives a fair and realistic comparison between
three different topologies, where PLECS is used for the three converter anal-
ysis. Simulation results of the three compared topologies at different voltage
gains and power levels is presented. The validation of the Y-source converter
is performed by a 300 W rated prototype converter since it is the most recent
topology compared to the other two converters. The analysis in this chapter
concludes that boost converter has higher efficiency than the Z-source and
Y-source converter for specific voltage gains of 2 and 4. A maximum junction
temperature of 125 ◦C has been used as a design constraint for the heat sink.
The estimation of the junction temperature of the switches are based on the
thermal model and the mapped losses using PLECS. The load power is vary-
ing from 1 to 20 kW, and a constant ambient temperature is assumed to be
25 ◦C. The efficiency is calculated according to the total power losses for each
converter as discussed in the Chapter 3. Finally a comparison of the total
efficiencies using the voltage gains of 2 and 4 for the compared converters at
20 kW load power is given.

Chapter 5 addresses the evaluation of the fuel cell DC/DC converters
(Boost, Z-source and Y-source converters), which are designed for 20 kW
rated power and their reliability are assessed based on the lifetime prediction
of each converter. The FCHEV system configuration is presented to do the
reliability analysis based on Artemis Motorway driving cycle generated from
Toyota Avensis hybrid vehicle parameters. The IGBT modules are the only
assessed components in this investigation, and based on that the lifetime of
the converters is predicted. Two different methods are used to predict the
lifetime of the power semiconductors, describing the solder and bond wire
fatigues by using two lifetime models (Coffin-Manson and Semikron). The
concepts of the consumed lifetime per year and total consumed lifetime are
introduced. The rainflow counting algorithm is performed in order to count
the cycles to failure for both lifetime models. The junction temperature pro-
files are the main criteria upon which the lifetime of the converters are de-
cided. The same condition is applied for the three compared converters, but
they are separately designed according to each converter requirements. The
chapter conclude that the Z-source converter basically has a longer estimated
lifetime than the other two converters (Boost and Y-source converters) for the
same fuel cell application due to its lowest maximum junction temperature
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profile and lower cycle count. It can also be concluded from this analysis that
the bond wire fatigue is more critical than the solder fatigue.

6.2 Main contributions

In this thesis, following contributions from the author’s point of view can be
highlighted:

• Review of the existing reliability assessment methods for power elec-
tronics in electro-mobile applications, like sources of failure, compo-
nents failures as well as different lifetime prediction methods.

Based on that review, it’s decided to start the analysis of the thermal
behaviour of the fuel cell hybrid electric vehicles for DC/DC boost con-
verters assessing their reliability from a thermal perspective point of
view and determining the estimated lifetime of the converter.

• Design some of the existing DC/DC boost converters (Boost, Z-source
and Y-source) upon understanding the basic theory of operation and
their circuitry, while having common specification parameters using
PLECS to verify the losses modelling of these converters in a simula-
tion model.

• Modelling of all the relevant power losses and do thermal design of the
three boost converters, where analytical equations are used and veri-
fied by simulation models using PLECS. Temperature modelling is also
included in order to estimate the junction temperature profiles for the
assessed components (IGBT module) at different power loading and
different voltage gains.

• Validation of the Y-source converter at 300 W rated power.

• Generating the junction temperature profiles for the IGBT modules of
the fuel cell converters at different power levels in order to analyze the
effect of the thermal stress and the calculated device lifetime.

• The lifetime investigation (with respect to bond wire and soldering fa-
tigue) and a comparison of the three converters in a fuel cell Hybrid
Electric Vehicle application are given. Moreover, it is worth to state that
the lifetime of each converter is predicted based on assessing only the
IGBT module.
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6.3 Future work

Although many criteria has been investigated in this project, there are still
possible studies that could be done. Some of these possible studies for future
investigation are listed:

• Applying other methods for reliability assessments instead of the life-
time prediction from thermal point of view, but also considering other
stressors as (e.g. humidity, vibration, etc.)

• Experimental validations for the thermal cycling, measurement of the
junction temperature in order to validate the thermal model in the
power device (IGBT) module.

• Lifetime estimation of not only the power semiconductor devices but
also for other components in the converter, as the passive components
(e.g. capacitors).

• Validation of the all the relevant power losses considering not only the
steady state operation but also the transient state.

• More study on the influence of the design constraints on the lifetime,
(e.g. same semiconductor devices, heat-sink, efficiency, etc.)

• Influence of the fuel cell/battery energy management strategy and driv-
ing cycle input on the lifetime.

• Do system level reliability analysis and study statistical variation.

88



References

References

[1] B. Gadalla, E. Schaltz, and F. Blaabjerg, “A survey on the reliability of power
electronics in electro-mobility applications,” in Intl Conference on Optimization of
Electrical Electronic Equipment (OPTIM), Sept 2015, pp. 304–310.

[2] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Analysis of loss distribu-
tion of conventional boost, z-source and y-source converters for wide power and
voltage range,” Trans. on Enviroment and Eectrical Enigneering, vol. 2, no. 1, pp.
1–9, Jan. 2017.

[3] S. Abdel-Rahman and F. Stuckleri and K. Siu, PFC boost converter design guide,
Infineon Technologies AG, Munich, Germany, 2016.

[4] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Thermal performance and
efficiency investigation of conventional boost, z-source and y-source converters,”
in Proc. of 16 IEEE International Conference on Environment and Electrical Engineering
(EEEIC16), Jun. 2016, pp. 1297– 1302.

[5] J. R. Espinoza and G. Joos, “A current-source-inverter-fed induction motor drive
system with reduced losses,” IEEE Transactions on Industry Applications, vol. 34,
no. 4, pp. 796–805, Jul 1998.

[6] J.-K. Seok and S.-K. Sul, “Induction motor parameter tuning for high-
performance drives,” IEEE Transactions on Industry Applications, vol. 37, no. 1,
pp. 35–41, Jan 2001.

[7] M. A. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimen-
tal analyses of photovoltaic systems with voltage and current-based maximum
power point tracking,” IEEE Power Engineering Review, vol. 22, no. 8, pp. 62–62,
Aug 2002.

[8] R. Saeks, C. Cox, J. Neidhoefer, P. R. Mays, and J. Murray, “Adaptive control of
a hybrid electric vehicle,” IEEE Transactions on Intelligent Transportation Systems,
vol. 3, no. 4, pp. 213–234, Dec 2002.

[9] S. S. Ramamurthy and J. C. Balda, “Sizing a switched reluctance motor for elec-
tric vehicles,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1256–
1264, Sep 2001.

[10] B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, syn-
chronous buck-boost converter for portable applications,” IEEE Transactions on
Power Electronics, vol. 19, no. 2, pp. 443–452, March 2004.

[11] F. Z. Peng, “Z-source inverter,” IEEE Transactions on Industry Applications, vol. 39,
no. 2, pp. 504–510, Mar 2003.

[12] S. Sarode and S. Kadwane, “Dynamic modelling and controller design for z-
source dc-dc converter,” International Journal of Scientific Engineering and Technol-
ogy, vol. 2, no. 4, pp. 272–277, Apr 2013.

[13] Y. P. Siwakoti, P. C. Loh, F. Blaabjerg, and G. Town, “Y-source impedance net-
work,” in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC
2014, March 2014, pp. 3362–3366.

[14] O. Inderwildi and D. King, Energy, Transport, & the Environment: Addressing the
Sustainable Mobility Paradigm, ser. SpringerLink : Bücher. Springer London,
2012. [Online]. Available: https://books.google.dk/books?id=Vqn3lP7DcvEC

89

https://books.google.dk/books?id=Vqn3lP7DcvEC


References

[15] U. of Concerned Scientists science for a healty planet and safer world.
Electric vehicles. [Online]. Available: http://www.ucsusa.org/clean-vehicles/
electric-vehicles

[16] A. CDX, South African Automotive Light Vehicle Level 3:. Jones & Bartlett Learning,
2013. [Online]. Available: https://books.google.dk/books?id=Zc14AAAAQBAJ

[17] U. of Concerned Scientists science for a healty planet and safer world.
Electric vehicles. [Online]. Available: http://www.ucsusa.org/clean-vehicles/
electric-vehicles/how-do-hydrogen-fuel-cells-work#.WU5O_OuGNEY

[18] M. Ehsani, Y. Gao, S. E. Gay, and A. Emadi, Modern Electric, Hybrid Electric, and
Fuel Cell Vehicles - Fundamentals, Theory, and Design. CRC Press LLC, first edition,
2005., 2005.

[19] E. Schaltz, Electrical Vehicle Design and Modeling. INTECH, 2011.
[20] M. Thoben, K. Mainka, R. Bayerer, I. Graf, and M. Mnzer, “From vehicle drive

cycle to reliability testing of power modules for hybrid vehicle inverter,” in Proc.
of Power Electronics and Applications, EPE, Sep. 2008, pp. 1–6.

[21] H. Berg, Batteries for Electric Vehicles. Cambridge University Press, 2015.
[Online]. Available: https://books.google.dk/books?id=JUlLCgAAQBAJ

[22] R. Busby, Hydrogen and Fuel Cells: A Comprehensive Guide. PennWell Corporation,
2005. [Online]. Available: https://books.google.dk/books?id=3DjI7P0HBNwC

[23] L. Rudnick, Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and
Technology, Second Edition, ser. Chemical Industries. CRC Press, 2013. [Online].
Available: https://books.google.dk/books?id=9YXRBQAAQBAJ

[24] M. Anderson. Filling up a fuel-cell car with hydrogen gets one step
closer. [Online]. Available: http://spectrum.ieee.org/energywise/green-tech/
fuel-cells/filling-up-a-fuel-cell-car-with-hydrogen

[25] S. Dougherty and N. Nigro.
[26] A. Aal and T. Polte, “On component reliability and system reliability for auto-

motive applications,” in Proc. of IRW, Oct. 2012, pp. 168–170.
[27] U. S. D. of Energy. Hydrogen benefits & considerations. [Online]. Avail-

able: https://www.cwcleancities.org/alternative-fuels/other-fuels/hydrogen/
benefits-and-considerations

[28] ——. Hydrogen benefits considerations. [Online]. Available: https://www.c2es.
org/technology/factsheet/HydrogenFuelCellVehicles

[29] The Engineer. Morgan-Grampian (Publishers), 1964, no. v. 217. [Online].
Available: https://books.google.dk/books?id=UjdEAQAAIAAJ

[30] M. Valkiaianen, R. S. Wilckens, M. Smolander, W. Lehnert, M. Stelter, L. Peter,
B. Rietveld, H. Frei, and P. D. Miranda, Innovations in Fuel Cell Technologies, ser.
Energy and Environment Series. Royal Society of Chemistry, 2010. [Online].
Available: https://books.google.dk/books?id=iHIoDwAAQBAJ

[31] H. Wang, M. Liserre, and F. Blaabjerg, “Toward reliable power electronics: Chal-
lenges, design tools, and opportunities,” IEEE Industrial Electronics Magazine,
vol. 7, no. 2, pp. 17–26, June 2013.

[32] M. A. Masrur, “Penalty for fuel economy system level perspectives on the relia-
bility of hybrid electric vehicles during normal and graceful degradation opera-
tion,” IEEE Systems Journal, vol. 2, no. 4, pp. 476–483, Dec 2008.

90

http://www.ucsusa.org/clean-vehicles/electric-vehicles
http://www.ucsusa.org/clean-vehicles/electric-vehicles
https://books.google.dk/books?id=Zc14AAAAQBAJ
http://www.ucsusa.org/clean-vehicles/electric-vehicles/how-do-hydrogen-fuel-cells-work#.WU5O_OuGNEY
http://www.ucsusa.org/clean-vehicles/electric-vehicles/how-do-hydrogen-fuel-cells-work#.WU5O_OuGNEY
https://books.google.dk/books?id=JUlLCgAAQBAJ
https://books.google.dk/books?id=3DjI7P0HBNwC
https://books.google.dk/books?id=9YXRBQAAQBAJ
http://spectrum.ieee.org/energywise/green-tech/fuel-cells/filling-up-a-fuel-cell-car-with-hydrogen
http://spectrum.ieee.org/energywise/green-tech/fuel-cells/filling-up-a-fuel-cell-car-with-hydrogen
https://www.cwcleancities.org/alternative-fuels/other-fuels/hydrogen/benefits-and-considerations
https://www.cwcleancities.org/alternative-fuels/other-fuels/hydrogen/benefits-and-considerations
https://www.c2es.org/technology/factsheet/HydrogenFuelCellVehicles
https://www.c2es.org/technology/factsheet/HydrogenFuelCellVehicles
https://books.google.dk/books?id=UjdEAQAAIAAJ
https://books.google.dk/books?id=iHIoDwAAQBAJ


References

[33] A. SIMPSON, “Cost-benefit analysis of plug-in hybrid electric vehicle technol-
ogy,” in 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium
and Exhibition (EVS-22), Nov. 2006, pp. 1–12.

[34] H. Chung, H. Wang, F. Blaabjerg, and M. Pecht, Reliability of Power Electronics
Converter Systems. The Institution of Engineering and Technology (IET), Dec
2015.

[35] E. Cooling. Temperature and reliability in electronics systems – the
missing link. [Online]. Available: https://www.electronics-cooling.com/2001/
11/temperature-and-reliability-in-electronics-systems-the-missing-link

[36] A. Schwartz, M. Kumar, B. Adams, and D. E. Field, Electron Backscatter Diffraction
in Materials Science. Kluwer Acad. Plenum Publ, 2009.

[37] C. Whaling, Hybrid Vehicle Power Inverters Cost Analysis, Technology and Market
Intelligence, ,” Prepared for the Department of Energy by Synthesis Partners, Jul
2011.

[38] H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvis-
gaard, and J. Landkildehus, “Transitioning to physics-of-failure as a reliability
driver in power electronics,” IEEE Journal of Emerging and Selected Topics in Power
Electronics, vol. 2, no. 1, pp. 97–114, March 2014.

[39] J. S. Karppinen, J. Li, and M. Paulasto-Krockel, “The effects of concurrent power
and vibration loads on the reliability of board-level interconnections in power
electronic assemblies,” IEEE Transactions on Device and Materials Reliability, vol. 13,
no. 1, pp. 167–176, March 2013.

