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Abstract

Gaussian channel inputs are required to achieve the capacity of additive white
Gaussian noise (AWGN) channels. Equivalently, the n-dimensional constellation
boundary must be an n-sphere. In this work, constellation shaping is discussed
for short block lengths. Two different approaches are considered: Sphere shaping
and constant composition distribution matching (CCDM). It is shown that both
achieve the maximum rate and generate Maxwell-Boltzmann (MB) distributed
inputs. However sphere shaping achieves this maximum faster than CCDM and
performs more efficiently in the short block length regime. This is shown by
computing the finite-length rate losses. Then the analysis is justified by numerical
simulations employing low-density parity-check (LDPC) codes of the IEEE 802.11
standard.

1 Introduction
We consider the transmission of information X over a one-dimensional AWGN channel
under the average power constraint P . The capacity-achieving input distribution P (x)
for this channel is the zero-mean Gaussian with variance P . The loss in maximum
achievable information rate (AIR) resulting from using a uniform P (x) is called the
shaping gap and is 0.255 bits per real dimension asymptotically in signal-to-noise ratio
(SNR) and block length n. This loss can also be interpreted as the increase in required
SNR to achieve a certain rate R and is 1.53 dB asymptotically in R and n. Fig. 1
illustrates this loss by plotting channel capacity and the maximum AIR for a uniform
input distribution over [−

√
3P ,
√
3P ].

On top of the shaping gap, there is also a performance degradation caused from
the discrete nature of the practically used channel inputs X. Fig. 1 also illustrates this
by plotting the mutual information (MI) between the channel input X and channel
output Y for 2m-ary amplitude shift keying (ASK) alphabets

X = {±1,±3, · · · ,± (2m − 1)} . (1)

These curves stay close to the uniform capacity until R = (m−1) and then converge to
m asymptotically in SNR. In this paper, we consider ASK based transmission schemes
while investigating several constellation shaping methodologies.

Constellation shaping can be defined as the optimization of channel input X with
the purpose of decreasing the required average transmit power for a given target error
probability. This topic is investigated from many perspectives ever since Shannon
determined the capacity-achieving distribution for AWGN channels in his celebrated
paper. For a detailed survey on signal shaping, see [1].

In this paper, two fundamentally different approaches for shaping will be examined.
These are the recently-introduced constant composition distribution matching (CCDM)
and the well-investigated sphere shaping. In Sec. 2, these methods are explained. In
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Figure 1: MI between channel input and output employing 2m-ASK constellations for
m = 1, 2, · · · , 5 over AWGN channel. The Shannon capacity and the uniform capacity,
i.e., the maximum AIR using uniform inputs, are also presented. The difference between
the last two is 1.53 dB asymptotically, i.e., 0.255 bits per real dimension.

Sec. 3, an information-theoretical study is presented showing the asymptotic optimality
of them. In Sec. 4, numerical results are presented to further illustrate the difference
between the shaping approaches before the conclusion.

2 Shaping Approaches
Taxonomically, constellation shaping approaches are classified into two groups. The
first one is probabilistic shaping (PS) where elements of X are employed with non-
uniform probabilities. The second one is geometric shaping (GS) where positions of
low-dimensional constellation points are optimized [1, Sec. 4.5]. We believe this cate-
gorization does not uncover the importance of sphere shaping where the boundary of
the multidimensional constellation is structured in a way that will improve the perfor-
mance. Although this again leads to non-uniform utilization of channel symbols as in
PS, the indirect nature of accomplishing this motivates us to consider sphere shaping
separately.

An information theoretically elegant way of constellation shaping is to first de-
termine the capacity-achieving channel input distribution and then to obtain inputs
with this distribution. Using channel input symbols with non-uniform probabilities
according to a pre-defined distribution is called PS in this work. Recently, the con-
cept of distribution matching (DM) is proposed to realize PS [2]. DM refers to any
procedure that creates a non-uniform distribution that approximates, i.e., matches, a
desired distribution. There are multiple ways of implementing distribution matchers



in the literature: Variable-to-fixed length prefix-free coding [2], arithmetic coding [3]
etc. The approach in [3] is called CCDM and is combined with channel coding in
the probabilistic amplitude shaping (PAS) framework in [4]. CCDM attracted a lot
of attention especially in the optical communication society due to its high efficiency
at large block lengths and the ability to create a fine granularity for the transmission
rate, or equivalently, reach. We will use CCDM to represent PS here and discuss its
advantages, disadvantages and efficiency for short to medium block lengths n.

