106 research outputs found

    Partial Enumerative Sphere Shaping

    Full text link
    The dependency between the Gaussianity of the input distribution for the additive white Gaussian noise (AWGN) channel and the gap-to-capacity is discussed. We show that a set of particular approximations to the Maxwell-Boltzmann (MB) distribution virtually closes most of the shaping gap. We relate these symbol-level distributions to bit-level distributions, and demonstrate that they correspond to keeping some of the amplitude bit-levels uniform and independent of the others. Then we propose partial enumerative sphere shaping (P-ESS) to realize such distributions in the probabilistic amplitude shaping (PAS) framework. Simulations over the AWGN channel exhibit that shaping 2 amplitude bits of 16-ASK have almost the same performance as shaping 3 bits, which is 1.3 dB more power-efficient than uniform signaling at a rate of 3 bit/symbol. In this way, required storage and computational complexity of shaping are reduced by factors of 6 and 3, respectively.Comment: 6 pages, 6 figure

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    First Experimental Demonstration of Probabilistic Enumerative Sphere Shaping in Optical Fiber Communications

    Full text link
    We transmit probabilistic enumerative sphere shaped dual-polarization 64-QAM at 350Gbit/s/channel over 1610km SSMF using a short blocklength of 200. A reach increase of 15% over constant composition distribution matching with identical blocklength is demonstrated

    Temporal Properties of Enumerative Shaping:Autocorrelation and Energy Dispersion Index

    Get PDF
    We study the effective SNR behavior of various enumerative amplitude shaping algorithms. We show that their relative behavior can be explained via the temporal autocorrelation function or via the energy dispersion index

    On constellation shaping for short block lengths

    Get PDF
    Gaussian channel inputs are required to achieve the capacity of additive white Gaussian noise (AWGN) channels. Equivalently, the n-dimensional constellation boundary must be an n-sphere. In this work, constellation shaping is discussed for short block lengths. Two different approaches are considered: Sphere shaping and constant composition distribution matching (CCDM). It is shown that both achieve the maximum rate and generate Maxwell-Boltzmann (MB) distributed inputs. However sphere shaping achieves this maximum faster than CCDM and performs more efficiently in the short block length regime. This is shown by computing the finite-length rate losses. Then the analysis is justified by numerical simulations employing low-density parity-check (LDPC) codes of the IEEE 802.11 standard

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Enumerative Sphere Shaping for Rate Adaptation and Reach Increase in WDM Transmission Systems

    Full text link
    The performance of enumerative sphere shaping (ESS), constant composition distribution matching (CCDM), and uniform signalling are compared at the same forward error correction rate. ESS is shown to offer a reach increase of approximately 10% and 22% compared to CCDM and uniform signalling, respectively.Comment: 4 Pages, 4 figure
    corecore