[40] A. Steller, U. Pape, and R. Dudek, “Solder joint reliability in automotive applica-
tions: describing damage mechanisms through the use of ebsd,” in 3rd Electronics
System Integration Technology Conference ESTC, Sept 2010, pp. 1–4.

[41] J. C. Suhling, H. S. Gale, R. W. Johnson, M. N. Islam, T. Shete, P. Lall, M. J.
Bozack, J. L. Evans, P. Seto, T. Gupta, and J. R. Thompson, “Thermal cycling reli-
ability of lead free solders for automotive applications,” in The Ninth Intersociety
Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE
Cat. No.04CH37543), vol. 2, June 2004, pp. 350–357.

[42] M. Thoben and R. Bayerer, “Reliability of substrate solder joints from power
cycling tests,” in Proc. of Power Electronics and Applications, EPE, Sep. 2009, pp.
1–4.

[43] S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran, and P. Tavner, “Condition moni-
toring for device reliability in power electronic converters: A review,” IEEE Trans-
actions on Power Electronics, vol. 25, no. 11, pp. 2734–2752, Nov 2010.

[44] Infineon. Electromobility: Moving (in) the future. [Online].
Available: http://www.infineon.com/cms/en/about-infineon/company/
our-contribution/emobility/

[45] G. Terzulli, Evolution of power capacitors for Electric Vehicles, report from a KY-
OCERA group company, St Apollinaire, France, Feb. 2011.

[46] Y. Hua, M. Lin, and C. Basaran, “Failure modes and fem analysis of power elec-
tronic packaging,” in in Electronics Materials and Packaging, Electronics Materials
and Packaging, vol. 38, Dec. 2001, pp. 43–49.

91

https://www.electronics-cooling.com/2001/11/temperature-and-reliability-in-electronics-systems-the-missing-link
https://www.electronics-cooling.com/2001/11/temperature-and-reliability-in-electronics-systems-the-missing-link
http://www.infineon.com/cms/en/about-infineon/company/our-contribution/emobility/
http://www.infineon.com/cms/en/about-infineon/company/our-contribution/emobility/


References

[47] J. H. Lau, J. Lau, and N. Hoo, “Reliability testing and data analysis of high den-
sity packages lead-free solder joints,” in in Soldering and Surface Mount Technology,
vol. 16, no. 2, 2004, pp. 46–68.

[48] J. Suhling, H. Gale, and R. Johnson, “Thermal cycling reliability of lead free
solders for automotive applications,” in Proc. of ITHERM, vol. 2, Jun. 2004, pp.
350–357.

[49] C. Buttay, O. Brevet, B. Allard, and D. Bergogne, “Paralleling of low-voltage
mosfets operating in avalanche conditions,” in Proc. of European Conference on
Power Electron. and App., 2005, pp. 1–9.

[50] A. Dehbi, B. Rudnyi, and U. Killa, “Efficient electrothermal simulation of power
electronics for hybrid electric vehicle,” in Proc. of EuroSimE, Apr. 2008, pp. 1–7.

[51] U. Scheuermann, “Reliability challenges of automotive power electronics,” in in
Microelectronics Reliability, vol. 2, no. 9, Nov. 2009, pp. 1319–1325.

[52] C. Yin, H. Lu, M. Musallam, C. Bailey, and C. Johnson, “In-service reliability
assessment of solder interconnect in power electronics modules,” in Proc. of PHM,
Jan. 2010, pp. 1–5.

[53] T. Mattila and M. Krckel, “Toward comprehensive reliability assessment of elec-
tronics by a combined loading approach,” in in Microelectronics Reliability, vol. 51,
no. 6, Jun. 2011, pp. 1077–1091.

[54] H. Wen, W. Xiao, and P. Armstrong, “Analysis and evaluation of dc-link capac-
itors for high-power-density electric vehicle drive systems,” in IEEE Trans. Veh.
Technol., vol. 61, no. 7, Sep. 2012, pp. 2950–2964.

[55] P. Matkowski and I. Brabandt, “Modal analysis of board vibration during me-
chanical reliability tests of lead-free solder joints,” in Proc. of ESTC, Sep. 2012,
pp. 1–6.

[56] A. Chaudhary and S. Singh, “Reliability tests and thermal modelling for inverter
in hybrid electrical vehicles,” in on International Journal of Scientific Technology
Research, vol. 1, no. 4, May 2012, pp. 35–39.

[57] A. Alghassi, S. Perinpanayagam, and I. Jennions, “Prognostic capability evalu-
ation of power electronic modules in transportation electrification and vehicle
systems,” in Proc. Of EPE, Sep. 2013, pp. 1–9.

[58] H. Wang and F. Blaabjerg, “Reliability of capacitors for dc-link applications in
power electronic converters an overview,” in IEEE Trans. Ind. App., vol. 5, no. 50,
Sep. 2013, pp. 3569–3578.

[59] A. Otto, E. Kaulfersch, and K. Brinkfeldt, “Reliability of new sic bjt power mod-
ules for fully electric vehicles,” in Advanced Microsystems for Automotive Applica-
tions, 2014, pp. 235–344.

[60] B. Ji, X. Song, W. Cao, V. Pickert, Y. Hu, J. Mackersie, and G. Pierce, “In situ
diagnostic and prognostics of solder fatigue in igbt modules for electric vehicle
drives,” in IEEE Trans. Power Electron., vol. 30, no. 3, Mar. 2015, pp. 1535–1543.

[61] H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. Jacobsen, T. Kvisgaard,
and J. Landkildehus, “Transitioning tophysics-of-failure as a reliability driver
in power electronics,” in IEEE Journal of Emerging and Selected Topics in Power
Electronics, vol. 2, no. 1, Mar. 2014, pp. 97–114.

92



References

[62] J. Watson and G. Castro, “High-temperature electronics pose design and relia-
bility challenges,” in in Analog Dialogue Community of Engineer Zone, vol. 48, Apr.
2012.

[63] M. Smail, L. Pichon, M. Olivas, F. Auzanneau, and M. Lambert, “Recent progress
in emc and reliability for automotive applications,” in Proc. of ISTET, Jun. 2009,
pp. 1–5.

[64] C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, and
T. Abeyasekera, “An overview of the reliability prediction related aspects of high
power igbts in wind power applications,” in in Microelectron. Rel., vol. 51, 2011,
pp. 1903–1907.

[65] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Loss distribution and ther-
mal behaviour of the y-source converter for a wide power and voltage range,” in
Proceedings of 2017 IEEE 3rd International Future Energy Electronics Conference and
ECCE Asia (IFEEC 2017 - ECCE Asia), June 2017, pp. 1–6.

[66] P. Kumar and S. Sonar, “A three-phase ac-ac buck-boost converter using
impedance network,” International Journal of Innovations Advancement in Computer
Science (IJIACS), vol. 4, pp. 17–26, March 2015.

[67] B. Hauke, Basic Calculation of a Boost Converter’s Power Stage, Texas
Instruments Incorporated, Dallas, Texas, 2014. [Online]. Available: http:
//www.ti.com/lit/an/slva372c/slva372c.pdf

[68] F. Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, and
Y. Huang, “Z-source inverter for motor drives,” IEEE Transactions on Power Elec-
tronics, vol. 20, no. 4, pp. 857–863, July 2005.

[69] M. Handbook:, Electronic Reliability Design Handbook. Department of defense,
USA, Dec. 1991.

[70] C. of Electronic Equipment. Air cooling: Forced convection. [On-
line]. Available: http://highered.mheducation.com/sites/dl/free/0073398187/
835451/Chapter15.pdf

[71] L. Edmunds, Application Note AN-1057 Heatsink Characteristics.
[72] C. of Electronic Equipment. How to select a heat sink. [Online]. Available:

https://www.electronics-cooling.com/1995/06/how-to-select-a-heat-sink
[73] infineon. Power losses and thermal considerations. [Online]. Available:

http://www.irf.com/electronics/power-losses
[74] R. Deshpande, Capacitors: Technology and Trends. Tata McGraw Hill Education,

2012. [Online]. Available: https://books.google.dk/books?id=KjdmAgAAQBAJ
[75] Magnetics. Magnetics powder core catalog. [Online]. Available: http:

//www.mag-inc.com/company/news/new-powder-core-catalog
[76] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Edi-

tion. Springer Science + Bussiness Media, LLC, May 2001.
[77] F. elektronik. Cooling aggregates with axial fan. [Online]. Available:

http://www.farnell.com/datasheets/17642.pdf
[78] B. Gadalla, E. Schaltz, Y. Siwakoti, and F. Blaabjerg, “Thermal performance and

efficiency investigation of conventional boost, z-source and y-source converters,”
in Proc. of 16 IEEE International Conference on Environment and Electrical Engineering
(EEEIC16), Jun. 2016, pp. 1297– 1302.

93

http://www.ti.com/lit/an/slva372c/slva372c.pdf
http://www.ti.com/lit/an/slva372c/slva372c.pdf
http://highered.mheducation.com/sites/dl/free/0073398187/835451/Chapter15.pdf
http://highered.mheducation.com/sites/dl/free/0073398187/835451/Chapter15.pdf
https://www.electronics-cooling.com/1995/06/how-to-select-a-heat-sink
http://www.irf.com/electronics/power-losses
https://books.google.dk/books?id=KjdmAgAAQBAJ
http://www.mag-inc.com/company/news/new-powder-core-catalog
http://www.mag-inc.com/company/news/new-powder-core-catalog
http://www.farnell.com/datasheets/17642.pdf


References

[79] ABL. Heat sink 173ab, aluminium components. [Online]. Available: http:
//www.farnell.com/datasheets/2034689.pdf

[80] K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation,” IEEE
Trans. Ind. Application, vol. 41, no. 3, pp. 682–689, May 2005.

[81] A. Shiroudi. Demonstration project of the solar hydrogen energy system
located on taleghan-iran: Technical-economic assessments. [Online]. Available:
http://www.ep.liu.se/ecp/057/vol4/004/ecp57vol4_004.pdf

[82] SerEnergy. Serenus 166/390 air c specification sheet. [Online]. Available:
http://www.serenus-166-390-air-cspecification-sheet-eng.pdf

[83] X. Yu, M. Starkeand, L. M. Tolbert, and B. Ozpineci, “Fuel cell power condition-
ing for electric power applications: a summary,” IET Electric Power Applications,
vol. 1, no. 5, pp. 643–656, Sep. 2007.

[84] D. Zhou, H. Wang, F. Blaabjerg, S. K. Kaer, and D. Blom-Hansen, “Real mission
profile based lifetime estimation of fuel-cell power converter,” in 2016 IEEE 8th
International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia),
May 2016, pp. 2798–2805.

[85] M. Held, P. Jacob, G. Nicoletti, P. Scacco, and M. H. Poech, “Fast power cycling
test of igbt modules in traction application,” Journal of Electronics, vol. 86, no. 10,
pp. 1193–1204, 1999.

[86] R. Bayerer, T. Herrmann, T. Licht, J. Lutz, and M. Feller, “Model for power cycling
lifetime of igbt modules - various factors influencing lifetime,” in Proc. of 5th Int.
Conf. on Integrated Power Systems (CIPS), 2008, pp. 37–42.

[87] P. D. Reigosa, H. Wang, Y. Yang, and F. Blaabjerg, “Prediction of bond wire
fatigue of igbts in a pv inverter under a long-term operation,” IEEE Transactions
on Power Electronics, vol. 31, no. 10, pp. 7171–7182, Oct 2016.

[88] C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera,
and P. Rodriguez, “An overview of the reliability prediction related aspects of
high power igbts in wind power applications,” in Proc. of the 22th European Sym-
posium on the Reliability of electron devices, failure physics and analysis,, Nov. 2011,
pp. 1903–1907.

[89] H. Liu, K. Ma, Z. Qin, P. C. Loh, and F. Blaabjerg, “Lifetime estimation of mmc
for offshore wind power hvdc application,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 4, no. 2, pp. 504–511, June 2016.

[90] E. T. Cycles. Emission test cycles. [Online]. Available: https://www.dieselnet.
com/standards/cycles/artemis.php

[91] A. Wintrich and U. Nicolai and W. Tursky and T. Reimann, Application Man-
ual Power Semiconductors, Semikron International GmbH, Nuremberg, Germany,
2011.

[92] H. Cui, “Accelerated temperature cycle test and coffin-manson model for elec-
tronic packaging,” in Annual Reliability and Maintainability Symposium, 2005. Pro-
ceedings., Jan 2005, pp. 556–560.

[93] H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvis-
gaard, and J. Landkildehus, “Transitioning to physics-of-failure as a reliability
driver in power electronics,” IEEE Journal of Emerging and Selected Topics in Power
Electronics, vol. 2, no. 1, pp. 97–114, March 2014.

94

http://www.farnell.com/datasheets/2034689.pdf
http://www.farnell.com/datasheets/2034689.pdf
http://www.ep.liu.se/ecp/057/vol4/004/ecp57vol4_004.pdf
http://www.serenus-166-390-air-c specification-sheet-eng.pdf
https://www.dieselnet.com/standards/cycles/artemis.php
https://www.dieselnet.com/standards/cycles/artemis.php


References

[94] R. Bayerer, T. Herrmann, T. Licht, J. Lutz, and M. Feller, “Model for power cycling
lifetime of igbt modules - various factors influencing lifetime,” in Proc. of 5th Int.
Conf. on Integrated Power Systems (CIPS), 2008, pp. 37–42.

[95] H. C. Yildirim, G. Marquis, and Z. Barsoum, “Fatigue assessment of high fre-
quency mechanical impact (hfmi) - improved fillet welds by local approaches,”
International Journal of Fatigue, vol. 52, pp. 57–67, 2013.

[96] I. E. T. Essentials. Fuel cells. [Online]. Available: https://www.iea.org/
publications/freepublications/publication/essentials6.pdf

95

https://www.iea.org/publications/freepublications/publication/essentials6.pdf
https://www.iea.org/publications/freepublications/publication/essentials6.pdf


109

Name Brwene Salah Abdelkaim Gadalla

Date of Birth 1st July1986

Place of Birth Cairo, Egypt

Citizen of Egypt

Education 2003-2008 B.Sc. in Electrical and Control Engineering, Spe-
cialization: Electrical Machines and Power Electronics, Arab 
Academy for Sci-ence, Technology and Maritime Transport. 
Cairo-Egypt.

2008-2011 M.Sc. in Electrical and Control Engineering, Spe-
cialization: Electical Machines and Control, Arab Academy 
for Science, Tech-nology and Maritime Transport, Cairo-
Egypt.