From another perspective, the shaping gap can also be closed by sphere-shaping
the multidimensional constellation boundary. As shown in [1] and [5], if an n-sphere
is used as the boundary of the n-dimensional 2m-ASK constellation∗ X n, the induced
distribution on any low-dimensional constituent constellation approaches to a Gaussian
asymptotically in n and m. Thus, the objective of transmitting Gaussian inputs can
also be achieved by n-sphere shaping. Furthermore, achieving this goal by imposing
a sphere constraint on an n-dimensional lattice might be more elementary from the
channel coding perspective.

Next CCDM and n-sphere shaping will be explained.

2.1 Constant Composition Distribution Matching
Following the approach and notation in [3], we factorize X as X = A× S where

A = {1, 3, · · · , (2m − 1)} , (2)
S = {−1, 1} , (3)

and limit our focus to n-amplitude sequences An ∈ An.
Let PA indicate a discrete distribution over the amplitude alphabet A. The n-type

distribution PĀ which minimizes† D(PA||PĀ) is used to determine the composition #(a)
as

#(a) = nPĀ(a) for a ∈ A. (4)

Then in a similar way to [7], arithmetic coding is utilized in [3] to implement a matcher
that indexes all possible n-tuples a1a2 · · · an having the same composition, i.e., constant
composition. The functional diagram of such a matcher is given in Fig. 2. The rate of
this matcher which indexes n-sequences with k bits is Rcc = k/n bits per symbol.

Constant Composition
Distribution Matcher
(#(a) for a ∈ A)

B1B2 · · ·Bk A1A2 · · ·AN

Figure 2: Constant composition distribution matcher. It maps k uniform bits (i.e., an
index) to n amplitudes having a fixed composition #(a) for a ∈ A. The mapping is
invertible. Arithmetic coding is employed.

The distribution of these sequences at the output of the matcher is indicated by
PÃn . Geometrically, these sequences are located on the surface‡ of an n-sphere of radius
∗Here the term ‘n-dimensional ASK constellation’ is used to indicate the n-fold Cartesian product

of X .
†For the optimum way of computing PĀ, see [6].
‡Note that there are multiple compositions that lead sequences to the same surface.



r =
√
Ecc where

Ecc =
∑
a∈A

#(a)a2, (5)

is the sequence energy. It is shown in [3] that the informational divergence between
the desired and the output distributions

D(PÃn||P n
A) = D(PÃn||P n

Ā) + nD(PĀ||PA), (6)

approaches zero for n → ∞ which is equivalent to say for the rate of the constant
composition code that

lim
n→∞

Rcc = H (PA) . (7)

Here it is assumed that the n-sequences are employed with equal probability. Note
that letting Scc indicate the set of these constant composition sequences, the rate can
be written as

Rcc ,
blog2 (|Scc|)c

n
bits per symbol. (8)

Finally in [4], MB distributions are used as PA to close the shaping gap relying
on the fact that they have the maximum entropy for a fixed second moment, i.e., the
variance§ in this case [8].

The main advantages of CCDM are the asymptotic optimality and the virtual
possibility of transmitting any rate by playing with PA which can be invaluable in
optical communications concerning the reach. On the other hand the disadvantages
are the very long block length requirement to perform efficiently and inability to be
parallelized. Note that the last is due to the use of arithmetic coding.

