3,247 research outputs found

    Counting Arithmetical Structures on Paths and Cycles

    Full text link
    Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag (d) - A) r=0 , where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the torsion part of the cokernels of the matrices (diag (d) - A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients ((2n-1)/(n-1)) , and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles

    Counting Arithmetical Structures on Paths and Cycles

    Get PDF
    Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag (d) - A) r=0 , where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the torsion part of the cokernels of the matrices (diag (d) - A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients ((2n-1)/(n-1)) , and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    The representation of the symmetric group on m-Tamari intervals

    Get PDF
    An m-ballot path of size n is a path on the square grid consisting of north and east unit steps, starting at (0,0), ending at (mn,n), and never going below the line {x=my}. The set of these paths can be equipped with a lattice structure, called the m-Tamari lattice and denoted by T_n^{m}, which generalizes the usual Tamari lattice T_n obtained when m=1. This lattice was introduced by F. Bergeron in connection with the study of diagonal coinvariant spaces in three sets of n variables. The representation of the symmetric group S_n on these spaces is conjectured to be closely related to the natural representation of S_n on (labelled) intervals of the m-Tamari lattice, which we study in this paper. An interval [P,Q] of T_n^{m} is labelled if the north steps of Q are labelled from 1 to n in such a way the labels increase along any sequence of consecutive north steps. The symmetric group S_n acts on labelled intervals of T_n^{m} by permutation of the labels. We prove an explicit formula, conjectured by F. Bergeron and the third author, for the character of the associated representation of S_n. In particular, the dimension of the representation, that is, the number of labelled m-Tamari intervals of size n, is found to be (m+1)^n(mn+1)^{n-2}. These results are new, even when m=1. The form of these numbers suggests a connection with parking functions, but our proof is not bijective. The starting point is a recursive description of m-Tamari intervals. It yields an equation for an associated generating function, which is a refined version of the Frobenius series of the representation. This equation involves two additional variables x and y, a derivative with respect to y and iterated divided differences with respect to x. The hardest part of the proof consists in solving it, and we develop original techniques to do so, partly inspired by previous work on polynomial equations with "catalytic" variables.Comment: 29 pages --- This paper subsumes the research report arXiv:1109.2398, which will not be submitted to any journa

    Enumeration of Standard Young Tableaux

    Full text link
    A survey paper, to appear as a chapter in a forthcoming Handbook on Enumeration.Comment: 65 pages, small correction

    An extension of Tamari lattices

    Get PDF
    For any finite path vv on the square grid consisting of north and east unit steps, starting at (0,0), we construct a poset Tam(v)(v) that consists of all the paths weakly above vv with the same number of north and east steps as vv. For particular choices of vv, we recover the traditional Tamari lattice and the mm-Tamari lattice. Let v\overleftarrow{v} be the path obtained from vv by reading the unit steps of vv in reverse order, replacing the east steps by north steps and vice versa. We show that the poset Tam(v)(v) is isomorphic to the dual of the poset Tam(v)(\overleftarrow{v}). We do so by showing bijectively that the poset Tam(v)(v) is isomorphic to the poset based on rotation of full binary trees with the fixed canopy vv, from which the duality follows easily. This also shows that Tam(v)(v) is a lattice for any path vv. We also obtain as a corollary of this bijection that the usual Tamari lattice, based on Dyck paths of height nn, is a partition of the (smaller) lattices Tam(v)(v), where the vv are all the paths on the square grid that consist of n1n-1 unit steps. We explain possible connections between the poset Tam(v)(v) and (the combinatorics of) the generalized diagonal coinvariant spaces of the symmetric group.Comment: 18 page
    corecore