2014-2017 Ph.D. Studies at Aalborg University, Department
of Energy Technology, Denmark

Work 2008-2013 Teaching Assistant, Electrical and Control Depart-
ment, Arab Academy for Science, Technology and Maritime 
Transport, Cairo-Egypt.

2014-2017 PhD Fellow at Aalborg University, Department of
Energy Technology, Denmark.

CV



Aalborg Universitet

Investigation of Efficiency and Thermal Performance of the Y-source Converters for a
Wide Voltage Range
Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad; Blaabjerg, Frede

Published in:
Journal of Renewable Energy and Sustainable Development (RESD)

Publication date:
2015

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Gadalla, B. S. A., Schaltz, E., Siwakoti, Y. P., & Blaabjerg, F. (2015). Investigation of Efficiency and Thermal
Performance of the Y-source Converters for a Wide Voltage Range. Journal of Renewable Energy and
Sustainable Development (RESD), 1(2), 300-305. [2].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 10, 2017



Investigation of Efficiency and Thermal

Performance of The Y-source Converters for a Wide

Voltage Range

Brwene Gadalla, Erik Schaltz, Member IEEE,Yam Siwakoti, Member IEEE, Frede Blaabjerg, Fellow, IEEE
Department of Energy Technology, Aalborg University

Aalborg 9220, Denmark

bag@et.aau.dk, esc@et.aau.dk, yas@et.aau.dk, fbl@et.aau.dk

Abstract—The Y-source topology has a unique advantage
of having high voltages gain with small shoot through
duty cycles. Furthermore, having the advantage of high
modulation index increase the power density and improve
the performance of the converter. In this paper, a collective
thermal and efficiency investigation is performed in order
to improve the reliability of the converter. Losses evalua-
tion in the semiconductor devices (switching/conduction),
the capacitors (ESR), and the inductors (core/winding) are
presented. Moreover, the junction temperature evaluation
of the devices is considered under 25◦C ambient temper-
ature. The analysis is carried out at the following voltages
gain (2, 3, and 4), and at the following winding factors
(4, and 5) using PLECS toolbox. The results shows that,
the power losses and the junction temperature are directly
proportional with the voltage gain and the winding factor.

I. INTRODUCTION

Y-source power converter has been used in many renewable

energy applications such as; renewable generation systems

[1], fuel cell applications [2], and more recently with electric

vehicles [3]. Due to the importance of the thermal behaviour

from the reliability point of view, a collective investigation

of efficiency and thermal performance has to be done for

the Y-source converter. Unreasonable temperature during the

operation of the converter affects the performance, the devices

lifetime, and hence, the reliability of the power electronic com-

ponents in the converter. Therefore, controlling the tempera-

ture within the reasonable limits, provides: 1- higher power

densities. 2- lower cost system configuration. 3- reliability

improvement from lifetime point of view. 4- Increase the

overall efficiency of the converter. 5- Insure safety and prevent

the catastrophic design mistakes.

Practical applications requires high switching frequency

with small shoot through cycles to reduce the power losses

during the turn-on and turn-off transients. For a short duration,

a high current passes through the switch causing high voltage

stress and high junction temperature. Moreover, having higher

voltages gain increase the stress in the device which needs to

be designed carefully.

Thus, it is very important to consider the thermal chal-

lenges earlier in the design stage. Considering these challenges

improves the performance of the converter by protecting the

devices to be exposed to excessive temperatures that shorten

their lifetime [4], and hence, the reliability of the converter.
This paper aims to investigate the thermal performance of

the Y-source converter operating under 500 W at switching

frequency of 20 kHz [5], [6], and [7]. The investigation is

considered at voltages gain (2, 3, and 4), and at winding factors

(4, and 5). The main sections in this paper are as the following:

Section II gives the topology of the Y-source converter and its

theory of operation. Section III illustrates the calculations of

the efficiency and losses. Section IV presents the simulated

case studies. Section V presents the simulation results and

discussion, followed by the conclusion.

II. TOPLOGY AND THEORY OF OPERATION

The Y-source converter is a very promising topology for

higher voltage gain in a small duty ratio and in a very wide

range of adjusting the voltage gain [6]. Very high modulation

index can be achieved with this topology as well. The range

of duty cycle in the Y-source is narrower than Z-source and

the boost and higher in the modulation index. Fig.1 (a) shows

the Y-source impedance network is realized a three-winding

coupled inductor (N1, N2, and N3) for introducing the high

boost at a small duty ratio for SW. It has an active switch

SW, passive diodes (D1,D2), a capacitor C1, the windings of

the coupled inductor are connected directly to SW and D1, to

ensure very small leakage inductances at its winding terminals.
Fig.1 (b,c) shows the simplified circuit diagram of the ST

and non shoot through NST modes of operation.
a)In the ST state, when the switch is turned on, D1 and

D2 is off causing the capacitor C1 to charge the magnetizing

inductor of the coupled transformer and capacitor C2 discharge

to power the load.

b)In the NST state, when the switch is non-conducting,

D1 start to conduct causing the input voltage to recharge

the capacitor C1 and the energy from the supply and the

transformer will also flow to the load and when D2 start
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Fig. 1. illustration of a)Y-source converter, b)its equivalent ”ST state”, and
c)its equivalent ”NST state” circuits

conducting, it recharge C2 and the load to be continuously

powered.

The input output voltage relation and the duty cycle is

expressed in (1)

Vout =
Vin

(1−KD)
(1)

where, Vout is the output voltage, Vin is the input voltage, D
is the duty cycle and K is the winding factor.

The winding factor K is calculated according to the turns

ratio of the three-winding coupled inductor is expressed in (2)

K =
N1 +N3

N3 −N2
(2)

where, (N1 : N2 : N3) is the turns ratio of the coupled

inductor.

And the modulation index M of the Y-source is expressed

in (3)

M = 1.15 (1−D) (3)

where, D is the duty cycle required for the voltage gain and

M is the modulation index.

III. EFFICINCY AND LOSS CALCULATIONS

In this section, further illustration for the formulas used in

calculating the relevant losses and verified by the simulation

results.

Having passive elements in the Y-source circuit, may have

some advantages as 1) minimize the stresses according to the

desired design, 2) reduces the switching and conduction losses

on the devices, 3) lower shoot through duration , since they

are storing energy.

A. Switching and conduction losses calculations

Switching losses occur when the device is transitioning

from the blocking state to the conducting state and vice-versa.

This interval is characterized by a significant voltage across

its terminals and a significant current through it. The energy

dissipated in each transition needs to be multiplied by the

frequency to obtain the switching losses;

The switching losses Psw is expressed in (4):

Psw = (Eon + Eoff )× fsw (4)

Where, Eon and Eoff are the energy losses during on and

off of the switch, fsw is the switching frequency.

Conduction losses occur when the device is in full conduc-

tion. The current in the device is whatever is required by the

circuit and the voltage at its terminals is the voltage drop due

to the device itself. These losses are in direct relationship with

the duty cycle.

The average conduction losses Pcond is expressed in (5):

Pavg.cond =
1

T

∫ T

0

[vce(t)× ice(t)] dt (5)

where, vce is the on state voltage, an ice is the on state

current. And in (6):

T =
1

fsw
(6)

Time period T is inversely proportional to frequency fsw.

B. Capacitor ESR losses calculations

The Equivalent Series Resistance ESR is the value of

resistance which is equal to the total effect of a large set

of energy loss mechanisms occurring under the operating

conditions. So, the capacitors losses is expressed in (7):

Pcap.loss = I2cap. × ESR (7)

where, Icap. is the rms current passing through the capacitor,

and ESR is the equivalent series resistance measuring the

effect of the losses dissipated in the capacitor.

C. Winding and core losses calculations

According to Steinmetz’s equation [8], which is a physics

equation used to calculate the core loss of magnetic materials

due to magnetic hysteresis.

2



The core losses is expressed in (8):

Pv = kfαB̂β (8)

Where, B̂ is the peak induction of a sinusoidal excitation

with frequency f , Pv is the time-average power loss per unit

volume, and the material parameters (α, β, k) are material

parameters.

The improved generalized Steinmetz’s equation is expressed

in (9):

P =
1

T

∫ T

0

ki

∣∣∣∣dBdt
∣∣∣∣
a (

ΔBb−a
)
dt (9)

Where, ΔB is the flux density from peak to peak and in

(10):

ki =
k

(2π)
α−1 ∫ 2π

0
|cosθ|α × 2β−αdθ

(10)

Where, (β, α, k) are the material parameter found by curve

fitting, and θ is the angle of the sinusoidal waveform simulated.

IV. CASE STUDIES

In this section, simulations are carried out to verify the

performance of the Y-source converter using the parameters

listed in Table I.

TABLE I
THE USED PARAMETERS OF THE SIMULATED MODEL .

Parameters Values / Models

Input voltage Vin 100 V - 133 V - 200 V

Output voltage Vo 400 V

Output Power Po 500 W

Switching frequency f s 20 kHz

Resistive load Rl 320 Ω

MOSFET SW SPW47N60C3 650 V, 47 A

Diode D1 − D2 SD600N/R 600 V, 600 A

Core type Vin MPP C055863A2

TABLE II
SIMULATION PARAMETERS AT THREE CASES.

Parameters Values

Size of AWG 15

Winding factor K 4 5

Turns ratio N1 : N2 : N3 80:16:48 48:16:32

DC-resistance Rdc−Y source 0.0735 Ω 0.0441Ω

0.0147 Ω 0.0147Ω

0.0441 Ω 0.0294Ω

The ratings of the devices are chosen according to the

voltage and current stresses across them. Where, investigating

the impact of varying the voltage gain and the winding factor

on the efficiency and junction temperature performances. Fur-

thermore, measuring all the relevant losses as listed in section

III. While having the same switching frequency 20 kHz, rated

power 500 W, and constant ambient temperature 25 ◦C. Table

II summarize the case studies investigated.

A. Case 1:

Simulation was carried out with voltage gain factor 2 with

different value of shoot-through ratio, using winding factors

4 and 5. The rated power 500 W were applied to all the

simulations.

B. Case 2:

Simulation was carried out with voltage gain factor 3 with

different value of shoot-through ratio, using winding factors 4

and 5.

C. Case 3:

Simulation was carried out with voltage gain factor 4 with

different value of shoot-through ratio, using winding factors 4

and 5.

V. SIMULATION RESULTS AND DISSCUSION

PLECS toolbox is used for the Y-source converter circuit .

All the relevant losses results is calculated based on the afore-

mentioned equations in the simulated model. The simulated

parameters are listed in Table II. Where, the comparison is

between 2 different winding factors (4, and 5), and 3 different

voltage gains (2, 3, and 4), the size of the wire is 15 AWG

and the values of the DC resistance is calculated according to

11:

Rdc = Rdc/singlelayer × N

L
(11)

Where, (Rdc/singlelayer) is the dc resistance per single layer,

N is the no. of turns, and L is the length of single layer.

Winding
loss

Core
loss

Conduction
loss

Switching
loss

0

2

4

6

8

10

12

1 2 3 4 5 6K=4          K=5   K=4         K=5     K=4        K=5 
Gain 2              Gain 3                      Gain 4

Po
w

er
 lo

ss
 W

Fig. 2. Representation of the relevant losses for cases I, II, and III
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TABLE III
THE SIMULATED SHOOT-THROUGH DUTY CYCLE FOR EACH CASE.

Cases Gain Winding factor
K

Duty cycle D

Case I 2 4 5 0.125 0.1

Case II 3 4 5 0.16674 0.133

Case III 4 4 5 0.18754 0.15

TABLE IV
THE SIMULATED SHOOT-THROUGH DUTY CYCLE FOR EACH CASE.

Cases Winding factor
K

Total power
losses W

Efficiency %

Case I - Gain 2 4 5 6.93 13.19 98.61 97.48

Case II - Gain 3 4 5 12.6 22.2 97.5 95.8

Case III - Gain 4 4 5 20.2 29.9 96.1 94.4

Fig. 3. Junction temperation representation at gain 2 for K= 4 and K= 5.

Fig. 4. Junction temperation representation at gain 3 for K= 4 and K= 5.

Fig. 5. Junction temperation representation at gain 4 for K= 4 and K= 5.

Fig. 2 presents the difference between the relevant losses of

the devices (switching, conduction, core and winding losses)

for each winding factor and voltage gain. For the capacitor

ESR losses, it can be neglected, since it is very small where,

the largest is 0.26 watts at gain 4 and winding factor 5.

For the shoot through duty ratios for each case is listed in

Table III. The simulation results indicates that the higher the

voltage gain and winding factor, the higher the power losses

and the junction temperature which are listed in Table IV.

For the junction temperature variation in the MOSFET for

different gains and winding factors in steady state, Figures 3

, 4, 5 that shows the behaviour of the junction temperature

under different voltage gains and winding factors. The highest

junction temperature is at voltage gain factor of 4 and winding

factor of 5 as expected.
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VI. CONCLUSION

This paper investigates the thermal performance and the

efficiency of semiconductor devices and passive elements in

the Y-source converter of rated power 500 W. In sake of

designing a reliable converter, the thermal performance is

extremely important to be considered. Measurements of the

junction temperatures and relevant losses are demonstrated.

The impact of different voltage gains and winding factors

is performed and studied. The measurements of the junction

temperature variation shows that there is no overstress on

the devices during the operation, this is due to the unique

advantage in the Y-source converter of having high voltage

gains with very small duty ratio. The results of the relevant

losses with respect to varying the voltage gains and winding

factor are reasonable. It can be seen from the results that while

increasing the voltage gains and the winding factors, the total

power loss increase as well. The performance of the Y-source

converter is very promising. Although having voltage gain

factor of 4, the performance is efficient and the converter’s

efficiency is ranging between 94.4 % and 96 % with respect

to the winding factor variation.
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Abstract— Boost converters are needed in many applica-
tions which require the output voltage to be higher than
the input voltage. Recently, boost type converters have
been applied for industrial applications, and hence it has
become an interesting topic of research. Many researchers
proposed different impedance source converters with their
unique advantages as having a high voltage gain in a small
range of duty cycle ratio. However, the thermal behaviour
of the semiconductor devices and passive elements in the
impedance source converter is an important issue from a
reliability point of view and it has not been investigated yet.
Therefore, this paper presents a comparison between the
conventional boost, the Z-source, and the Y-source convert-
ers based on a thermal evaluation of the semiconductors.
In addition, the three topologies are also compared with
respect to their efficiency. In this study the results show
that the boost converter has higher efficiency than the Z-
source and Y-source converter for these specific voltage
gain of 2 and 4. The operational principle, mathematical
derivations, simulation results and final comparisons are
presented in this paper.