2.2 n-Sphere Shaping
Motivated by the asymptotic duality between n-sphere and Gaussian distribution, n-
sphere shaping is the procedure of putting a maximum-energy constraint (i.e., the
sphere constraint) on the possible n-sequences. The set S◦ of these sequences can be
defined as

S◦ =

{
a1a2 · · · an

∣∣∣∣∣
n∑

i=1

a2
i ≤ Emax

}
, (9)

where Emax is the maximum sequence energy.
In the literature, the fact that a sphere constraint leads to a Gaussian distribution

is proved using continuous approximation. Although there is no closed-form expression
for the distribution that maximizes the AIR constrained by an ASK constellation, the
reasoning in the continuous domain is extended to discrete domain somewhat prag-
matically. Though in a coding setup, this makes sense since a shaping code can easily
be combined with a (systematic) error-correcting code. In Sec. 3, we will show that
the sphere constraint induces a MB distribution asymptotically when imposed on an
n-dimensional ASK lattice.

§Here we implicitly assume that the distribution of signs will be uniform and X will have zero
mean.



2.2.1 Enumerative Sphere Shaping

Although it is not necessary to specify an encoding strategy for n-sphere shaping to an-
alyze its performance, here we outline enumerative sphere shaping (ESS) for the sake of
completeness. Proposed in [9], ESS specifies efficient encoding and decoding algorithms
to index energy-bounded sequences. These sequences are sorted lexicographically. In
the context of this work, an enumerative shaper can be regarded as a black box, see
Fig. 3. For a detailed discussion, see [5] and [9].

Enumerative
Sphere Shaper
(A, n, Emax)

B1B2 · · ·Bk A1A2 · · ·AN

Figure 3: Enumerative sphere shaper. It is an invertible mapping from an index (i.e.,
k bits) to n amplitudes. All possible sequences have an energy no greater than Emax.

Geometrically, energy bounded sequences are located in and on the surface of an
n-sphere of radius r =

√
Emax. The rate of this code is R◦ = k/n bits per symbol given

that Emax is large enough to enclose more than 2nR◦ n-sequences. This rate can also
be written as

R◦ ,
blog2 (|S◦|)c

n
bits per symbol. (10)

Recently in [5], ESS is combined with non-systematic convolutional coding to im-
prove the performance of IEEE 802.11 for n = 96.

Here we note that two different addressing algorithms for sphere shaping are given
in [10]. The first algorithm is very similar to ESS where the only difference is sequences
being sorted with respect to the n-dimensional shell that they are located on. The
second algorithm is the well-known shell mapping which is introduced in [11] and
included in the V.34 modem standard for n = 16 [12].

In the next section, we will investigate the asymptotic properties of constant com-
position and sphere codes.

3 Information-Theoretical Analysis
Let C be a code which consists of amplitude sequences ak = ak,1ak,2 · · · ak,n for k =
1, 2, · · · , L. Here L indicates the number of codewords of length n in the code. All
codewords occur with probability 1/L.

The operational rate of such a code is log2(L)/n bits per symbol and its operational
average symbol energy is 1

L

∑L
k=1

1
n

∑n
i=1 a

2
k,i.

Definition 3.1. (Achievability) The rate-energy pair (R,E) is called achievable if for
each ε > 0, for all n large enough, there exists a code with operational rate and
operational average symbol energy satisfying

log2(L)

n
≥R− ε, (11)

1

L

L∑
k=1

1

n

n∑
i=1

a2
k,i ≤E + ε. (12)



Finally we define the rate-energy function as follows:

R(E)
∆
= max{R : (R,E) is achievable}. (13)

Theorem 1. The maximum achievable rate for average symbol energy E is

R(E) = max
A:E[A2]≤E

H(A).

The proof consists of a converse part and the corresponding achievability proof.

3.1 Converse
Consider a code. Assume that amplitude Ai for i = 1, 2, · · · , n, has marginal distribu-
tion Pi generated¶ by the uniform distribution over the codewords. Now the operational
rate can be upper-bounded as

log2(L)

n
=

1

n
H (A1A2 · · ·An) =

1

n

n∑
i=1

H(Ai|Ai−1, · · · , A1)

(a)

≤ 1

n

n∑
i=1

H (Ai)
(b)

≤ H(Ã), (14)

where (a) follows from the fact that conditioning cannot increase entropy. If we say
that Ã is a random variable over alphabet A with distribution

P̃ (a) =
1

n

n∑
i=1

Pi(a), (15)

then (b) is due to the convexity of entropy.
Next we observe that

1

L

L∑
k=1

1

n

n∑
i=1

a2
k,i =

1

n

n∑
i=1

∑
a∈A

Pi(a)a
2 =

∑
a∈A

P̃ (a)a2 = E[Ã2].

