1,751 research outputs found

    Enumeration of simple random walks and tridiagonal matrices

    Full text link
    We present some old and new results in the enumeration of random walks in one dimension, mostly developed in works of enumerative combinatorics. The relation between the trace of the nn-th power of a tridiagonal matrix and the enumeration of weighted paths of nn steps allows an easier combinatorial enumeration of the paths. It also seems promising for the theory of tridiagonal random matrices .Comment: several ref.and comments added, misprints correcte

    Sequences of labeled trees related to Gelfand-Tsetlin patterns

    Get PDF
    By rewriting the famous hook-content formula it easily follows that there are āˆ1ā‰¤i<jā‰¤nkjāˆ’ki+jāˆ’ijāˆ’i\prod\limits_{1 \le i < j \le n} \frac{k_j - k_i + j -i}{j-i} semistandard tableaux of shape (kn,knāˆ’1,...,k1)(k_n,k_{n-1},...,k_1) with entries in {1,2,...,n}\{1,2,...,n\} or, equivalently, Gelfand-Tsetlin patterns with bottom row (k1,...,kn)(k_1,...,k_n). In this article we introduce certain sequences of labeled trees, the signed enumeration of which is also given by this formula. In these trees, vertices as well as edges are labeled, the crucial condition being that each edge label lies between the vertex labels of the two endpoints of the edge. This notion enables us to give combinatorial explanations of the shifted antisymmetry of the formula and its polynomiality. Furthermore, we propose to develop an analog approach of combinatorial reasoning for monotone triangles and explain how this may lead to a combinatorial understanding of the alternating sign matrix theorem.Comment: 26 pages, 12 figure

    Parking functions, labeled trees and DCJ sorting scenarios

    Get PDF
    In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios, and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective bijections between the set of scenarios that sort a cycle and well studied combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure

    Solving multivariate functional equations

    Full text link
    This paper presents a new method to solve functional equations of multivariate generating functions, such as F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs),F(r,s)=e(r,s)+xf(r,s)F(1,1)+xg(r,s)F(qr,1)+xh(r,s)F(qr,qs), giving a formula for F(r,s)F(r,s) in terms of a sum over finite sequences. We use this method to show how one would calculate the coefficients of the generating function for parallelogram polyominoes, which is impractical using other methods. We also apply this method to answer a question from fully commutative affine permutations.Comment: 11 pages, 1 figure. v3: Main theorems and writing style revised for greater clarity. Updated to final version, to appear in Discrete Mathematic

    Continued fractions for permutation statistics

    Full text link
    We explore a bijection between permutations and colored Motzkin paths that has been used in different forms by Foata and Zeilberger, Biane, and Corteel. By giving a visual representation of this bijection in terms of so-called cycle diagrams, we find simple translations of some statistics on permutations (and subsets of permutations) into statistics on colored Motzkin paths, which are amenable to the use of continued fractions. We obtain new enumeration formulas for subsets of permutations with respect to fixed points, excedances, double excedances, cycles, and inversions. In particular, we prove that cyclic permutations whose excedances are increasing are counted by the Bell numbers.Comment: final version formatted for DMTC

    Generalized permutation patterns - a short survey

    Get PDF
    An occurrence of a classical pattern p in a permutation Ļ€ is a subsequence of Ļ€ whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern, some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidanceā€”or the prescribed number of occurrencesā€” of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns
    • ā€¦
    corecore