Key words- boost converter; Z-source converter; Y-source
converter; winding losses; core losses; gain; thermal design;
reliability

I. INTRODUCTION

BOOST type converters are essentially needed for many re-

newable energy applications such as Photo Voltaic (PV),

Wind Turbine (WT) and automotive applications (electric and

hybrid vehicles) as these often have lower input voltage than

the required load voltage. In conventional boost converters, the

demanded voltage gain normally requires higher duty cycle

(sometimes close to unity), which leads to high conduction

losses, higher voltage and current stresses on the switching

devices. However, the aforementioned stressor factors may

critically affect the reliability and the lifetime of the power

electronic components. According to a review based on con-

dition monitoring for device reliability in power electronic

systems presented in [1], semiconductor and soldering failures

in device modules are sharing totally 34% of converter system

failures in Fig. 1. In today’s perspective toward the reliability

assessment of power electronic components and systems, three

main aspects should be considered as shown in Fig. 2 [2].

PCB
26%

Capacitors
30%Solder

13%

Semiconductors
21%

Connectors 3%
Others

7%

Fig. 1. Ranking and failure distrbution of power electronic components in
power converters [1].

The design and verification aspect could be related to

cover the aforementioned shortcomings in the conventional

boost converter shown in Fig. 3. Both Z-source and Y-source

as shown in Fig. 4 and Fig.5 converters were proposed by

the researchers as impedance source network converters to

compromise the high voltage gain with small duty cycle

ratio. Due to their flexibility for a wide voltage ranges and

power conversions (DC-DC, DC-AC, AC-AC, and DC-AC)

[8], various types of impedance source networks were reported

as a solution to overcome the limitations of the voltage source

inverter VSI, current source inverter CSI and some of the

conventional uni/bi - directional converters [9].

Moreover, an important advantage of the impedance net-
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works is the small duty cycle ratio, which reduces the losses of

the switch [10]. Therefore, many new topologies are proposed

with each being claimed to have improved performances [8].

At present, a collective investigation of some of the existing

boosting converters has not been initiated especially with

reference to their thermal and reliability issues. Furthermore,

an investigation of the Y-source converter from the point of

view of thermal performance at high power ratings has not

been reported as well. The junction temperature is one of the

important factors that is affecting the thermal performance of

the converter, and also the reliability [11].

In this paper the conventional boost, Z-source and Y-source

converters are compared in terms of their efficiencies and junc-

tion temperature with respect to a wide power range, different

voltage gains and assuming a constant ambient temperature.

Moreover, calculations of all the relevant losses (e.g switching

and conduction losses) of the power switching devices during

the operation is also considered in the comparison [12].

This paper conducts a comprehensive investigation of the

mapping of the losses of the power converter. Section II

is focusing on the theory of operation and design of each

converter. Section III describes the evaluation of the power

losses and thermal performance of the three converters. Section

IV describes the simulation results and discuss the results.

Finally, the conclusion is given in section V.

II. CONVERTER DESIGN AND THEORY OF OPERATION

In this section the theory of operation of the converters and

design formulas are presented.

A. Conventional boost converter

A boost converter is a step-up converter converting the

voltage from low input voltage to higher voltage requiring a

duty cycle (0 <D<1). Thus its simple theory of operation as

well as component count wise allows it to be a competitor

with other boosting converters. The basic structure of the

boost converter circuit, the equivalent circuit for on state mode

of operation and off state mode of operation are shown in

Fig. 3. It compromise of one active switch SW, a diode D1,

an inductor L1, and a capacitor C1 for introducing a high

voltage boost with (D>0.5). The two modes of operation are

as following:

a) During the on-state: the switch is closed, the

current flows through the inductor and store the

energy in a magnetic field.

b) During the off-state: the switch is open, the current

passed will be reduced as the voltage across the

inductor is reversed and the magnetic field previously

created will decrease to maintain the current flow to

the load and the current through the diode will charge

the capacitor giving a higher voltage.

The input/output voltage relationship is expressed in (1) as:

Vout =
Vin

1−D
(1)

where Vout is the output voltage, Vin is the input voltage

and D is the duty cycle needed for the required voltage gain

[13].

B. Z-source converter

The Z-source converter (ZSC) is a very convenient topol-

ogy in many alternative energy sources and other different

applications [3, 4]. The ZSC has the capability of ideally

giving an output voltage range from zero to infinity regardless

of the input voltage. The Z-Source converter circuit, and its

two modes of operation are shown Fig.4. It consists of two

inductors (L1, L2) and two capacitors (C1, C2) connected in

X shape to be coupled to the dc voltage source. The ZSC

can produce a required dc output voltage regardless of the

input dc source voltage. The two modes of operation are as

the following:

a) In the on-state: the switch is closed and the

impedance capacitors (C1, C2) release energy to the

inductors (L1, L2) and then the voltage source and

the load will disconnect the Z-source network due

to the turn off of the diodes (D1, D2). The major

concern is the large conduction current passing

through the switch during the on state, which may

decrease the converter efficiency.

b) In the off-state: the switch is opened and the

input voltage will supply energy to the load through

the two inductors as well as add energy to the two

capacitors to compensate the energy lost during the

on state.

The input/output voltage relationship is expressed in (2) as:

Vout =
Vin

1− 2D
(2)

where Vout is the output voltage, Vin is the input voltage

and D is the duty cycle needed for the required voltage gain

[3, 4].

C. Y-source converter

The Y-source converter is a promising topology for higher

voltage gain in a small duty ratio and has a very wide range
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Fig. 3. a) Boost converter Circuit topology. b) Equivalent circuit for on state. c) Equivalent circuit for off state [13].
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Fig. 5. a) Y-source converter Circuit topology. b) Equivalent circuit for on state. c) Equivalent circuit for off state [5–7].

of adjusting the voltage gain [5–7]. The range of duty cycle

in the Y-source is narrower than the Z-source and the boost

converter. Fig. 5 shows the Y-source impedance network and

its two modes of operation. It is realized by a three-winding

coupled inductor (N1, N2, and N3) for introducing the high

boost at a small duty ratio for the SW. It has an active switch

SW, two diodes (D1, D2), a capacitor C1, and the windings

of the coupled inductor are connected directly to SW and

D1, to ensure a very small leakage inductance at its winding

terminals. The two modes of operation are as the following:

a) In the on-state: the switch is closed, D1 and

D2 are off causing the capacitor C1 to charge the

magnetizing inductor of the coupled transformer

and capacitor C2 discharge to power the load.

b) In the off-state: the switch is opened, D1 starts

to conduct causing the input voltage to recharge the

capacitor C1 and the energy from the supply and

the transformer will also flow to the load. When D2

starts conducting, it recharges C2 and the load is to

be continuously powered.

The input/output voltage relationship is expressed in (3) as:

Vout =
Vin

1−KD
(3)

where Vout is the output voltage, Vin is the input voltage,

D is the duty cycle [5–7] and K is the winding factor. The

winding factor K is calculated according to the turns ratio of

the three-winding coupled inductor and it is expressed in (4)

as:

K =
N1 +N3

N3 −N2
(4)

where (N1 : N2 : N3) are the winding ratios of the coupled

inductor.

A comparison between the inductors, the capacitors design,

voltage and current ripples for the three converters is shown

in Table I.



TABLE I. Component design for the Boost, Z-source and Y-source converters

Components Boost Z-source Y-source

Current ripple across 
inductor

2 20%0. out
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in
LI P I

V
   20%L LI I  20%L MI I

Voltage ripple across 
capacitor

2% 
outC outV V  2%C outV V  2% 
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   
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 
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IM: Magnetizing current, LN: Nominal inductance, Llik: leakage inductance,  To = DT= D/fsw

III. EVALUATION OF POWER LOSSES AND THERMAL

PERFORMANCE

In this section, the formulas for calculating the relevant

power losses are presented. PLECS toolbox is used for the

three converter analysis. The parameters selected for each

converter are compared according to the passive components

counts and their voltage and current ripples are as shown

in Table I. The same for the switching devices, which are

designed according to each converter requirements for the

voltage and current ratings for a realistic comparison.

A. Switching and conduction losses calculations

Switching losses occur when the device is transitioning

from the blocking state to the conducting state and vice-versa.

This interval is characterized by a significant voltage across

its terminals and a significant current through it. The energy

dissipated in each transition needs to be multiplied by the

switching frequency to obtain the switching losses;

The switching losses Psw are expressed in (5) as:

Psw = (Eon + Eoff )× fsw (5)

where Eon and Eoff are the energy losses during turn on

and turn off of the switch, fsw is the switching frequency.

Conduction losses occur when the device is in full conduc-

tion mode. These losses are in direct relationship with the duty

cycle.

The average conduction losses Pcond are expressed in (6)

as:

Pavg.cond =
1

T

∫ T

0

[vce(t)× ice(t)] dt (6)

where vce is the on state voltage, an ice is the on state

current. The time period T is as given in (7):

T =
1

fsw
(7)

where fsw is inversely proportional to the time period T .

B. Capacitor ESR losses calculations

The Capacitor Equivalent Series Resistance (ESR) is the

value of the resistance, which is equal to the total effect of

a large set of energy loss mechanisms occurring under the

operating conditions where it can be a parameter to measure

the capacitor losses. The capacitor losses are expressed in (8)

as:

Pcap.loss = I2cap. × ESR (8)

where Icap. is the rms current passing through the capacitor,

and ESR is the equivalent series resistance measuring the

effect of the losses dissipated in the capacitor.

C. Winding and core losses calculations

According to the Steinmetz’s equation, which is a physics

based equation used to calculate the core loss of magnetic

materials due to hysteresis. The core losses are expressed in

(9):

Pv = kfαB̂β (9)

where B̂ is the peak flux density excitation with fre-

quency f , Pv is the time-average power loss per unit volume,

and(α, β, k) are the material parameters found by curve fitting.

The improved generalized Steinmetz’s equation is expressed

in (10):

Pv =
1

T

∫ T

0

ki

∣∣∣∣dBdt
∣∣∣∣
α (

ΔBβ−α
)
dt (10)



where ΔB is the flux density from peak to peak and in

(11):

ki =
k

(2π)
α−1 ∫ 2π

0
|cosθ|α × 2β−αdθ

(11)

where θ is the angle of the sinusoidal waveform simulated.

The copper losses in the winding describe the energy

dissipated by the resistance in the wire used in the coil. It

is divided in to 2 types (DC and AC winding loss). The DC

winding losses can be calculated in (12) as:

PDC = I2av ×RDC (12)

where (PDC) is the DC copper losses in the winding, Iav
is the average current passing through the wire, and RDC is

the DC resistance of the wire.

AC copper losses can be significant for large current ripple

and for higher frequency. It can be calculated through the skin

effect, where the current density is an exponentially decaying

function of the distance into the wire, with the characteristic

length δ is known as the skin depth in (13) as:

δ =
7.5√
fs

(13)

where δ is the skin depth in cm, and fs is the switching

frequency which in our design is 20 kHz.

In order to calculate the AC resistance RAC , the thickness

h of the wire should be known since it is a function of the dc

resistance RDC which can be calculated in (14):

RAC =
h

δ
×RDC (14)

where h is the thickness of the wire in cm.

The AC winding losses can be calculated as given in (15)

as:

PAC = I2AC−rms ×RAC (15)

where PAC is the AC winding loss, IAC−rms is AC ripple

rms current passing through the wire, and RAC is the AC

winding resistance.

D. Magnetic core design calculations

In this section, the magnetic core design [14] is illustrated

through the following steps:

1) In order to select a proper core size, the DC current IDC

in Ampere and the inductance L in mili Henry required with

DC bias should be known to select the core from the core

selector chart according to the calculated value (mH.A2) in

(16):

LI2DC = value (16)

A high flux 58337 core [14] was selected for the 3 convert-

ers in order to have fair comparison from an efficiency point

of view for the voltage gain of 2.

2) Inductance, core size and permeability are now known,

then calculating the number of turns by determining the

minimum inductance factor ALmin by using the worst case

negative tolerance (generally −8%) given in the core data sheet

in (17) and (18)

Almin = Al − 0.08Al (17)

N =

√
L× 103

Almin
(18)

where Al is the inductance factor found in the core data sheet

(nH/T2), Almin is the minimum inductance factor (nH/T2),

and L is the inductance in (μH).

3) Choosing the suitable wire size according to rated power

and calculated number of turns (N ), is the last step before

calculating the DC resistance according to the wire size with

window fill assumed to be 40% in (19) as:

CA =
Wf ×WA

N
(19)

where CA is the wire area, Wf in the window fill, and N
is the no. of turns.

4) The DC resistance can be estimated after knowing the

winding factor of the core, wire gauge (AWG), and the number

of turns. The DC resistance can be calculated in (20) as:

RDC = MLT ×N × Ω/Length (20)

where MLT is the mean length per turn, and Ω/Length is

the resistance per meter.

Furthermore, in the voltage gain of 4 METGLAS power-lite

C-core [15] is used and Kg-method is applied [16].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, different power loadings for the voltage gain

equal to 2 and 4 are presented in order to demonstrate a

fair comparison between the 3 topologies with respect to the

thermal performance and the losses (switching, conduction,

capacitor ESR losses, core and winding losses) for calculat-

ing the efficiency of each converter. Thermal and efficiency

investigation are presented in a separate subsection. Table II

summarizes the specifications and the requirements used in

the simulation results.

The design specifications for each voltage gain are given

separately for each topology as it can be seen from Table III,

which summarize the semiconductor devices average current

and voltage ratings used in the 3 converters. These ratings

are based on the required voltage gain for each converter

separately.

A. Junction temperature investigation of the switch under
different power loading

For each semiconductor a heat sink has been designed. A

maximum junction temperature of 125 ◦C has been used a

design constraint. The estimation of the junction temperature



TABLE II. Common specifications and simulation parameters for the Boost, Z-source and Y-source converters

Simulation parameters Boost Z-source Y-source

Gain 2
Duty cycle D 0.5 0.25 0.167
No. of turns 64 55 ( 32:32:64 )
Switch RMS current 71 A 100 A 120 A

Gain 4
Duty cycle D 0.75 0.375 0.25
No. of turns 27 30 ( 7:7:14 )
Switch RMS current 171 A 237 A 346 A

* Input voltage for gain 4 

Common converter specifications for gain 2 and 4

Maximum Power rating 20 kW
Input voltage Vin 200 V \ 100 V *
Output voltage Vout 400 V
Switching frequency fs 20 kHz
Resistive load Rl

Maximum junction temperature Tj-max. 125 °C

TABLE III. Semiconductor devices selection for the three converters and their different voltage gains.