We now conclude that for an achievable rate-energy pair (R,E), for all ε > 0 and
all large enough n, there exists a random variable A over A such that both

R ≤ log2(L)

n
+ ε ≤ H(A) + ε, (16)

E ≥ 1

L

L∑
k=1

1

n

n∑
i=1

a2
k,i − ε = E[A2]− ε. (17)

If we let ε ↓ 0 we obtain that

R(E) ≤ max
A:E[A2]≤E

H(A). (18)

¶More precisely, for a ∈ A, Pi(a) is te number of codewords ak for which ak,i = a divided by L.



3.2 Achievability Part

3.2.1 Achievability Based on Constant Composition Codes

Fix an energy E and assume that random variable A∗ maximizes the entropy H(A∗)
while satisfying the energy constraint E[(A∗)2] ≤ E. Denote by {P ∗(a), a ∈ A} the
(MB) distribution corresponding to this random variable. For all large enough n, we
now take a composition #(a) that satisfies

|#(a)− nP ∗(a)| ≤ 1, (19)

where #(a) ≥ 0 for all a ∈ A, and
∑

a∈A#(a) = n.
It can be shown that the probabilities P ∗(a) > 0 , see [8, Example 11.2.3]. Therefore

the normalized composition {#(a)/n, a ∈ A} approaches entropy H(P ∗) for increasing
n.

Now for fixed n, consider a code consisting of all sequences having the composition
{#(a), a ∈ A}. It can be shown that the operational rate of this constant composition
code approaches the entropy H(#(A)/n) of the normalized composition for increasing
n, see again [8, Example 11.2.3], where Stirling approximation is used.

We conclude that the operational rate of the constant composition code approaches
the entropy of the normalized composition, which approaches entropy H(P ∗), for n
large. Therefore R(E) = maxA:E[A2]≤E H(A) is achievable for all E.

3.3 Optimality of Sphere Codes
Definition 3.2. (Sphere Code) A code is a sphere code if there exist no sequences,
not in the code, with energy smaller than the energy of a codeword.

Theorem 2. For each code with operational rate R and energy E, there is a sphere
code with operational rate Ro and operational symbol energy Eo such that

Ro = R and Eo ≤ E. (20)

Proof. Just replace codewords by sequences outside the code with lower energy until
the code is a sphere code.

Theorem 2 along with the optimality of constant composition codes leads to the
conclusion that sphere codes achieve the maximum rate as well.

Note that the code S◦ defined before in Section 2.2 is a sphere code. The enumer-
ative sphere code with rate as in (10) need not be a sphere code since sequences are
sorted lexicographically and the ones with index 2nR or more are not used. Observe
that in the first algorithm in [10], sequences with largest index also have the largest
energy and therefore the remaining sequences form a sphere code.

3.4 Maxwell-Boltzmann Distribution and Comparison
The distribution that achieves maximum entropy under an energy constraint is called
Maxwell-Boltzmann distribution, see [8]. It is easy to show that the maximum entropy
distribution is unique. This follows directly from the strict convexity of the entropy
function. Since sphere codes result in maximum entropy under an energy constraint,
the corresponding average marginal distribution (15) approaches the MB distribution.

To show the superiority of sphere codes over constant composition codes for short
block lengths, we compute the finite-length rate loss

Rloss = H(A)−R, (21)
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Figure 4: Block length (in symbols) vs. finite-length rate losses (in bits per symbol) of
constant composition and sphere codes. The target rate is R = 1.75 for A = {1, 3, 5, 7}.

where A is MB distributed and E[A2] is equal to the average energy of the code used
to achieve R. The results are presented in Fig. 4.

Here we fix the target rate R = 1.75, and find the composition #(a) and Emax that
achieve R for constant composition and sphere codes respectively. It appears that for
a target rate loss of 0.1 and 0.01 bits per symbol, constant composition codes require
approximately 10 and 5 times larger block lengths than sphere codes, respectively.
Furthermore, due to their definition, see Definition 3.2, sphere codes have the smallest
block length requirement for a target rate loss.

