4 research outputs found

    Transformation de Legendre en théorie des espèces

    Get PDF
    La transformation de Legendre envoie des fonctions convexes définies sur un espace vectoriel à des fonctions convexes définies sur l'espace vectoriel dual. Elle est reliée à la dualité projective, aux coordonnées tangentielles en géometrie algébrique et à la construction des espaces de Banach\ud duaux en analyse. On l'utilise aussi en mécanique statistique pour définir des potentiels thermodynamiques à partir des fonctions de variables d'état. Plus précisément, la transformation de Legendre permet de transformer une fonction d'état d'un système en une autre fonction d'état mieux adaptée à un problème particulier. Le chapitre un se veut un résumé des résultats connus à propos de la transformation de Legendre en analyse. Nous donnons plusieurs exemples afin d'illustrer les propriétés essentielles de cette transformation. Dans le chapitre deux, nous rappelons quelques notions en thermodynamique statistique: Les variables intensives, les variables extensives, l'énergie interne, l'entropie. Ensuite nous définissons\ud les potentiels thermodynamiques qui sont des transformées de Legendre de l'énergie interne. Dans le chapitre trois, nous rappelons des résultats fondamentaux de la théorie des espèces de structures. Mentionnons en particulier le théorème de dissymétrie pour les arbres et pour les graphes, ainsi que les équations fonctionnelles fondamentales pour les CB-graphes, i.e les graphes connexes dont tous les blocs sont dans une classe des graphes inséparables B, ainsi que pour les CM-graphes, i.e les graphes connexes dont toutes les mottes sont dans une classe de graphes irréductibles (2-arêtes-connexes). Dans le chapitre quatre, nous donnons la définition de la transformation de Legendre pour les espèces de structures à une sorte ou à deux sortes par rapport à une sorte. En effet, Pierre Leroux a été le premier à relier ces deux notions (Transformation de Legendre et espèces de structures). Il a démontré (Leroux, 2003) que les CM-graphes sont liées au M-graphes par transformation de Legendre. Dans ce mémoire on montre par une construction originale que l'espèce M des graphes irréductibles peut être remplacée par une espèce N quelconque, avec N[0] =0. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Fonctions convexes, Ensembles convexes, Transformation de Legendre, Potentiels\ud thermodynamiques, Énergie interne, Fonction de partition, Graphes, Isthme, Bloc, Motte, Graphes inséparables, Graphes irréductibles, Espèce de structures, Note

    Le polynôme de Tutte et ses applications en théorie des graphes, en mécanique statistique et en théorie des noeuds

    Get PDF
    L'objectif visé dans ce travail consiste en la présentation du polynôme de Tutte, et ce à la manière de son idéateur, M. William Thomas Tutte. Nous dressons également\ud un portrait de l'éventail des applications possibles de ce polynôme, notamment en théorie des graphes, en physique de la mécanique statistique, de même qu'en théorie des noeuds. À cet égard, nous faisons la démonstration que le polynôme de Tutte admet une spécialisation en terme de la fonction de partition d'un modèle de Potts, ainsi qu'en terme du polynôme de Jones d'un entrelacs alterné. Ce travail se conclut par une série de calculs sur les graphes 2-connexes et connexes, pour lesquels nous utilisons une équation fonctionnelle bien connue de la théorie des espèces, de même que des fonctions de poids bloc-multiplicatives. Ces calculs nous ont permis, entre autres, d'établir l'égalité entre le poids total des λ-flots à flux non nuls sur les graphes 2-connexes à quatre sommets et le nombre de marelles de longueur trois dans l'hypercube de dimension λ -1. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Polynôme de Tutte, Polynôme chromatique, Polynôme de flot, Polynôme de fiabilité, Polynôme de Jones, Entrelacs alterné, Fonction de partition, Modèle de Potts, Graphes 2-connexes

    Invariants de graphes liés au gaz imparfaits

    Get PDF
    Nous étudions les poids de graphes (c'est-à-dire, les invariants de graphes) qui apparaissent naturellement dans la théorie de Mayer et la théorie de Ree-Hoover pour le développement du viriel dans le contexte d'un gaz imparfait. Nous portons une attention particulière au deuxième poids \ud ωM(C) de Mayer et au poids ωRH(C) de Ree-Hoover d'un graphe 2-connexe c dans le cas d'un gaz à noyaux durs et à positions continues en une dimension. Ces poids sont calculés à partir de volumes signés de polytopes convexes associés au graphe c en utilisant la méthode des homomorphismes de graphes, que nous avons aussi adaptée au cas du poids de Ree-Hoover, ainsi que les transformées de Fourier. En faisant appel à l'inversion de Möbius, nous présentons des relations entre les poids de Mayer et de Ree-Hoover. Ces relations nous permettent de donner une définition simple explicite du concept du "star content" introduit par Ree-Hoover et d'analyser certaines de ses propriétés fondamentales. Parmi nos résultats, nous donnons des tables contenant les valeurs du poids de Mayer et du poids de Ree-Hoover pour tous les graphes 2-connexes de taille au plus 8 ainsi que d'autres paramètres descriptifs. Nous développons aussi des formules explicites pour les poids de Mayer et de Ree-Hoover pour certaines familles de graphes 2-connexes simplement, doublement et triplement infinies, incluant par exemple, le poids de Mayer des graphes bipartis complets K m,n. En analysant les tables précédentes à l'aide du logiciel Maple, nous montrons que les poids de Mayer et de Ree-Hoover ne sont pas exprimables comme des fonctions faisant seulement appel à certains paramètres classiques de la théorie des graphes. Finalement, nous présentons une méthode générale pour le calcul du poids de Mayer d'un graphe connexe quelconque basée sur les arborescences couvrantes en utilisant les transformées de Fourier. Nous illustrons cette méthode sur des cas particuliers incluant les particules dures en dimension quelconque d. Cette méthode donne aussi lieu à un algorithme de calcul basé sur les différences divisées pour le cas des particules dures en dimension d = 1. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Poids de Mayer, Poids de Ree-Hoover, Mécanique statistique, Méthode des homomorphismes\ud de graphes, Transformées de Fourier, Gaz imparfaits
    corecore