Converter Semiconductor devices Gain 2 Gain 4

B
oo

st

IGBT (IXXX200N60C3) 
600 V and 200 A

(MG06600WB-BN4MM)
600 V and 600 A

Diode (D1) (IDW100E60)
600V and 100 A

(DB2F200N/P6S)
600V and 200 A

Z
-s

ou
rc

e

IGBT (MG06400D-BN4MM) 
600 V and 400 A

(MG06600WB-BN4MM)
600V and 600 A

Diode  (D1) (DS1F300N6S )
600V and 300 A

(SD600N/R Series)
600V and 600 A

Diode  (D2) (DS1F300N6S )
600V and 300 A

(DS1F300N6S)
600V and 300 A

Y
-s

ou
rc

e

IGBT (MG06600WB-BN4MM)
600V and 600 A

(MG06600WB-BN4MM)
600V and 600 A

Diode  (D1) (VSK.9112  )
1200V and  100A

(SKN 501/12 Semikron)
1200V and 720 A

Diode  (D2) (DS1F300N6S )
600V and 300 A

(DS1F300N6S)
600V and 300 A

of the switches are done according to the thermal model and

the mapped losses using the PLECS toolbox. The estimation

of the junction temperatures are different for the 3 topologies,

since the desired thermal resistance of the heat sink is not the

exact calculated value found in the manufactured heat sinks.
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Fig. 6. Junction temperature variation of the switch at different power loading
and using a voltage gain of 2.

In this case, the load power is varying from 1 to 20 kW,

and a constant ambient temperature is assumed which is 25
◦C. The junction temperature variation results of the compared
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Fig. 7. Junction temperature variation of the switch at different power loading
and using a voltage gain of 4.

topologies are shown in Fig. 6 for voltage gain of 2. Fig. 7

shows the junction temperature variation at different loading

power for voltage gain of 4.

B. Efficiency investigation under different power loading

In this subsection the efficiency is calculated according

to the total power losses for each converter as listed in the

beginning of section IV using the same conditions listed in



TABLE IV. Distribution of the different losses for the Boost converter at 20 kW load power and two different voltage gain.

Voltage gain Boost converter

G
ai

n 
2

 

 
Total loss: 1.7 %

G
ai

n 
4 

 

 
Total loss: 3.9 % 

Switching loss
83 W
26%

Conduction 
loss

169 W
53%

Capacitor ESR 
loss

1.5 W
1%

Core loss 
3.3 W 

1%

DC winding
loss

61 W
19%

AC winding 
loss
1 W
0% Switching loss

Conduction loss
Capacitor ESR loss
Core loss
DC winding loss
AC winding loss

Switching 
loss

340 W
44%

Conduction 
loss

231 W
30%

Capacitor
ESR loss 

3 W
0%

Core loss 
63 W
8%

DC winding 
loss

135 W
18%

AC winding 
loss
2 W
0%

TABLE V. Distribution of the different losses for the Z-source converter at 20 kW load power and two different voltage gain.

Voltage
gain

Z-source converter

G
ai

n 
2

 

Total loss: 3.3 % 

G
ai

n 
4 

 

 
Total loss: 5 % 

Switching 
loss

335 W
52%

Conduction 
loss

198 W
31%

Capacitor
ESR loss 

3.1 W
0%

Core loss 
7.4 W

1%

DC winding 
loss

103 W
16%

AC winding 
loss

1.4 W
0% Switching loss

Conduction loss
Capacitor ESR loss
Core loss
DC winding loss
AC winding loss

Switching 
loss

321 W
31%

Conduction 
loss

324 W
32%

Capacitor
ESR loss 
23.7 W

2%

Core loss 
145 W
14%

DC winding 
loss

204 W
20%

AC winding 
loss
2 W
0%



TABLE VI. Distribution of the different losses for the Y-source converter at 20 kW load power and two different voltage gain.

Voltage
gain

Y-source converter

G
ai

n 
2

Total loss: 4.4 %

G
ai

n 
4 

 

 
Total loss: 6.3 % 

Switching 
loss

474 W
51%

Conduction 
loss

228 W
24%

Capacitor
ESR loss 

12 W
1%

Core loss 
18 W
2%

DC winding 
loss

200 W
22%

AC winding 
loss

1.64 W
0%

Switching loss
Conduction loss
Capacitor ESR loss
Core loss
DC winding loss
AC winding loss

Switching 
loss

682 W
42%

Conduction 
loss

218 W
13%

Capacitor
ESR loss 

42 W
3%

Core loss 
329 W
20%

DC
winding 

loss
340 W
21%

AC
winding 

loss
19.5 W

1%

Table II. The results in Fig. 8 show that the boost converter

has the highest efficiency of 98% compared with the Y-source

converter of 96% and the Z-source converter of 96.7% at 20

kW loading power. The measured efficiencies from low power

loading (1 kW) to higher power loading (20 kW) is also shown

in 8. the same analysis is repeated for voltage gain of 4 as

shown in 9.
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Fig. 8. The efficiency at different loading power and using a volatge gain of
2.

C. Total losses at 20 kW power loading

In this section a better understanding is given for the

efficiency and loss mapping. Six pie charts are presented in

Tables IV, V, and VI for the same power loading 20 kW and

different voltages gain (2 and 4). The total loss listed in Table

IV, V, and VI were calculated from the total power loss of each

converter by measuring the total efficiency as summarized in
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Fig. 9. The efficiency at different loading power and using a volatge gain of
4.

Table VIII. The switching and the conduction losses are the

total losses generated from the semiconductor devices (switch

and diodes). In Table VIII comparison of the total efficiencies

using voltage gains of 2 and 4 for the compared converters at

20 kW load power.

In voltage gain 2, the magnetic losses which in the Y-source

converter is sharing 34% of the total losses is the double

percentage of the magnetic losses in the Z-source converter

and 1.5 times the percentage in the boost converter. The

capacitor losses in percentages are almost the same in the 3

converters. The switching and conduction losses are the lowest

in the boost converter compared to the Z- source and Y-source

converters. The switching and the conduction losses are varied

based on the semiconductor devices ratings, as these devices

are designed according to the required voltage gain, converter



specifications, and to withstand the maximum ratings of each

operated converter.

In the voltage gain 4 case, the magnetic losses in the Y-

source is sharing 42% of the total losses is more than double

the percentage of the magnetic losses in the boost converter

and 1.2 times the percentage in the Z-source converter.

TABLE VII. Comparison of the total efficiencies using gain 2 and gain 4 for the

converters at 20 kW load.

Efficiency Boost Z-source Y-source
Gain 2 98.3 % 96.7% 95.6%

Gain 4 96.1 % 95% 93.7%

V. CONCLUSIONS

In this paper a comparison between the Y-source, Z-source

and the conventional boost converter has been performed with

respect to their thermal behaviour and efficiency. Different

loading conditions between 1 kW and 20 kW are considered

during the studies of the efficiency and junction temperature

of the converters for two different voltages gain (2 and 4). The

junction temperature variation in voltage gain of 4 is higher

than the junction temperature variation in voltage gain of 2.

Investigations on both the magnetic and electrical losses

are also given. The magnetic losses which in the Y-source

converter is sharing 34% and 42% of the total losses in

voltage gain of 2 and 4 receptivity which is higher than in

the boost and Z-source converters. In the electrical losses it

can be noticed that the total electrical loss for voltage gain

of 4 is lower than for voltage gain of 2 which clarify that

having higher current ratings devices improve the efficiency.

This paper summarizes the comparison between the type of

losses at constant loading condition. The thermal performances

are quite similar in the 3 converters for both voltage gains.

The boost converter has better efficiencies in the two selected

voltage gains, but it has also the highest decrease in the

efficiency from gain 2 to gain 4 at 20 kW power loading

compared with the Z-source and Y-source converters.
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Abstract—Reliability is an important issue in the field
of power electronics since most of the electrical energy
is today processed by power electronics. In most of
the electro-mobility applications, e.g. electric and hybrid-
electric vehicles, power electronic are commonly used in
very harsh environment. Temperature variations, vibration
and also the stresses affecting the device (which can come
even from the device itself or from external sources)
and may cause unreliable system. Thus, designing reliable
power electronic components is important for the aim of
reducing the energy losses, maintenance cost and extending
the service lifetime as well. Research within power elec-
tronics is of high interest as it has an important impact in
the industry of the electro-mobility applications. According
to the aforementioned explanations, this paper will provide
an overview of the common factors (thermal cycles, power
cycles, vibrations, voltage stress and current ripple stress)
affecting the reliability of power electronics in electro-
mobility applications. Also, the researchers perspective is
summarized from 2001 to 2015.

I. INTRODUCTION

Power electronic components play an increasingly important

role in many applications as adjustable speed drives, energy

storage systems, aviation and automotive applications. The

reliability of power electronics is affecting the overall system

performance in these application fields. The semiconductor

devices are some of the most vulnerable components in the

power electronic apparatus. Therefore, any fault that occurs in

the components will lead to a disorder in the system. These

undesired interruptions not only affect the safety concerns,

but also increases system operation cost and maintenance [1].

Nevertheless, the conditions of power electronics in mobile

applications is different compared to the conditions of power

electronics in photo voltaic or wind turbine systems. Thermal

cycles and vibrations are one of the sever stresses in the

electro-mobility applications. Also, the typical design target

of lifetime in the area of automotive electronics is 15 years

[26] and much less operational hours. So one of the challenges

now is how to improve the reliability of the vehicles power

electronic systems in the electro-mobility industry.
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Fig. 1. Cost breakdown of power electronics in the hybrid drive system [3]

Sources of failure as vibration, humidity, power cycle,

thermal cycles voltage and current stresses have an influence

on the reliability of power electronics [2]. Fig. 1 shows the

cost breakdown in the hybrid drive system which indicates

that 24% of the cost is for power electronics. Furthermore,

it is seen that 50% of the power electronics component cost

is due to the silicon devices and Print-Circuit-Boards (PCBs)

[3]. This paper presents a survey on different factors affecting

the reliability of power electronics and some reliable solutions

in this type of applications. This paper is divided in to four

sections. Section II presents the source of failure in the power

electronics in electro-mobility applications, section III presents

the component failure in power electronics system of electro-

mobility applications and section IV reliable design solutions.

The conclusion is given in section V.

II. SOURCES OF FAILURE IN THE POWER ELECTRONICS

FOR ELECTRO-MOBILITY APPLICATIONS

Analysis is the first step to determine which metrics should

be investigated in order to evaluate and improve the reliability.

Knowing the sources of failure it could be the reason to prevent

the creation of failure in the initial design. Fig.2 shows the

classifications of different sources of failure for which some

of the power electronic components are exposed to and their

reliability assessment. The different sources are discussed in

the following subsections. The sources of failure which have

been identified are vibration, humidity, thermal cycles, power

cycles, voltage and current stresses.

304978-1-4763-7239-8/15/$31.00 '  2015 IEEE
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Fig. 2. Classification of reliability assessment in electro-mobility applications

A. Vibration

The combination of mechanical vibration and thermal loads

are critically important in applications within the automotive,

aerospace, marine, and heavy work machine industries. The

reliability effect of combined thermal, thermo-mechanical,

and mechanical vibration loads on solder interconnections is

discussed in [4]. A single-load vibration and power cycling

tests were conducted in addition to the lifetime analysis. Three

different failure modes were found within all the different

test cases (vibration only, constant power + vibration, power

cycling + vibration and power cycling only). The cause of

failure was identified in all test cases as a cracking of the

solder interconnection between the component source terminal

and the PCB. The lifetime trend for all of the test cases follows

an inverse power function of vibration strain according to (1):

tf =

[
ε− c

a

] 1
b

(1)

Where ε is the board strain amplitude, a, b, and c are the

fitting coefficients without direct physical meaning. Finally as

a conclusion the results show that the vibration test has the

most critical influence on the solder interconnections and the

shortest lifetime is 2.2 minutes with strain amplitude range

from 0.6 × 10−3 to 1 × 10−3 (in the test). The necessity of

studying the failure mode and lifetime dependencies under

combined loads can be used to reduce testing times and also

to provide a reliable design in different applications, such as

automotive and aviation electronics.

B. Thermal cycles

The thermal cycle stress is a response to the converter

loading variations as well as the periodically commutation

of power switching devices. A mechanical damage analysis

of the solder joints of different types of chip resistor under

thermal storage and thermal mechanical cycle condition using

the EBSD (Electron Backscatter Diffraction) is discussed in

[5]. The EBSD is a method that offers a better understanding

of damage mechanism. EBSD is an analytic tool that can be

used in combination with a scanning electron microscope [2].

After applying the thermal cycling on the joint, the damage

occurred depends on directing the main grain within a solder

joint with respect to the largest thermal expansion difference

between joint and board. Two types of chip resistors were

taken in the experiment, (CR1206 and CR0603), attached

to the substrate using SnAg3.0Cu0.5 solder material. The

results were compared according to the influence of constant

temperature and temperature cycling. The results showed that

the thermal cycling leads to much more grain structures, and

induces thermo-mechanical stresses due to different coeffi-

cients of thermal expansion and material component. These

correlations of grain structure to loading profile and loading

duration allows for more sophisticated damage analysis.

Furthermore, another test has been performed on the solder

joint reliability of ceramic chip resistors. It has been a concern

for systems exposed to harsh environments such as those found

in the automotive applications. In [6] the thermal cycling

reliability of a 2512- chip resistor lead free solder joint

configurations was investigated. In the main portion of the

reliability testing, two temperature ranges (-40◦C to 125◦C

and -40◦C to 150◦C ) and five different solder alloys have

been examined. Thermal cycling failure data has been gathered

and analyzed using two parameter Weibull models to rank the

relative material performances and a set of thermally cycled

sample for microscopy studies as cracks propagation and

change in the micro-structure of solders. A 63Sn- 37Pb joint

dramatically outperformed the lead free Sn- Ag-Cu alloy joints

for the more extreme (-40◦C to 150◦C ) testing. Such results

further underscore the need to be cautious when proposing

lead-free solder substitutions for SMT configurations in harsh

environments. Failure analysis has shown that the solder joint

cracking and creep-fatigue damage propagates as expected for

chip resistors.