3.5 Notes
We note that one counter argument may be the following: The shaping gain, i.e., the
gain in average energy or in rate, does not necessarily imply a similar gain in AIR or an
SNR improvement for a given error probability. Furthermore, utilization of constant
composition codewords may enable better decoding performance than a sphere code in
some cases. As an example, the constant composition property is exploited by a type
check in successive cancellation list decoding of polar codes in [13].

A second note concerns the work presented in [14]. Here the shell mapping which is
also an indexing method for n-sphere shaping is compared with CCDM. There are two
fundamental differences between shell mapping and ESS: First, shell mapping sorts
sequences with respect to their energies, i.e., the n-dimensional shell that they are
located on, instead of lexicographical ordering. Second, the algorithm employs the
divide and conquer principle (which requires multiplications) instead of operating in a
sequential manner.

Finally, a bridge between sphere shaping and CCDM, namely partition-based distri-



bution matching (PBDM), is established in [15]. In this work, the constant composition
constraint is relaxed by employing multiple compositions having the desired composi-
tion as the ensemble average. To put it simply, instead of considering a single shell,
multiple nested shells are utilized. To select the corresponding composition, a variable-
length prefix of the binary input is used which can be considered as a disadvantage.
Although not as efficient as a sphere code, PBDM also achieves the maximum rate
faster than CCDM.

4 Numerical Results
Monte Carlo simulations are used to compare the performance of constant composition
and sphere codes in the short to medium block length regime. For CCDM simulations,
PAS scheme is realized as in [4]. For sphere shaping simulations, the matcher in the PAS
scheme is replaced by an enumerative sphere shaper. As the channel code, systematic
LDPC codes of IEEE 802.11 [16] are employed with two different codeword lengths, i.e.,
nc = {648, 1944} bits. Note that the 2m-ASK demapper on the receiver side assumes
that the symbols are independent and identically distributed with either the n-type
distribution of the constant composition code or the average marginal distribution of
the sphere code. To achieve the target rate R = 2.67 based on 16-ASK, uniform
transmission is simulated with the rate rc = 2/3 code whereas shaped transmissions
require rc = 3/4.

Table 1: Parameters for Shaping

Approach n #(a) or Emax # seq. E Gain (in dB)

CCDM 162 (34, 32, 28, 23, 18, 13, 9, 5) 2432.06 48.31 0.44
486 (112, 103, 88, 69, 50, 33, 20, 11) 21296.15 42.22 1.02

ESS 162 796 2432.13 39.74 1.29
486 2326 21296.02 39.10 1.35

To obtain 2nR n-sequences, the compositions and Emax values given in Table 1 are
used for CCDM and ESS, respectively. Energy per symbol and shaping gain values of
these schemes are also given in the same table. The shaping gain is computed with
respect to the average energy equation (22H(X) − 1)/3 of uniform ASK constellations
which is 53.42 for this target rate‖.

In Fig. 5, the performances of the two different shaping techniques are presented.
For n = 162, sphere shaping requires 0.85 dB less SNR than CCDM to achieve 10−3

frame error probability while it drops to 0.35 dB for n = 486. This justify our earlier
statement that as n decreases, the difference between required block lengths increases
in favor of sphere shaping.

5 Conclusion
Two different shaping techniques are discussed: Constant composition distribution
matching and n-sphere shaping. It is shown that both asymptotically achieve the
maximum rate and induce MB distribution. Sphere codes perform more efficiently
(especially for short block lengths), i.e., approach the maximum rate (MB) faster than

‖Note that in this work H(X) = R+ 1.



16 17 18 19 20 21
10−4

10−3

10−2

10−1

100

nc = 648, n = 162

16 17 18 19 20 21
10−4

10−3

10−2

10−1

100

nc = 1944, n = 486

Unshaped; CCDM; ESS

Figure 5: SNR vs. frame error probability for 16-ASK at target rate R = 2.67 for
nc = {648, 1944} with and without shaping.

constant composition codes. This is shown by investigating the finite-length rate losses.
Finally the comparison is justified by presenting Monte Carlo simulations employing
LDPC codes.
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