C. Power cycles

Power Cycling is a common procedure to investigate the

reliability of power electronic devices, especially power mod-

ules. There are two types of power cycle on test: 1. The

305



junction temperature power cycle; (where Tj is the temperature

in the junction region of a semiconductor chip). The higher

the maximum junction temperature, the higher is the stress to

the device which results in a reduced number of cycles. 2. The

case temperature power cycle, where the thermal cycling raises

and lowers the case temperature (Tc) at relatively long intervals

of time (minutes). The power cycling capability of power

semiconductor modules is dependent on absolute junction tem-

perature (Tj), the temperature swing (ΔTj) and the duration

(Tcyc, Ton) of the power cycle. The reliability of the module

regarding the thermal stress conditions over the lifetime are

used in HEV among power cycling and thermal cycling tests

[23]. In a combination of the electrical properties and thermal

behavior of a power module, a loss profile can be calculated

and these losses models can generate the temperature profiles

on the IGBTs and diodes. Furthermore, in order to calculate

a temperature profile from the losses, a thermal model of the

power module including the cooling system must be included.

An automatic algorithm is implemented to extract temperature

swings because of different thermal resistance values in the

system. The power cycling capability is influenced by the

junction temperature, the duration of loss generation, and

the current. A test cycle was performed with the following

paramteres; ΔTtest = 100 K, Tjmax = 150 ◦C, Ton = 2 s at

800 A. The calculation results is approx. 4000 power cycles

for the IGBT and the diode.

Another test has been performed for the IGBT module

on a passive thermal cycling and power cycling [24]. In the

thermal cycling, the IGBT module is mounted by a layer of

thermal grease into a combined heater and heat sink system

and undergoes passive temperature swings. The temperature

excursion is expressed in terms of the temperature at the

bottom of the base plate. Typically, ΔTc is set within the range

of 60 K to 100 K. The failure criterion in this test, is increase

of the thermal resistance of 20%. In the power cycling test,

the IGBT module is mounted on a heat sink. The dies are

actively heated by a current causing power loss in the dies.

The typical on-time is from seconds to minutes depending

on the maximum junction temperature and swing excursion.

Due to the direct heating of the dies power cycling allows a

very fast ramp up of the junction temperature Tj and the case

temperature Tc. The End Of Life (EOL) failure mechanisms in

the power cycling and thermal cycling are different. The first

leads to a forward voltage drop increase whereas the second

leads to a thermal resistance increase. The results shows, the

temperature swing in the solder corners is lower than that at the

case below the chip positions. However, cracks in the solder

start at the corners. The experimental data from the test suggest

that the substrate solder at low temperature swings behaves as

expected from a power law extrapolation of the passive thermal

cycling data gathered at higher temperature excursions. This

allows for the determination of the temperature swing of any

part in the module during the power cycling.

III. COMPONENT FAILURE IN POWER ELECTRONIC

SYSTEMS OF ELECTRO-MOBILITY APPLICATIONS

One of the most important challenges in the vehicles man-

ufacture is to consider the component failure rate estimation.

Therefore, Fig. 3 shows an overview during the past 15 years

on the components failure and their reliability assessments

methods which had been proposed by different researchers

in the literature. The switching devices are one of the most

critical components that the researchers focused on in the

electro-mobility applications.

A. Switching devices

Selecting a reliable switching devices for automotive system

should serve the lifetime targets. Also the necessity of the

ageing behaviour of the components and understanding the

effect of the steady state and varying failure rates have

influences on the system performance. In [8] the importance of

the components physics of failure approach for accurate failure

rate estimates that have to influence the target robust system

architecture. Usually the component failure rate is estimated

in accordance to (2):

λref (random) ≤ X2(cl ∗ (f + 2))

N ∗ ttest ∗Af
(2)

where, X2 is the Chi-square distribution, cl is the confi-

dence level, f is the number of failures in test, N is the number

of tested parts, ttest is the test (stress) time, and Af is the stress

parameter. Based on the principles of the dependence between

system reliability and component reliability, the failure rate can

be estimated based on simple failure rate calculations by (3):

λactual(life phase,t) =
β

η

(
t

η

)β−1

(3)

where, β is the Weibull shape parameter, and η is the

Weibull scale parameter. Few cases were presented, and the

simulations were linked to a real case in an automotive

power system with insulated gate bipolar transistor (IGBT)

module. Also as the number of switching devices into a vehicle

increases, it is necessary to pay attention to pattern changes

and also to the associated increasing robustness requirements.

B. Capacitors

Capacitors are widely used in many automotive electronic

systems and their quality, stability and reliability have been

analysed by automotive producers [9]. Since electric vehicles

are in widespread use, the electronic systems and components

that have enabled the realization of such a wide variety

of electric vehicles have all experienced a major evolution,

including the DC link power capacitor. Capacitors are also

exposed to harsh environments in this application. The purpose

of capacitors in electric vehicles is to reduce ripple currents of

power source, and to smoothen out DC bus voltage variations.

One major advantage is the ability of film capacitors to over-

come internal defects. As a result, there is no complete failure

and no short circuit, only a minimum capacitance decrease
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Fig. 3. Overview of sources of failure and failure components of power electronics

which can be useful as a measure of ageing. It offers the

space savings and no expansion problems across temperature

variation range (-55◦C to +125◦C). DC link capacitor devel-

opment has to match the evolution in power semiconductor

technology not only electrically, but also mechanically. Finally,

the tantalum capacitors also offer enhanced reliability (failure

rate 0.5%/1000 hours) and a higher category voltage at 125 ◦C

(78% of rated voltage) than standard devices (typically only

66% of rated voltage).

C. Solders in power electronic module

The Power Electronic Modules (PEMs) are widely used in

aerospace and automotive applications with the essentiality

of high reliability. Solder fatigue is one of failure mech-

anisms in PEMs and thus a reliability assessment method

for this failure mechanism is presented [10]. Insulated Gate

Bipolar Transistor (IGBT) is one of the components which

often works under heavy work load conditions and in harsh

environment. Thus, their required reliability standard is often

high. In service, PEMs often generate a large amount of heat,

and the induced high temperature and temperature swings

causes thermal stresses in the modules. As a result, cracks

are initiated and propagated in the solder layer; eventually

this will cause a rise in semiconductor junction temperature

and lead to the failure of the module. Fig. 4 illustrates the

steps of implementing the lifetime estimation of the module.

The reliability assessment method of the whole system can be

divided into two sections: 1) Compact electro-thermal model,

2) Compact thermal-mechanical model. In the temperature

profile, it consists of different temperature change amplitudes

and mean values. A rain flow counting algorithm can be ap-

plied to extract the numbers of cycles with certain temperature

ranges so accumulated damage is predicted.

IV. LIFETIME PREDICTION METHODS

Reliability calculation is one of the most critical drivers,

where emerging technologies requirements is very high in

order to be designed into these types of applications. Thus, this

field of reliability must be approached at the most fundamental

level when evaluating and predicting the products lifetime.

Some of the selected lifetime prediction methods are classified

in details and Table I provides an overview on how to be

applied for various power electronics components.

Table II shows a summary of some of the based approaches

used by prior-art in lifetime prediction of some power elec-

tronic components.

A. Capacitors life time model

1) Voltage stress: Capacitors are one of the most vulnerable

components in terms of failure level and time as analyzed

in [26]. Therefore, knowing how to predict the life time

of the capacitors would reduce the cost and insure safety.

Lifetime prediction of capacitors is mainly based on empirical

models as physical-based models are still not achieved. The

most widely used empirical model for capacitors is shown in

(4), which describes the influence of temperature and voltage

stress.

L = L◦ ×
(
V

V◦

)−n

× exp[

(
Ea

KB

)(
1

T
− 1

T◦

)
] (4)

Where L and L◦ are the lifetime under the use condition

and testing condition. V and V◦, are the voltage at use and

test conditions. T and T◦ are temperature in Kelvin at use and

test conditions. Ea is the activation energy, KB is Boltzmanns

constant (8.62105eV/K), and n is the voltage stress exponent.

Therefore, the values of Ea and n are the key parameters to

be determined in the above model.
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TABLE I. Different methods of lifetime prediction and assessment

Methods Definitions Math. Equations Models

Weibull 
distribution

&
Failure rate

Frequently used to 
model fatigue 
failure.

( )  1  exp [ ( ) ]tF t 


  

F: Probability of failure
t: Test statistics (e.g. no. of 
cycle) 

: Characteristics life
: Shape parameter

Early life 
region
0< <1

Constant
failure

rate
region

=1

Wear out 
region

>1

Module
Time

Finite 
element

A numerical method 
for solving a system 
of governing 
equations over a 
domain of a 
continuous physical 
system in to simple 
geometric shape.

1{ } [ ] { }U K F

U: Behavior (e.g. 
temperature, velocity, …)
K: Property  (e.g. 
conductivity, viscosity, …)
F: Action (e.g. heat source, 
force, …)

Electron 
backscatter 
diffraction

A beam of electrons 
is directed at a point 
of interest on a tilted 
crystalline sample by 
70°.

2 sinn d 

n: positive integer 
is the wavelength of 

incident wave

Rain flow 
counting

A method for 
counting fatigue 
cycles from a time 
history and these 
fatigue cycles are 
stress-reversals.

The stress history should be 
reduced to peaks and 
valleys by software. (e.g.
using Matlab )

Fa
ilu

re
 ra

te

 

 

 

 

 

  

Total power 
dissipation in 
component #n

Compact electro-
thermal model 

Compact thermal 
mechanical models

Rain flow counting 
algorithm

Lifetime 
estimation

Mission 
profile

Lifetime models 
(wire bond and 

solders)

Fig. 4. Power electronic module lifetime estimation based on mission profile and rain flow counting algorithm [10]

2) Current ripple stress: DC-link (dc) capacitors are bulky,

heavy, and expensive. Nerveless of their importance to at-

tenuate ripple current, reduce emission of electromagnetic

interference, and suppress voltage spikes caused by leakage

inductance and switching operations in the electric vehicles

(EV) inverter systems [28].

The ripple current is one of the main considerations in

sizing and selecting dc-link capacitors. In EV inverter systems,

the capacitor ripple current consists of various frequency

components that correspond to different PWM strategies.

Furthermore, the electro-thermal coupling dynamics must be

evaluated in order to estimate the true core temperature of the
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TABLE II. A summary of lifetime prediction based approaches

Assessed 
Component Stressor Based Approach Ref

Chip Resistors
(solders)

Thermal cycling Weibull model [7][6][1]

Thermal cycling Electron Backscatter Diffraction (EBSD) [5]
Vibration

IGBT

Thermal cycling Electron Backscatter Diffraction (EBSD) [16]
Vibration

Temperature Finite Element Method (FEM) [12][10]

Thermal cycling Finite Element Method (FEM) [14][15][20]
[22]

Thermal cycling Weibull model [8]

Vibration Finite Element Method (FEM) [4]

Power cycling Finite Element Method (FEM) [23][24]

Thermal cycling Rain flow counting algorithm [25]

Capacitors Thermal cycling Failure rate model [19]

Voltage stresses Empirical model [26]
Current ripple 
stresses Life time model [28]

dc-link capacitors, which is critical to predict the capacitor

lifetime. The maximum current stress Icap on a dc link

capacitor can be expressed by (5) over a wide variety of

operating conditions for a specific motor, modulation method,

and battery:

Icap = IN

√
M

32π
[4
√
3(4cos2φ+ 6)− 9π M (cos2φ+ 1)]

(5)

Where M is the modulation index, IN is the output phase

current amplitude, and φ is the phase delay of the inverter

output current with respect to the voltage fundamental.

The capacitor lifetime also is influenced by the capacitor

core temperature and the ripple current which can be expressed

by (6).

Le = Lb 2
Tjc−Ta

10 K[ I
I◦

2]
[ΔTjc

10

]
(6)

where Lb is the capacitor lifetime under its maximum

temperature and it is commonly given by the manufacturer

data sheets. I◦ denotes the allowable maximum current ripple

at a given frequency, which is also given in data sheets, and I
denotes the actual current ripple value. K is a constant, which

is typically assigned to a value of 2. Tjc is the junction to case

temperature, Ta is the ambient temperature.

B. IGBT module life time model

There are three dominant wear-out failure mechanisms for

the IGBT modules due to thermal cycle stress: 1) baseplate

solder joints cracking; 2) chip solder joint cracking; and 3)

the wire bonds lift off. Fig. 5. shows a detailed structure of an

IGBT module classified into different material in the module

with their thermal expansion and it leads to stress formation in

the packaging and continuous degradation during each cycle

until the material fails.

Fig. 5. A detailed structure of an IGBT module.

The model shown in (7) derives the number of cycles to

failure under thermal cycling.

N = k(�T −�T◦)−m (7)

Where k and m are empirically determined constants and N
is the number of cycles to failure. �T is the thermal cycling

range and �T◦ s the portion of �T that in the elastic strain

range. If �T◦ is negligible compared with �T , it can be

concluded from the above equation which then becomes the

Coffin-Manson model which previously discussed in [27].

V. CONCLUSIONS

In this paper a review of the reliability of power electronic

in electro-mobility applications has been carried out in order

to provide a picture of the current status in this particular

research field. The goal with reliability engineering is to

prevent the creation of failures and extend the service life
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time as well. Reliability is the most important performance in

the power electronics index. As it has a great influence in the

industry of most of the application as (power transmissions,

power distributions, aerospace and automotive applications).

Different sources of failure, failed components and methods of

the lifetime reliability assessments have been presented. Aim-

ing for introducing new reliability assessments and validation

methods in the area of automotive electronics.
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Abstract— Boost converters are needed in many applica-
tions that require the output voltage to be higher than the
input voltage. Recently, boost type converters have been
attracted by the industrial applications, and hence it has
become an extremely hot topic of research. Recently, many
researchers proposed the impedance source converters
with their unique advantages as having a high voltage
gain in a small range of duty cycle ratio. However,
the thermal behaviour of the semiconductor devices and
passive elements in the impedance source converter is an
important issue from a reliability point of view and has not
been investigated yet. Therefore this paper presents a com-
parison between the conventional boost, the Z-source, and
the Y-source converters based on the thermal evaluation of
semiconductors. In addition, the three topologies are also
compared with respect to their efficiency. The operational
principle, mathematical derivations, simulation results and
finally conclusion comparisons are presented in this paper.

Key words- boost converter; Z-source converter; Y-
source converter; winding losses; core losses; gain; thermal;
reliability

I. INTRODUCTION

Boost type converters are essentially needed for many

renewable energy applications such as Photo Voltaic (PV),

Wind Turbine (WT), automotive applications (electric and

hybrid vehicles) as these often have lower input voltage than

the required load voltage. In conventional boost converters, the

demanded voltage gain normally requires higher duty cycle

(sometimes close to unity) which leads to high conduction

losses, higher voltage and current stresses on the switching

devices. However, the aforementioned stressor factors may

critically affect the reliability and the lifetime of the power

electronic components. According to a review based on con-

dition monitoring for device reliability in power electronic

systems presented in [1], semiconductors and soldering fail-

ures in device modules are sharing totals 34% of converter

system failures. In today’s perspective toward the reliability

assessment of power electronic components and systems, three

main aspects should be considered as shown in Fig. 1 [2].
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Fig. 1. Aspects of power electronics reliabilty assessment [2].

The design and verification aspect could be related to cover

the aforementioned shortcomings in the conventional boost

converter shown in Fig. 2. Both Z-source and Y-source as

shown in Fig. 3 and Fig. 4 converters were proposed by

the researchers as impedance source network converters to

compromise the high voltage gain with small duty cycle

ratio. Due to their flexibility for a wide voltage ranges and

power conversions (DC-DC, DC-AC, AC-AC, and DC-AC)

[3], various types of impedance source networks were reported

as a solution to overcome the limitations of the voltage source

inverter VSI, current source inverter CSI and some of the

conventional uni/bi - directional converters [4].

Moreover, an important advantage of the impedance net-

works is the small duty cycle ratio, which reduces the voltage

stress experienced by the component, and reduces the losses

of the switch as well [5]. Therefore, many new topologies

are proposed with each being claimed to have improved

performances [3]. At present, a collective investigation of

some of the existing boosting converters has not been initiated

especially with reference to their thermal and reliability issues.

Furthermore, an investigation on the Y-source converters from

the point of view of thermal performance at high power ratings

has not been reported as well. The junction temperature is
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one of the important factors that is affecting the thermal

performance of the converter, and also the reliability [6].

In this paper the conventional boost, Z-source and Y-

source converters are compared from the point of view of

their efficiencies and junction temperature with respect to a

wide power range and in a constant ambient temperature.

Moreover, calculations all the relevant losses (e.g switching

and conduction losses) of the power switching devices during

the operation is considered in the comparison.

This paper conducts a comprehensive investigation of the

research topic of power converter. Section II is focusing on

the theory of operation and design of each converter. Section

III describes the evaluation of the power losses and thermal

performance of the three converters. Section IV describes

the simulation results and gives also discussion. Finally, the

conclusion is given in section V.

II. CONVERTER DESIGN AND THEORY OF OPERATION

In this section the theory of operation and design formulas

are presented.

A. Conventional boost converter

A boost converter is a step up converter from low input

voltage to higher voltage requiring a duty cycle (0 <D<1).

Thus its simple theory of operation as well as component

count wise allows it to be a competitor with other boosting

converters. The basic structure of the boost converter circuit,

equivalent circuit for on state mode of operation and off state

mode of operation are shown in Fig. 2. It compromise one

active switch SW, a diode D1, an inductor L1, and a capacitor

C1 for introducing a high voltage boost with (D>0.5). The two

modes of operation are as following:

a) During the on state: the switch is closed, the

current flows through the inductor and store the

energy by the generating magnetic field.

b) During the off state: the switch is open, the current

passed will be reduced as the voltage across the

inductor is reversed and the magnetic field previously

created will decrease to maintain the current flow to

the load and the diode will charge the capacitor with

higher voltage.

The input/output voltage relationship and the duty cycle is

expressed in (1):

Vout =
Vin

1−D
(1)

where Vout is the output voltage, Vin is the input voltage

and D is the duty cycle needed for the required voltage gain.

B. Z-source converter
The Z-source converter (ZSC) is very convenient topol-

ogy in many alternative energy sources and other different
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applications [7, 8]. The ZSC has the capability of ideally

giving an output voltage range from zero to infinity regardless

of the input voltage. The Z-Source converter circuit, and its

two modes of operation are shown Fig.3. It consists of two

inductors (L1, L2) and two capacitors (C1, C2) connected in

X shape to be coupled to the dc voltage source. The ZSC

can produce a required dc output voltage regardless the input

dc source voltage. The two modes of operation are as the

following:

a) In the on state: the switch is closed and the

impedance capacitors (C1, C2) release energy to the

inductors (L1, L2) and then the voltage source and

the load will disconnect the Z- source network due

to the turn off of the diodes (D1, D2). The major

concern is the large conduction current passing

through the switch during the on state, which may

decrease the converter efficiency.

b) In the off state: the switch is opened and the

input voltage will supply energy to the load through

the two inductors as well as add energy to the two

capacitors to compensate the energy lost during on

state.

The input/output voltage relationship and the duty cycle is

expressed in (2):

Vout =
Vin

1− 2D
(2)

where Vout is the output voltage, Vin is the input voltage

and D is the duty cycle needed for the required voltage gain.

C. Y-source converter

The Y-source converter is a very promising topology for

higher voltage gain in a small duty ratio and in a very wide

range of adjusting the voltage gain [9–11]. The range of duty

cycle in the Y-source is narrower than the Z-source and the

boost converter. Fig. 4 shows the Y-source impedance network

and its two modes of operation. It realized by a three-winding

coupled inductor (N1, N2, and N3) for introducing the high

boost at a small duty ratio for SW. It has an active switch

SW, two diodes (D1, D2), a capacitor C1, and the windings

of the coupled inductor are connected directly to SW and

D1, to ensure a very small leakage inductance at its winding

terminals. The two modes of operation are as following:

a) In the on state: the switch is closed, D1 and

D2 are off causing the capacitor C1 to charge the

magnetizing inductor of the coupled transformer

and capacitor C2 discharge to power the load.

b) In the off state: the switch is opened, D1 start

to conduct causing the input voltage to recharge the

capacitor C1 and the energy from the supply and

the transformer will also flow to the load. When D2

starts conducting, it recharges C2 and the load is to

be continuously powered.

The input/output voltage relationship and the duty cycle is

expressed in (3):

Vout =
Vin

1−KD
(3)

where Vout is the output voltage, Vin is the input voltage,

D is the duty cycle and K is the winding factor. The winding

factor K is calculated according to the turns ratio of the three-

winding coupled inductor and expressed in (4):

K =
N1 +N3

N3 −N2
(4)

where (N1 : N2 : N3) are the winding ratios of the coupled

inductor.

A comparison between the inductors, the capacitors design,

voltage and current ripples for the three converters is shown

in Table I.

III. EVALUATION OF POWER LOSSES AND THERMAL

PERFORMANCE

In this section, formulas for calculating the relevant power

losses are presented. PLECS toolbox is used for the three

converter analysis. The parameters selected for each converter

are compared according to the passive components counts and

their voltage and current ripple are as shown in Table I. The

same for the switching devices, which are designed according

to each converter requirements for the voltage and current

ratings for a realistic comparison.

A. Switching and conduction losses calculations

Switching losses occur when the device is transitioning

from the blocking state to the conducting state and vice-versa.

This interval is characterized by a significant voltage across

its terminals and a significant current through it. The energy

dissipated in each transition needs to be multiplied by the

switching frequency to obtain the switching losses;

The switching losses Psw are expressed in (5) as:

Psw = (Eon + Eoff )× fsw (5)

where Eon and Eoff are the energy losses during turn on

and turn off of the switch, fsw is the switching frequency.

Conduction losses occur when the device is in full conduc-

tion mode. These losses are in direct relationship with the duty

cycle.

The average conduction losses Pcond are expressed in (6)

as:

Pavg.cond =
1

T

∫ T

0

[vce(t)× ice(t)] dt (6)

where vce is the on state voltage, an ice is the on state

current. The time period T is as given in (7):

T =
1

fsw
(7)

where fsw is the inversely proportional to time period T .
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TABLE I. Components design for the Boost, Z-source and Y-source converters

Components Boost Z-source Y-source

Current ripple across 
inductor

2 20%0. out
l

in
LI P I

V
   20%l LI I  20%l LI I

Voltage ripple across 
capacitor

2%
outC outV V  2%C outV V  2%

outC outV V 

Inductor equation
in

L s

DVL
I f





1 2
c

L

T VL L L
I

   

Where, T DT 

1.056
2 3 0.29210 , c

L lik
c

lik

N AL A N L
L

L L L

 



 
 

 

Capacitor equation



 out max
out

s out

I D
C

f V




1 2 %
L

c c

TC
V

I
V

   
 

C C

out
out

l s out

V DC
R f V




 

 
ST o

1 2
s o

d 1 PC  1
2% 1 f 1 k D VD

     

out
out

l s out

V DC
R f V




 

B. Capacitor ESR losses calculations

The Equivalent Series Resistance ESR is the value of the

resistance, which is equal to the total effect of a large set

of energy loss mechanisms occurring under the operating

conditions. So the capacitors losses are expressed in (8) as:

Pcap.loss = I2cap. × ESR (8)

where Icap. is the rms current passing through the capacitor,

and ESR is the equivalent series resistance measuring the

effect of the losses dissipated in the capacitor.

C. Winding and core losses calculations

According to the Steinmetz’s equation, which is a physics

equation used to calculate the core loss of magnetic materials

due to magnetic hysteresis, the core losses is expressed in (9):

Pv = kfαB̂β (9)

where B̂ is the peak flux density excitation with frequency

f , Pv is the time-average power loss per unit volume, and the

material parameters (α, β, k) are material parameters.

The copper losses in the winding describe the energy

dissipated by resistance in the wire used to wind a coil. It

is divided in to 2 types (DC and AC winding loss). The DC

winding losses, can be calculated in (10) as:

PDC = I2av ×RDC (10)

Where, (PDC) is the DC copper losses in the winding, Iav
is the average current passing through the wire, and RDC is

the DC resistance of the wire.

AC copper losses can be significant for large current ripple

and for high frequency. It can be calculated through the skin

effect, where the current density is an exponentially decaying

function of the distance into the wire, with characteristic length

δ is known as the skin depth in (11):

δ =
7.5√
fs

(11)

where δ is the skin depth in cm, and fs is the switching

frequency which in our design is 20 kHz.
In order to calculate the AC resistance RAC , the thickness

h of the wire should be known since it is a function of the

DC resistance RDC which can be calculated in (12):

RAC =
h

δ
×RDC (12)

where h is the thickness of the wire in cm.
The AC winding losses can be calculated as given in (13)

as:

PAC = I2AC−rms ×RAC (13)

Where, PAC is the AC winding loss, IAC−rms is AC ripple

rms current passing through the wire, and RAC is the AC

winding resistance.

D. Magnetic core design calculations
In this section, the magnetic core design [12] is illustrated

through the following steps:
1) In order to select a proper core size, the DC current

and the inductance required with DC bias should be known to

select the core from the core selector chart according to the

calculated value in (14):

LI2DC ⇒ (mH.A2) (14)

A high flux 58337 core [12], were selected for the 3

converter in order to have fair comparison from an efficiency

point of view.
2) Inductance, core size and permeability are now known,

then calculating the no. of turns by determine the minimum
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TABLE II. Common

specifications and simulation parameters for the Boost, Z-source and Y-source converters

Common specifications

Maximum Power rating 20 kW
Voltage gain 2
Input voltage Vin 200 V
Output voltage Vout 400 V
Switching frequency fs 20 kHz
Resistive load Rl 8
Maximum junction temperature Tj-max. 125 °C

Simulation parameters Boost Z-source Y-source

Duty cycle 0.5 0.25 0.167

No. of turns 64 55 (32:32:64)

RMS current per device 71 A 100 A 120 A

MAX voltage per device 400 V 400 V 400 V

inductance factor ALmin by using the worst case negative

tolerance (generally −8%) given in the core data sheet in (15)

and 16

Almin = Al − 0.08Al (15)

N =

√
L× 103

Almin
(16)

where Almin is the minimum inductance factor (nH/T 2), and

L is the inductance in (μH).
3) The DC resistance can be estimated after knowing the

winding factor of the core, wire gauge (AWG), and the no. of

turns. The DC resistance can be calculated in (17) as:

RDC = MLT ×N × Ω/Length (17)

Where, MLT is the mean length per turn, and Ω/Length
is the resistance per meter.

IV. RESULTS AND DISCUSSION

In this section, different power loading for the voltage

gain equal to 2 are presented in order to demonstrate fair

comparison between the 3 topologies with respect to the

thermal performance and the losses (switching, conduction,

capacitor ESR losses, core and winding losses) for calculating

the efficiency of each converter.

Thermal and efficiency investigation are presented in a

separate subsection. Table II summarizes the specifications and

the requirements used in the simulation results.

A. Junction temperature investigation of the switch under
different power loading

Based on designing a proper heat sink, where it is assumed

125 ◦C is the maximum allowable junction temperature for

the device and also the amount of heat losses generated from

the devices in each topology. The estimation of the junction

temperature of the switches are done according to the thermal

model and the mapped losses using PLECS toolbox. The

estimation of the junction temperatures are different for the

3 topologies, since the desired thermal resistance of the heat

sink is not the exact value found in the manufactured heat

sinks.
In this case, the power loading is varying from 5 to 20 kW,

and constant ambient temperature is assumed which is 25 ◦C.

The results of the compared topologies are shown in Fig. 5.
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Fig. 5. Junction temperature variation at different power loading of the switch.

B. Efficiency investigation under different power loading
In this subsection the efficiency is calculated according

to the total power losses for each converter as listed in the

beginning of section IV using the same conditions listed in

Table 2. The results in Fig. 6 shows that the boost converter

has the highest efficiency of 98% compared with the Y-source

converter 96% and the Z-source converter 96.7% at 20 kW

loading power.
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Fig. 6. The efficiency at different loading power.

Also to give a better understanding of the distribution of

each type of losses, three pie charts are presented in Fig. 7,

Fig. 8, and Fig. 9 respectively. The magnetic losses in the

Y-source converter is sharing 34% of the total losses, this is

the double percentage of the magnetic losses in the Z-source

converter and 1.5 times the percentage in the boost converter.

The capacitor losses in percentages are almost the same in

the 3 converters. The switching and conduction losses are the

lowest in the boost converter compared to the Z- source and

Y-source converters.
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Switching loss
83 W
26%

Conduction loss
169 W
53%
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1%
DC winding
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19%

AC winding loss
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0%
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Core loss
DC winding loss
AC winding loss

Fig. 7. Distribution of the different losses for the boost converter at 20 kW
loading power.
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AC winding loss
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Fig. 8. Distribution of the different losses for the Z-source converter at 20
kW loading power.
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DC winding loss
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Fig. 9. Distribution of the different losses for the Y-source converter at 20
kW loading power.

V. CONCLUSIONS

In this paper a comparison between the Y-source, Z-source

and the boost converter has been performed with respect

to their thermal behaviour and efficiency. Different loading

conditions between 5 kW and 20 kW are considered during

the studies on the efficiency and junction temperature of the

converters. Investigations on both the magnetic and electrical

losses are also given. This paper summarized the comparison

between the type of losses at constant loading condition. The

thermal performances are quite similar in the 3 converters,

and the boost converter is better than both the Z-source and

Y-source converters in this specific double voltage gain op-

eration. Different higher voltage gains should be investigated

further in the future.
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Abstract—The Y-source converter is one of the recent
proposed impedance source converters. It has some advan-
tages as having a high voltage gain between the input and
output voltage sides using very small duty cycle ratios. For
many applications, the input voltage needs to be boosted to
higher output voltage, such as for fuel cell, battery electric
vehicles and renewable energy applications. Understanding
the loss distribution and thermal performance is very
important in order to be able to design a reliable converter
with longer lifetime. In this paper, the loss distribution of
a Y-source converter for a wide voltage and power range
is presented. The influence of the heat losses generated in
the converter is also considered for different analysis. A
simulation model is developed and verified experimentally
rated at 300 W.

I. INTRODUCTION

Power converters have been used in many renewable energy

applications [1] and more recently with electric vehicles [2]

and fuel cell applications [3], which require high voltage gain.

Researchers have claimed that impedance source converter has

its uniquely advantages such as, having a high voltage gain in

the small range of duty cycle and more degree of freedom for

setting the voltage gain as needed for a specific application.

A collective investigation has been achieved for the Y-source

converter [4], [5] and compared with other [6] (conventional

boost and Z-source) converters with respect to the thermal

and efficiency performances. However, to our knowledge the

loss distribution has not been validated experimentally yet.

The Y-source converter circuit diagram and it’s two modes

Fig. 1. Boost circuit topology a) Y-source converter equivalent circuit. b)
Equivalent circuit for on state. c) Equivalent circuit for off state.

of operations are shown in Fig. 1. It is realized by a three-

winding coupled inductor (N1, N2, and N3), an active switch

SW, two diodes (D1, D2), a capacitor C1 [6], [7]. Due to the

discontinuity nature of the current in winding N1, an input



(a) (b)

Fig. 2. a) Experimental set-up of Y-source converter. b) Thermal image of the prototype Y-source converter operating at nominal load.

capacitor was added in the prototype to smoothen the input

current. However, other variations of the Y-source converter

which provide a constant input current also exist [8].

II. METHODOLGY

In order to analyse the loss distribution and the efficiency of

the converter a prototype of the Y-source converter has been

built at 300 W rated power which is shown in Fig. 2(a). The

thermal image of the converter shown in Fig. 2(b) reflect the

case temperature of all the components in the converter during

operation. FLIR thermal camera is used, where it is seen that

the highest temperature is of the switch (MOSFET) which

indicates a high loss.

In Table I all parameters used in both the simulation model

and the prototype design are shown. For the inductor charac-

ertics, an MPP core [9] type used, which has the advantage of

having lower losses than other types as ferrite cores. Different

power loadings are considered for the loss distribution inves-

tigation. These losses can be listed as switching, conduction,

capacitor ESR, core and winding losses [6] [10].

In Table II the design formulas of the passive elements

(inductor and capacitor) are shown.

Furthermore, the thermal performance is also considered,

since the junction temperature [11] is an important parameter

as it affects the lifetime of the converter. PLECS toolbox is

used in the results of the simulation model with different

loading powers as shown in Fig. 3.

It is to be noted that the heat losses of the switch and the

two diodes also is included in the simulation model in order

to investigate the junction temperature.

All analysis are performed under the same operating condi-

tions considering the ambient temperature 25 ◦C, the switching

TABLE I.

Parameters used in the simulation and expermintal prototype of the Y-source converter.

Parameter Value / description

Rated power (P) 300 W
Voltage gain 4
Winding factor (K) , 1 3

3 2

N NK
N N





4

Input voltage (Vin) 60 V
Output voltage (Vout) 240 V
Duty cycle (dst) 0.1875
Turns ratio of coupled inductor (N1:N2:N3) 5:1:3
No. of turns (N1:N2:N3) 80:16:48
Core MPP C055863A2
Switching frequency (fs) 20 kHz
Capacitors Cin = 470 F, 400 V Kemet

C1 = 470 F, 400 V Kemet
C2 = 470 F, 400 V Kemet

Switch (Mosfet) C2M0040120D, 1200v, 60 A
Diode D1 C3D25170H, 1700v, 26.3 A
Diode D2 C3D20060D, 600v, 20 A

TABLE II.

Passive component design in the Y-source converter.

Passive Components Y-source

Inductor 

1.056
2 3 0.29210 , c

N L lik
c

N lik

N AL A N L
L

L L L

  
 

 

Capacitor 
 

o
1 2

s o

D 1 PC  1
2% 1 f 1 k D VD

     

out
out

l s out

V DC
R f V




 
 LN: Nominal inductance, Llik: leakage inductance, K: winding factor

frequency 20 kHz and the voltage gain (G=4) as listed in Table

I.

III. EVALUATION OF POWER LOSSES AND THERMAL

PERFORMANCE

In this section, all the equations used in calculating the

relevant power losses are presented [6], [12]. PLECS toolbox



Fig. 3. PLECS model of a Y-source converter for thermal analysis.

is used for the Y-source converter analysis. Loss models are

developed in PLECS and compared with the losses equations

to map the losses in the simulation model.

A. Switching and conduction losses calculations

1) The MOSFET switching losses are a function of

the load current and the switching frequency. The

switching losses Psw are expressed in (1) as:

PSW = Vds × Isw × fSW × (QGS2 +QGD)

IG
(1)

where Vds which is the drain to source voltage,

Isw which is the switch (drain) current, fsw is the

switching frequency, QGS2 is the gate source charge

and QGD is the gate drain charge, and IG is the

gate current.

2) Conduction losses occur when the device is in

full conduction mode. Neither of these losses are a

function of the switching frequency.

The conduction losses Pcond are expressed in (2) as:

Pcond = Rds(on) × I2sw(RMS) (2)

where Rds(on) is the resistance of the selected MOS-

FET, Isw(RMS) is the root mean square current

passing through the MOSFET.

B. Capacitor ESR losses calculations

The Equivalent Series Resistance (ESR) is a param-

eter, which models the total effect of a large set of

energy loss mechanisms in the capacitor occurring

under the operating conditions through a certain

value of a resistance. So the capacitors ESR losses

are expressed in (3) as:

Pcap.loss = I2cap. × ESR (3)

where Icap. is the rms current passing through the ca-

pacitor, and ESR is the equivalent series resistance

measuring the effect of the losses dissipated in the

capacitor.

C. Winding and core losses calculations

1) The winding losses are the energy dis-

sipated by the resistance of the wire in the

coil. It can be classified into two types of

losses (DC and AC winding loss). The DC

winding losses can be calculated in (4) as:

PDC = I2av ×RDC (4)

where, PDC is the DC copper losses in

the winding, Iav is the average current

passing through the wire, and RDC is the

DC resistance of the wire.

2) AC winding losses can be significant

for large current ripple and also for high

frequency. It can be calculated through the

skin effect, where the current density is

an exponentially decaying function of the

distance into the wire, with a characteristic

length δ, which is known as the skin depth.
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Fig. 4. Illustration diagram of switch loss calculatuion in Y-source converter prototype. a) waveform of the switch current (isw) and switch volatge (vds).
b) calculation method.

In order to calculate the AC resistance RAC ,

the thickness h of the wire should be known

since it is a function of the DC resistance

RDC which can be calculated in (5):

RAC =
h

δ
×RDC (5)

where, h is the thickness of the wire in cm

and δ is the skin depth.

The AC winding losses can be calculated as

given in (6):

PAC = I2AC−rms ×RAC (6)

Where, PAC is the AC winding loss,

IAC−rms is AC ripple RMS current

passing through the wire, and RAC is the

AC winding resistance.

3) According to Steinmetz’s equation, which

is used to calculate the core loss of magnetic

materials due to magnetic hysteresis, the

core losses is expressed in (7) as:

Pv = kfαB̂β (7)

where B̂ is the peak flux density excitation

with frequency f , Pv is the time-average

power loss per unit volume, and the param-

eters (α, β, k) are related to the material.

IV. SIMULATION AND EXPERMINTAL RESULTS

According to the loss distribution shown in Fig. 5 of the pie

chart, and the thermal image shown in Fig. 2(b) the switch

(MOSFET) is the most critical component in the Y-source

converter as 76% of the total losses are generated from the

switch. Therefore, it is decided to focus on validating the

switch loss in the prototype.

As stated earlier, the loss calculations in the Y-source simu-

lation model are performed through PLECS toolbox. Since the

power losses of the switch could not be measured directly, the

total switch loss is calculated based on the switch voltage and

current measurements. Therefore, in order to validate the loss

calculations in the Y- source prototype converter, the switch

voltage (vds) and current (isw) waveforms obtained from the

prototype are processed in Matlab as shown in Fig. 4.

A. Simulation results

In this section, starting with the initial condition as a dc

input voltage source powering the converter where, Vin= 60

V and an input capacitor Cin is added in order to smoothen the

input current signal and at the same time the current passing

through the winding N1, due to the discontinuity nature of the

input current iin of the Y-source converter.

Fig. 5 provides more detailed analysis for the amount of

losses in the simulated converter at 300 W rated power and

four times voltage gain. The results indicate that the switch

losses is sharing 76%, the total conduction losses of the two

diodes (D1 and D2) is 6%, the capacitor loss is 15%, and the

heat loss generated from the winding loss is only 3%.

Furthermore, it is noted that reducing the power level from

300 W to 100 W has a significant influence on the loss

reduction of the switch.

The results in Fig. 6 shows the losses distribution for the

simulated converter at three power levels (100 W, 200 W, and

300 W) and two different voltage gains (3 and 4). The switch

losses indicated in this figure are for the total losses (switching

and conduction loss) generated from the MOSFET, the diodes

loss is the total losses for (D1 and D2). In the winding loss,

only the DC winding loss is presented since the AC winding

loss is minimal so it is neglected. It can be seen from the

losses distribution that the losses of the switch is the highest

power loss at different power levels and voltage gains.



Fig. 5.  Simulated power losses distribution for the Y-source converter at 
300 W power loading and voltage gain of 4.

Fig. 6. Simulation results of different losses distribution for the Y-source 
converter at different loadings 100 W, 200 W and 300 W loading and different 
voltage gains (3, and 4). 
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B. Experimental results

The obtained waveforms are captured by a 100 MHz digital

phosphor oscilloscope (DPO2014) from Textronix.

Fig. . Experimental waveforms of the Y-source converter with k = 4, dst =
0.19 and P = 300 W at its zoom view where, Ch. 1: input current (iin), Ch.
2: output current (iout), Ch. 3: input voltage (vin), and Ch.4: output voltage
(vout).

In Fig. 7 different experimental currents and voltage wave-

forms located in the converter are presented where they are as

expected under the same conditions as listed in Table I, 300 W

rated power and four times gain. The input and output sides

are shown ((vin), (iin), (vout) and (iout)), where it matches

the simulated waveforms.

In order to be able to verify the loss distribution in the Y-

source converter, the measurements of the voltage and current

passing through each component need to be known. Since the

switch loss is the highest generated loss in the converter, two

steps are taken for the validation.

First, measuring the general efficacy of the prototype out-

put/input sides. Second, specify closer analysis for the switch

losses and its thermal behaviour by including a case/junction

temperature measurement.

In the first criteria, the total efficiency of the converter can

be measured in both the simulation model and in the prototype

from Fig. 7 where the output/input signal can be easily assign

the efficiency to be (Pout)/(Pin)= 84%, while in the simulation

model it is equal 86%.

Fig. . Experimental waveforms of the Y-source converter with k = 4, dst =
0.19 and P = 300 W at its zoom view Where, Ch. 1: current through winding

N3 , Ch. 2: current through diode D2 (iD2 ), Ch. M: current through SW
(isw) obtained through the math opertaion on the osciliscope, and Ch.3: drain
to source voltage (vds).

Fig. 8 shows the voltage (vds) and current (isw) of the

(switch) MOSFET, and the current (iD2) through diode D2,

and current (iN3) passing through the winding N3.

The total switch current can be measured through the math

operation in the oscilloscope and compared with simulated one

to verify the total switch loss as shown in Fig. 6. The value of

the obtained switch current (isw), which can be seen in Fig.

8 from the prototype, matches with the switch current in the

simulation model and as well the same average power loss

generated for the total loss of the switch. In the simulation

model the total switch loss is 36.5 W, and the measured

average power loss from the processed data through Matlab is

38.5 W.

Moreover, the case temperature (54.3◦C) of the switch,

which can be seen in the thermal image shown in Fig. 2b



matches with the expected calculated value of the simulated

junction temperature (62.3◦C) while using the same heat sink

in both the simulation model and the prototype.

V. CONCLUSION

In this paper an investigation of the Y-source converter

has been performed with respect to its thermal behaviour and

loss distribution. The results show that the Y-source converter

operates with high voltage gain and small duty cycle ratio.

It is observed that the Y-source converter experiences high

current stress in its switch, which therefore has the highest

risk and must be sized appropriately. Loss distribution and case

temperature measurement with respect to 300 W power level at

the same ambient temperature is performed. Most of the losses

in the converter was in the switch. Different power levels

have been analyzed and the total power loss of the switch has

been verified experimentally. The Y-source converter prototype

behaves as expected compared with the simulation model.
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